Random bipartite graphs

Boris Šobot

Department of Mathematics and Informatics, Faculty of Science, Novi Sad
June 5th, 2013

Random graphs

Definition
A κ-random graph is a graph (V, E) such that $|V|=\kappa$ that satisfies the following extension property:
$\forall U, W \in[V]^{<\kappa}(U \cap W=\emptyset \Rightarrow \exists v \in V(\forall u \in U v u \in E \wedge \forall w \in W v w \notin E))$.

Rado graph - the unique \aleph_{0}-random graph.

Related structures: random digraphs, random tournaments, etc.

Random graphs

Definition
A κ-random graph is a graph (V, E) such that $|V|=\kappa$ that satisfies the following extension property:
$\forall U, W \in[V]^{<\kappa}(U \cap W=\emptyset \Rightarrow \exists v \in V(\forall u \in U v u \in E \wedge \forall w \in W v w \notin E))$.

Rado graph - the unique \aleph_{0}-random graph.

Related structures: random digraphs, random tournaments, etc.

Random graphs

Definition
A κ-random graph is a graph (V, E) such that $|V|=\kappa$ that satisfies the following extension property:
$\forall U, W \in[V]^{<\kappa}(U \cap W=\emptyset \Rightarrow \exists v \in V(\forall u \in U v u \in E \wedge \forall w \in W v w \notin E))$.

Rado graph - the unique \aleph_{0}-random graph.

Related structures:

Random graphs

Definition
A κ-random graph is a graph (V, E) such that $|V|=\kappa$ that satisfies the following extension property:
$\forall U, W \in[V]^{<\kappa}(U \cap W=\emptyset \Rightarrow \exists v \in V(\forall u \in U v u \in E \wedge \forall w \in W v w \notin E))$.

Rado graph - the unique \aleph_{0}-random graph.

Related structures: random digraphs,

Random graphs

Definition

A κ-random graph is a graph (V, E) such that $|V|=\kappa$ that satisfies the following extension property:
$\forall U, W \in[V]^{<\kappa}(U \cap W=\emptyset \Rightarrow \exists v \in V(\forall u \in U v u \in E \wedge \forall w \in W v w \notin E))$.

Rado graph - the unique \aleph_{0}-random graph.

Related structures: random digraphs, random tournaments, etc.

Random bigraphs

Definition
(κ, λ)-bigraph is a structure $G=(X, Y, E)$, where $(X \cup Y, E)$ is a digraph such that $|X|=\kappa,|Y|=\lambda$ and $E \subseteq\{x y: x \in X, y \in Y\}$.

Random bigraphs

Definition
(κ, λ)-bigraph is a structure $G=(X, Y, E)$, where $(X \cup Y, E)$ is a digraph such that $|X|=\kappa,|Y|=\lambda$ and $E \subseteq\{x y: x \in X, y \in Y\}$.

We call X the left side, and Y the right side.

Random bigraphs

Definition
(κ, λ)-bigraph is a structure $G=(X, Y, E)$, where $(X \cup Y, E)$ is a digraph such that $|X|=\kappa,|Y|=\lambda$ and $E \subseteq\{x y: x \in X, y \in Y\}$.

We call X the left side, and Y the right side.
$\Gamma_{U, W}^{G}=\{x \in X: \forall u \in U x u \in E \wedge \forall w \in W x w \notin E\}$

Random bigraphs

$\Gamma_{U, W}^{G}=\{x \in X: \forall u \in U x u \in E \wedge \forall w \in W x w \notin E\}$
Definition
Let $\mu \leq \lambda$. $\mathrm{A}(\kappa, \lambda)$-bigraph (X, Y, E) is (κ, λ, μ)-random if

$$
\forall U, W \in[Y]^{<\mu}\left(U \cap W=\emptyset \Rightarrow \Gamma_{U, W}^{G} \neq \emptyset\right) .
$$

Definition
If $\mu \leq \kappa$, a (κ, λ)-bigraph (X, Y, E) is (κ, λ, μ)-dense if $\forall U, W \in[X]^{<\mu}(U \cap W=\emptyset \Rightarrow \exists y \in Y(\forall u \in U u y \in E \wedge \forall w \in W$ wy $\notin E))$.

If G satisfies both conditions we will call it (κ, λ, μ)-random dense.
A $\left(\kappa, \lambda, \aleph_{0}\right)$-random bigraph is called just (κ, λ)-random.

