Random bipartite graphs

Boris Šobot

Department of Mathematics and Informatics, Faculty of Science, Novi Sad

June 5th, 2013

Boris Šobot (Novi Sad)

Random bipartite graphs

June 5th, 2013

æ

1 / 20

Definition

A κ -random graph is a graph (V, E) such that $|V| = \kappa$ that satisfies the following extension property:

 $\forall U, W \in [V]^{<\kappa} (U \cap W = \emptyset \Rightarrow \exists v \in V (\forall u \in U \ vu \in E \land \forall w \in W \ vw \notin E)).$

Rado graph - the unique \aleph_0 -random graph.

Related structures: random digraphs, random tournaments, etc.

Definition

A κ -random graph is a graph (V, E) such that $|V| = \kappa$ that satisfies the following extension property:

 $\forall U, W \in [V]^{<\kappa} (U \cap W = \emptyset \Rightarrow \exists v \in V (\forall u \in U \ vu \in E \land \forall w \in W \ vw \notin E))$

Rado graph - the unique \aleph_0 -random graph.

Related structures: random digraphs, random tournaments, etc.

Definition

A κ -random graph is a graph (V, E) such that $|V| = \kappa$ that satisfies the following extension property:

 $\forall U, W \in [V]^{<\kappa} (U \cap W = \emptyset \Rightarrow \exists v \in V (\forall u \in U \ vu \in E \land \forall w \in W \ vw \notin E))$

Rado graph - the unique \aleph_0 -random graph.

Related structures: random digraphs, random tournaments, etc.

Boris Šobot (Novi Sad)

Random bipartite graphs

June 5th, 2013 2 / 20

Definition

A κ -random graph is a graph (V, E) such that $|V| = \kappa$ that satisfies the following extension property:

 $\forall U, W \in [V]^{<\kappa} (U \cap W = \emptyset \Rightarrow \exists v \in V (\forall u \in U \ vu \in E \land \forall w \in W \ vw \notin E))$

Rado graph - the unique \aleph_0 -random graph.

Related structures: random digraphs, random tournaments, etc.

Definition

A κ -random graph is a graph (V, E) such that $|V| = \kappa$ that satisfies the following extension property:

 $\forall U, W \in [V]^{<\kappa} (U \cap W = \emptyset \Rightarrow \exists v \in V (\forall u \in U \ vu \in E \land \forall w \in W \ vw \notin E))$

Rado graph - the unique \aleph_0 -random graph.

Related structures: random digraphs, random tournaments, etc.

Definition

 (κ, λ) -bigraph is a structure G = (X, Y, E), where $(X \cup Y, E)$ is a digraph such that $|X| = \kappa$, $|Y| = \lambda$ and $E \subseteq \{xy : x \in X, y \in Y\}$.

We call X the left side, and Y the right side. $\Gamma^{G}_{U,W} = \{ x \in X : \forall u \in U \ xu \in E \land \forall w \in W \ xw \notin E \}$

3/20

イロト イポト イヨト イヨト 三臣

Definition

 (κ, λ) -bigraph is a structure G = (X, Y, E), where $(X \cup Y, E)$ is a digraph such that $|X| = \kappa$, $|Y| = \lambda$ and $E \subseteq \{xy : x \in X, y \in Y\}$.

We call X the left side, and Y the right side. $\Gamma_{U,W}^G = \{ x \in X : \forall u \in U \ xu \in E \land \forall w \in W \ xw \notin E \}$

3/20

<ロト (四) (三) (三) (三) (三)

Definition

 (κ, λ) -bigraph is a structure G = (X, Y, E), where $(X \cup Y, E)$ is a digraph such that $|X| = \kappa$, $|Y| = \lambda$ and $E \subseteq \{xy : x \in X, y \in Y\}$.