Random bigraphs

$\Gamma_{U, W}^{G}=\{x \in X: \forall u \in U x u \in E \wedge \forall w \in W x w \notin E\}$
Definition
Let $\mu \leq \lambda$. $\mathrm{A}(\kappa, \lambda)$-bigraph (X, Y, E) is (κ, λ, μ)-random if

$$
\forall U, W \in[Y]^{<\mu}\left(U \cap W=\emptyset \Rightarrow \Gamma_{U, W}^{G} \neq \emptyset\right) .
$$

Definition
If $\mu \leq \kappa$, a (κ, λ)-bigraph (X, Y, E) is (κ, λ, μ)-dense if $\forall U, W \in[X]^{<\mu}(U \cap W=\emptyset \Rightarrow \exists y \in Y(\forall u \in U u y \in E \wedge \forall w \in W w y \notin E))$.

Random bigraphs

$\Gamma_{U, W}^{G}=\{x \in X: \forall u \in U x u \in E \wedge \forall w \in W x w \notin E\}$
Definition
Let $\mu \leq \lambda$. $\mathrm{A}(\kappa, \lambda)$-bigraph (X, Y, E) is (κ, λ, μ)-random if

$$
\forall U, W \in[Y]^{<\mu}\left(U \cap W=\emptyset \Rightarrow \Gamma_{U, W}^{G} \neq \emptyset\right) .
$$

Definition
If $\mu \leq \kappa$, a (κ, λ)-bigraph (X, Y, E) is (κ, λ, μ)-dense if
$\forall U, W \in[X]^{<\mu}(U \cap W=\emptyset \Rightarrow \exists y \in Y(\forall u \in U u y \in E \wedge \forall w \in W w y \notin E))$.
If G satisfies both conditions we will call it (κ, λ, μ)-random dense. A $\left(\kappa, \lambda, \aleph_{0}\right)$-random bigraph is called just (κ, λ)-random.

Random bigraphs

```
\Gamma}\mp@subsup{\Gamma}{U,W}{G}={x\inX:\forallu\inUxu\inE\wedge\forallw\inWxw\not\inE
( }\kappa,\lambda,\mu)\mathrm{ -random bigraph: }\forallU,W\in[Y\mp@subsup{]}{}{<\mu}(U\capW=\emptyset=>\mp@subsup{\Gamma}{U,W}{G}\not=\emptyset)
( }\kappa,\lambda,\mu)\mathrm{ -dense bigraph:
\forallU,W\in[X\mp@subsup{]}{}{<\mu}(U\capW=\emptyset=>\existsy\inY(\forallu\inU uy\inE\wedge \forallw\inW wy\not\inE)).
```

Lemma
(a) In a (κ, λ, μ)-random bigraph (X, Y, E) we can find for every disjoint
$U, W \in\lceil Y\rceil^{<\mu} \mu$-many vertices $x \in X$ that satisfy $x u \in E$ for all $u \in U$ and
$x w \notin E$ for all $w \in W$
(b) In a (κ, λ, μ)-dense bigraph (X, Y, E) we can find for every disjoint
$U, W \in[X]^{<\mu} \mu$-many vertices $y \in Y$ that satisfy $u y \in E$ for all $u \in U$ and
$w y \notin E$ for all $w \in W$

Random bigraphs

```
\Gamma}\mp@subsup{\Gamma}{U,W}{G}={x\inX:\forallu\inUxu\inE\wedge\forallw\inWxw\not\inE
( }\kappa,\lambda,\mu)\mathrm{ -random bigraph: }\forallU,W\in[Y\mp@subsup{]}{}{<\mu}(U\capW=\emptyset=>\mp@subsup{\Gamma}{U,W}{G}\not=\emptyset)
( }\kappa,\lambda,\mu)\mathrm{ -dense bigraph:
\forallU,W\in[X\mp@subsup{]}{}{<\mu}(U\capW=\emptyset=>\existsy\inY(\forallu\inU uy\inE\wedge \forallw\inW wy\not\inE)).
Lemma
```

(a) In a (κ, λ, μ)-random bigraph (X, Y, E) we can find for every disjoint $U, W \in[Y]^{<\mu} \mu$-many vertices $x \in X$ that satisfy $x u \in E$ for all $u \in U$ and $x w \notin E$ for all $w \in W$.
(b) In a (κ, λ, μ)-dense bigraph (X, Y, E) we can find for every disjoint

Random bigraphs

```
\Gamma}\mp@subsup{\Gamma}{U,W}{G}={x\inX:\forallu\inUxu\inE\wedge\forallw\inWxw\not\inE
( }\kappa,\lambda,\mu)\mathrm{ -random bigraph: }\forallU,W\in[Y\mp@subsup{]}{}{<\mu}(U\capW=\emptyset=>\mp@subsup{\Gamma}{U,W}{G}\not=\emptyset)
( }\kappa,\lambda,\mu)\mathrm{ -dense bigraph:
\forallU,W\in[X\mp@subsup{]}{}{<\mu}(U\capW=\emptyset=>\existsy\inY(\forallu\inUuy\inE\wedge
```

Lemma
(a) In a (κ, λ, μ)-random bigraph (X, Y, E) we can find for every disjoint $U, W \in[Y]^{<\mu} \mu$-many vertices $x \in X$ that satisfy $x u \in E$ for all $u \in U$ and $x w \notin E$ for all $w \in W$.
(b) In a (κ, λ, μ)-dense bigraph (X, Y, E) we can find for every disjoint $U, W \in[X]^{<\mu} \mu$-many vertices $y \in Y$ that satisfy $u y \in E$ for all $u \in U$ and $w y \notin E$ for all $w \in W$.

Independent and dense families

κ-random graph: $\forall U, W \in[V]^{<\kappa}(U \cap W=\emptyset \Rightarrow \exists v \in V(\forall u \in U v u \in E \wedge \forall w \in W v w \notin E))$.
Definition
Let $\mu \leq \lambda$. A family $\mathcal{A}=\left\{A_{\alpha}: \alpha<\lambda\right\}$ of subsets of κ is called (κ, λ, μ)-independent if

$$
\forall U, W \in[\lambda]^{<\mu}\left(U \cap W=\emptyset \Rightarrow \bigcap_{\alpha \in U} A_{\alpha} \cap \bigcap_{\alpha \in W}\left(\kappa \backslash A_{\alpha}\right) \neq \emptyset\right)
$$

The connection

Let $\mathcal{A}=\left\{A_{\alpha}: \alpha<\lambda\right\}$ be a (κ, λ, μ)-independent family. Let X and Y be disjoint sets of cardinalities κ and λ respectively. We enumerate them: $X=\left\{x_{\beta}: \beta<\kappa\right\}, Y=\left\{y_{\alpha}: \alpha<\lambda\right\}$, and define the relation $E \subseteq X \times Y$: let $x_{\beta} y_{\alpha} \in E$ iff $\beta \in A_{\alpha}$. Then (X, Y, E) is a (κ, λ, μ)-random bigraph.

The connection

Let $\mathcal{A}=\left\{A_{\alpha}: \alpha<\lambda\right\}$ be a (κ, λ, μ)-independent family. Let X and Y be disjoint sets of cardinalities κ and λ respectively. We enumerate them: $X=\left\{x_{\beta}: \beta<\kappa\right\}, Y=\left\{y_{\alpha}: \alpha<\lambda\right\}$, and define the relation $E \subseteq X \times Y$: let $x_{\beta} y_{\alpha} \in E$ iff $\beta \in A_{\alpha}$. Then (X, Y, E) is a (κ, λ, μ)-random bigraph.

On the other hand, let $G=(X, Y, E)$ be a (κ, λ, μ)-random bigraph. We enumerate $X=\left\{x_{\beta}: \beta<\kappa\right\}$ and $Y=\left\{y_{\alpha}: \alpha<\lambda\right\}$ and define, for each $\alpha \in \lambda, A_{\alpha}=\left\{\beta \in \kappa: x_{\beta} y_{\alpha} \in E\right\}$. Then $\left\{A_{\alpha}: \alpha<\lambda\right\}$ is a (κ, λ, μ)-independent family.

Robustness

Lemma

Every bigraph obtained from a (κ, λ, μ)-random bigraph (X, Y, E) by
(a) adding $\leq \kappa$ vertices to X (connected to arbitrary vertices from Y)
(b) removing $<\mu$ vertices from X
(c) removing $<\lambda$ vertices from Y
(d) replacing $<\mu$ edges with non-edges and $<\mu$ non-edges with edges is also a (κ, λ, μ)-random bigraph.
\square

Robustness

Lemma
Every bigraph obtained from a (κ, λ, μ)-random bigraph (X, Y, E) by
(a) adding $\leq \kappa$ vertices to X (connected to arbitrary vertices from Y)
(b) removing $<\mu$ vertices from X
 is also a (κ, λ, μ)-random bigraph.
\square

Robustness

Lemma

Every bigraph obtained from a (κ, λ, μ)-random bigraph (X, Y, E) by
(a) adding $\leq \kappa$ vertices to X (connected to arbitrary vertices from Y)
(b) removing $<\mu$ vertices from X
(c) removing $<\lambda$ vertices from Y
(d) replacing $<\mu$ edges with non-edges and $<\mu$ non-edges with edges is also a (κ, λ, μ)-random bigraph.
\square

Robustness

Lemma

Every bigraph obtained from a (κ, λ, μ)-random bigraph (X, Y, E) by
(a) adding $\leq \kappa$ vertices to X (connected to arbitrary vertices from Y)
(b) removing $<\mu$ vertices from X
(c) removing $<\lambda$ vertices from Y
(d) replacing $<\mu$ edges with non-edges and $<\mu$ non-edges with edges is also a (κ, λ, μ)-random bigraph.

Robustness

Lemma

Every bigraph obtained from a (κ, λ, μ)-random bigraph (X, Y, E) by
(a) adding $\leq \kappa$ vertices to X (connected to arbitrary vertices from Y)
(b) removing $<\mu$ vertices from X
(c) removing $<\lambda$ vertices from Y
(d) replacing $<\mu$ edges with non-edges and $<\mu$ non-edges with edges is also a (κ, λ, μ)-random bigraph.

Lemma

Let μ be a regular cardinal. Every bigraph obtained from a (κ, λ, μ)-random dense bigraph by deleting $<\mu$ edges from each vertex is also a (κ, λ, μ)-random dense bigraph.

Existence, uniqueness, homogeneity

Fact
If $\kappa^{<\mu}=\kappa$ then there is a $\left(\kappa, 2^{\kappa}, \mu\right)$-random bigraph.

Existence, uniqueness, homogeneity

Theorem (Goldstern, Grossberg, Kojman, 1996)
(a) There is exactly one (up to isomorphism) $\left(\aleph_{0}, \aleph_{0}\right)$-random dense bigraph, and it is homogeneous.
(b) Every homogeneous (κ, λ)-bigraph which is neither empty nor
complete is either a perfect matching or its complement or a
(κ, λ)-random dense bigraph (of course, when $\kappa \neq \lambda$, only the latter
option remains).
(c) There is a $\left(\kappa, 2^{\kappa}\right)$-random dense bigraph for every infinite cardinal
κ.
(d) ($\neg \mathrm{CH} \wedge \mathrm{MA})$ For every $\kappa<\mathrm{c}$ there is unique $\left(\aleph_{0}, \kappa\right)$-random dense
bigraph up to isomorphism.
(e) $\left(2^{\kappa+}>2^{\kappa}\right)$ There are $2^{\kappa^{+}}$-many nonisomorphic $\left(\kappa, \kappa^{+}\right)$-random
dense bigraphs.

Existence, uniqueness, homogeneity

Theorem (Goldstern, Grossberg, Kojman, 1996)
(a) There is exactly one (up to isomorphism) $\left(\aleph_{0}, \aleph_{0}\right)$-random dense bigraph, and it is homogeneous.
(b) Every homogeneous (κ, λ)-bigraph which is neither empty nor complete is either a perfect matching or its complement or a (κ, λ)-random dense bigraph (of course, when $\kappa \neq \lambda$, only the latter option remains).

Existence, uniqueness, homogeneity

Theorem (Goldstern, Grossberg, Kojman, 1996)
(a) There is exactly one (up to isomorphism) $\left(\aleph_{0}, \aleph_{0}\right)$-random dense bigraph, and it is homogeneous.
(b) Every homogeneous (κ, λ)-bigraph which is neither empty nor complete is either a perfect matching or its complement or a (κ, λ)-random dense bigraph (of course, when $\kappa \neq \lambda$, only the latter option remains).
(c) There is a $\left(\kappa, 2^{\kappa}\right)$-random dense bigraph for every infinite cardinal κ.
(d) $(\neg \mathrm{CH} \wedge \mathrm{MA})$ For every $\kappa<\mathrm{c}$ there is unique (\aleph_{0}, κ)-random dense bigraph up to isomorphism.
dense bigraphs.

Existence, uniqueness, homogeneity

Theorem (Goldstern, Grossberg, Kojman, 1996)
(a) There is exactly one (up to isomorphism) $\left(\aleph_{0}, \aleph_{0}\right)$-random dense bigraph, and it is homogeneous.
(b) Every homogeneous (κ, λ)-bigraph which is neither empty nor complete is either a perfect matching or its complement or a (κ, λ)-random dense bigraph (of course, when $\kappa \neq \lambda$, only the latter option remains).
(c) There is a $\left(\kappa, 2^{\kappa}\right)$-random dense bigraph for every infinite cardinal κ.
(d) $(\neg \mathrm{CH} \wedge \mathrm{MA})$ For every $\kappa<\mathfrak{c}$ there is unique ($\left.\aleph_{0}, \kappa\right)$-random dense bigraph up to isomorphism.

Existence, uniqueness, homogeneity

Theorem (Goldstern, Grossberg, Kojman, 1996)
(a) There is exactly one (up to isomorphism) $\left(\aleph_{0}, \aleph_{0}\right)$-random dense bigraph, and it is homogeneous.
(b) Every homogeneous (κ, λ)-bigraph which is neither empty nor complete is either a perfect matching or its complement or a (κ, λ)-random dense bigraph (of course, when $\kappa \neq \lambda$, only the latter option remains).
(c) There is a $\left(\kappa, 2^{\kappa}\right)$-random dense bigraph for every infinite cardinal κ.
(d) $(\neg \mathrm{CH} \wedge \mathrm{MA})$ For every $\kappa<\mathfrak{c}$ there is unique ($\left.\aleph_{0}, \kappa\right)$-random dense bigraph up to isomorphism.
(e) $\left(2^{\kappa^{+}}>2^{\kappa}\right)$ There are $2^{\kappa^{+}}$-many nonisomorphic $\left(\kappa, \kappa^{+}\right)$-random dense bigraphs.

Universality

Theorem
Every (κ_{1}, λ_{1})-bigraph for $\kappa_{1} \leq \mu$ and $\lambda_{1}<\mu$ can be embedded in any (κ, λ, μ)-random bigraph.

```
Theorem
Every ( }\mp@subsup{\kappa}{1}{},\mp@subsup{\lambda}{1}{})\mathrm{ -bigraph for }\mp@subsup{\kappa}{1}{}\leq\mu\mathrm{ and }\mp@subsup{\lambda}{1}{}\leq\mu\mathrm{ can be embedded in any
( }\kappa,\lambda,\mu)\mathrm{ -random dense bigraph.
```


Universality

Theorem

Every (κ_{1}, λ_{1})-bigraph for $\kappa_{1} \leq \mu$ and $\lambda_{1}<\mu$ can be embedded in any (κ, λ, μ)-random bigraph.

Theorem

Every (κ_{1}, λ_{1})-bigraph for $\kappa_{1} \leq \mu$ and $\lambda_{1} \leq \mu$ can be embedded in any (κ, λ, μ)-random dense bigraph.

Factorization

Theorem
(a) Every (κ, κ, κ)-random dense bigraph has a perfect matching. (b) Every (κ, κ, κ)-random dense bigraph has a 1-factorization, i.e. its set of edges can be partitioned into disjoint perfect matchings.

Factorization

Theorem

(a) Every (κ, κ, κ)-random dense bigraph has a perfect matching. (b) Every (κ, κ, κ)-random dense bigraph has a 1 -factorization, i.e. its set of edges can be partitioned into disjoint perfect matchings.

A partition property for graphs

\mathcal{P} : for every partition of the set of vertices of G into finitely many pieces at least one of the induced graphs is isomorphic to G.

Theorem (Cameron) The only countable graphs with the property \mathcal{P} up to isomorphism are the empty graph, the complete graph and the Rado graph.

A partition property for graphs

\mathcal{P} : for every partition of the set of vertices of G into finitely many pieces at least one of the induced graphs is isomorphic to G.

Theorem (Cameron)
The only countable graphs with the property \mathcal{P} up to isomorphism are the empty graph, the complete graph and the Rado graph.

A partition property for tournaments

\mathcal{P} : for every partition of the set of vertices of T into finitely many pieces at least one of the induced tournaments is isomorphic to T

A partition property for tournaments

\mathcal{P} : for every partition of the set of vertices of T into finitely many pieces at least one of the induced tournaments is isomorphic to T

Theorem (Bonato, Cameron, Delić, 2000)
The only countable tournaments with the property \mathcal{P} up to isomorphism are the random tournament, and tournaments ω^{α} and $\left(\omega^{\alpha}\right)^{*}$ for $0<\alpha<\omega_{1}$.

A partition property for digraphs

\mathcal{P} : for every partition of the set of vertices of G into finitely many pieces at least one of the induced digraphs is isomorphic to G.

A partition property for digraphs

\mathcal{P} : for every partition of the set of vertices of G into finitely many pieces at least one of the induced digraphs is isomorphic to G.

Theorem (Diestel, Leader, Scott, Thomassé, 2007)
The only countable digraphs with the property \mathcal{P} up to isomorphism are the empty digraph, the random tournament, tournaments ω^{α} and $\left(\omega^{\alpha}\right)^{*}$ for $0<\alpha<\omega_{1}$, the random digraph, the random acyclic digraph and its inverse.

A partition property for bigraphs

\mathcal{P} : for every partition of the set of vertices of G into finitely many pieces at least one of the induced sub-bigraphs is isomorphic to G.

A partition property for bigraphs

\mathcal{P}^{\prime} : for every partition of the set of vertices of G into finitely many pieces that each induce (\aleph_{0}, \aleph_{0})-bigraphs at least one of the induced sub-bigraphs is isomorphic to G.
\square
\qquad

A partition property for bigraphs

\mathcal{P}^{\prime} : for every partition of the set of vertices of G into finitely many pieces that each induce (\aleph_{0}, \aleph_{0})-bigraphs at least one of the induced sub-bigraphs is isomorphic to G.

Lemma

Let μ be a regular cardinal and $\nu<\mu$. Let $\left\{V_{\gamma}: \gamma<\nu\right\}$ be a partition of the set of vertices of (κ, λ, μ)-random bigraph such that each V_{γ} has at least μ vertices on each side. Then at least one of the induced sub-bigraphs is $\left(\kappa_{1}, \lambda_{1}, \mu\right)$-random for some $\kappa_{1} \leq \kappa$ and $\lambda_{1} \leq \lambda$.

A partition property for bigraphs

\mathcal{P}^{\prime} : for every partition of the set of vertices of G into finitely many pieces that each induce (\aleph_{0}, \aleph_{0})-bigraphs at least one of the induced sub-bigraphs is isomorphic to G.

Lemma

Let μ be a regular cardinal and $\nu<\mu$. Let $\left\{V_{\gamma}: \gamma<\nu\right\}$ be a partition of the set of vertices of (κ, λ, μ)-random bigraph such that each V_{γ} has at least μ vertices on each side. Then at least one of the induced sub-bigraphs is $\left(\kappa_{1}, \lambda_{1}, \mu\right)$-random for some $\kappa_{1} \leq \kappa$ and $\lambda_{1} \leq \lambda$.

Lemma
The $\left(\aleph_{0}, \aleph_{0}\right)$-random dense bigraph does not satisfy \mathcal{P}^{\prime}.

A partition property for bigraphs

\mathcal{P}^{\prime} : for every partition of the set of vertices of G into finitely many pieces that each induce (\aleph_{0}, \aleph_{0})-bigraphs at least one of the induced sub-bigraphs is isomorphic to G.

```
Example
S=(X,Y,E) is defined by }X={\mp@subsup{x}{n}{}:n\in\omega},Y={\mp@subsup{y}{n}{}:n\in\omega}\mathrm{ and
E={\mp@subsup{x}{n}{}\mp@subsup{y}{0}{}:n\in\omega}.S,S*}\mathrm{ and their complements have }\mp@subsup{\mathcal{P}}{}{\prime}
```

\square
\square

A partition property for bigraphs

\mathcal{P}^{\prime} : for every partition of the set of vertices of G into finitely many pieces that each induce (\aleph_{0}, \aleph_{0})-bigraphs at least one of the induced sub-bigraphs is isomorphic to G.

Example

$S=(X, Y, E)$ is defined by $X=\left\{x_{n}: n \in \omega\right\}, Y=\left\{y_{n}: n \in \omega\right\}$ and $E=\left\{x_{n} y_{0}: n \in \omega\right\} . S, S^{*}$ and their complements have \mathcal{P}^{\prime}.

Theorem

The only $\left(\aleph_{0}, \aleph_{0}\right)$-bigraphs with the property \mathcal{P}^{\prime} up to isomorphism are the empty $\left(\aleph_{0}, \aleph_{0}\right)$-bigraph, the complete $\left(\aleph_{0}, \aleph_{0}\right)$-bigraph, the bigraphs S and S^{*} and their complements.

More partition properties

Theorem
Let $X=X_{0} \cup X_{1}$ and $Y=Y_{0} \cup Y_{1}$ be partitions of sides of the $\left(\aleph_{0}, \aleph_{0}\right)$-random dense bigraph G into infinite subsets.
(a) There is $i \in\{0,1\}$ such that the sub-bigraph induced by $X_{i} \cup Y_{i}$ is $\left(\aleph_{0}, \aleph_{0}\right)$-random. (b) There is $j \in\{0,1\}$ such that the sub-bigraph induced by $X_{j} \cup Y_{j}$ is (\aleph_{0}, \aleph_{0})-dense.
(c) There are $i, j \in\{0,1\}$ such that the sub-bigraph induced by $X_{i} \cup Y_{j}$ is $\left(\aleph_{0}, \aleph_{0}\right)$-random dense and hence isomorphic to G.

More partition properties

Theorem

Let $X=X_{0} \cup X_{1}$ and $Y=Y_{0} \cup Y_{1}$ be partitions of sides of the $\left(\aleph_{0}, \aleph_{0}\right)$-random dense bigraph G into infinite subsets.
(a) There is $i \in\{0,1\}$ such that the sub-bigraph induced by $X_{i} \cup Y_{i}$ is $\left(\aleph_{0}, \aleph_{0}\right)$-random.
(b) There is $j \in\{0,1\}$ such that the sub-bigraph induced by $X_{j} \cup Y_{j}$ is
$\left(\aleph_{0}, \aleph_{0}\right)$-dense.
(c) There are $i, j \in\{0,1\}$ such that the sub-bigraph induced by $X_{i} \cup Y_{j}$
is $\left(\aleph_{0}, \aleph_{0}\right)$-random dense and hence isomorphic to G.

More partition properties

Theorem
Let $X=X_{0} \cup X_{1}$ and $Y=Y_{0} \cup Y_{1}$ be partitions of sides of the $\left(\aleph_{0}, \aleph_{0}\right)$-random dense bigraph G into infinite subsets.
(a) There is $i \in\{0,1\}$ such that the sub-bigraph induced by $X_{i} \cup Y_{i}$ is $\left(\aleph_{0}, \aleph_{0}\right)$-random.
(b) There is $j \in\{0,1\}$ such that the sub-bigraph induced by $X_{j} \cup Y_{j}$ is (\aleph_{0}, \aleph_{0})-dense.

More partition properties

Theorem

Let $X=X_{0} \cup X_{1}$ and $Y=Y_{0} \cup Y_{1}$ be partitions of sides of the $\left(\aleph_{0}, \aleph_{0}\right)$-random dense bigraph G into infinite subsets.
(a) There is $i \in\{0,1\}$ such that the sub-bigraph induced by $X_{i} \cup Y_{i}$ is $\left(\aleph_{0}, \aleph_{0}\right)$-random.
(b) There is $j \in\{0,1\}$ such that the sub-bigraph induced by $X_{j} \cup Y_{j}$ is (\aleph_{0}, \aleph_{0})-dense.
(c) There are $i, j \in\{0,1\}$ such that the sub-bigraph induced by $X_{i} \cup Y_{j}$ is $\left(\aleph_{0}, \aleph_{0}\right)$-random dense and hence isomorphic to G.

References

R
A. Bonato, P. Cameron, D. Delić, Tournaments and orders with the pidgeonhole property, Canad. Math. Bull. 43 (2000), 397-405.
J. Cameron, "The random graph", The Mathematics of Paul Erdos, Vol. 2, J. Nešetřil and R. L. Graham (editors), Springer, Berlin (1997), pp 333-351.
R. Diestel, I. Leader, A. Scott, S. Thomassé, Partitions and orientations of the Rado graph, Trans. Amer. Math. Soc. 359 (2007), no. 5, 2395-2405.
M. Goldstern, R. Grossberg, M. Kojman, Infinite homogeneous bipartite graphs with unequal sides, Discrete Math. 149 (1996) 69-82.

直 K. Kunen, Maximal σ-independent families, Fund. Math. 117 (1983), 75-80.