We call X the left side, and Y the right side. $\Gamma^{G}_{U,W} = \{ x \in X : \forall u \in U \ xu \in E \land \forall w \in W \ xw \notin E \}$

3/20

<ロト (四) (三) (三) (三) (三)

 $\Gamma^G_{U,W} = \{ x \in X : \forall u \in U \ xu \in E \land \forall w \in W \ xw \notin E \}$

Definition

Let $\mu \leq \lambda$. A (κ, λ) -bigraph (X, Y, E) is (κ, λ, μ) -random if

 $\forall U, W \in [Y]^{<\mu} \ (U \cap W = \emptyset \Rightarrow \Gamma^G_{U,W} \neq \emptyset).$

Definition

If $\mu \leq \kappa$, a (κ, λ) -bigraph (X, Y, E) is (κ, λ, μ) -dense if

 $\forall U, W \in [X]^{<\mu} \ (U \cap W = \emptyset \Rightarrow \exists y \in Y (\forall u \in U \ uy \in E \land \forall w \in W \ wy \notin E)).$

If G satisfies both conditions we will call it (κ, λ, μ) -random dense. A $(\kappa, \lambda, \aleph_0)$ -random bigraph is called just (κ, λ) -random.

Boris Šobot (Novi Sad)

Random bipartite graphs

 $\Gamma_{UW}^G = \{ x \in X : \forall u \in U \ xu \in E \land \forall w \in W \ xw \notin E \}$

Definition

Let $\mu < \lambda$. A (κ, λ) -bigraph (X, Y, E) is (κ, λ, μ) -random if

$$\forall U, W \in [Y]^{<\mu} \ (U \cap W = \emptyset \Rightarrow \Gamma^G_{U,W} \neq \emptyset).$$

Definition

If $\mu \leq \kappa$, a (κ, λ) -bigraph (X, Y, E) is (κ, λ, μ) -dense if

 $\forall U, W \in [X]^{<\mu} \ (U \cap W = \emptyset \Rightarrow \exists y \in Y (\forall u \in U \ uy \in E \land \forall w \in W \ wy \notin E)).$

Boris Šobot (Novi Sad)

Random bipartite graphs

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの June 5th, 2013

4 / 20

 $\Gamma_{UW}^G = \{ x \in X : \forall u \in U \ xu \in E \land \forall w \in W \ xw \notin E \}$

Definition

Let $\mu < \lambda$. A (κ, λ) -bigraph (X, Y, E) is (κ, λ, μ) -random if

$$\forall U, W \in [Y]^{<\mu} \ (U \cap W = \emptyset \Rightarrow \Gamma^G_{U,W} \neq \emptyset).$$

Definition

If $\mu \leq \kappa$, a (κ, λ) -bigraph (X, Y, E) is (κ, λ, μ) -dense if

 $\forall U, W \in [X]^{<\mu} \ (U \cap W = \emptyset \Rightarrow \exists y \in Y (\forall u \in U \ uy \in E \land \forall w \in W \ wy \notin E)).$

If G satisfies both conditions we will call it (κ, λ, μ) -random dense. A $(\kappa, \lambda, \aleph_0)$ -random bigraph is called just (κ, λ) -random.

Boris Šobot (Novi Sad)

Random bipartite graphs

4 / 20

$$\begin{split} &\Gamma^G_{U,W} = \{x \in X : \forall u \in U \; xu \in E \land \forall w \in W \; xw \notin E\} \\ &(\kappa, \lambda, \mu)\text{-random bigraph: } \forall U, W \in [Y]^{<\mu} \; (U \cap W = \emptyset \Rightarrow \Gamma^G_{U,W} \neq \emptyset). \\ &(\kappa, \lambda, \mu)\text{-dense bigraph:} \\ &\forall U, W \in [X]^{<\mu} \; (U \cap W = \emptyset \Rightarrow \exists y \in Y (\forall u \in U \; uy \in E \; \land \; \forall w \in W \; wy \notin E)). \end{split}$$

Lemma

(a) In a (κ, λ, μ) -random bigraph (X, Y, E) we can find for every disjoint $U, W \in [Y]^{<\mu} \mu$ -many vertices $x \in X$ that satisfy $xu \in E$ for all $u \in U$ and $xw \notin E$ for all $w \in W$.

(b) In a (κ, λ, μ) -dense bigraph (X, Y, E) we can find for every disjoint $U, W \in [X]^{<\mu} \mu$ -many vertices $y \in Y$ that satisfy $uy \in E$ for all $u \in U$ and $wy \notin E$ for all $w \in W$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへの

$$\begin{split} &\Gamma^G_{U,W} = \{x \in X : \forall u \in U \; xu \in E \land \forall w \in W \; xw \notin E\} \\ &(\kappa, \lambda, \mu)\text{-random bigraph:} \; \forall U, W \in [Y]^{<\mu} \; (U \cap W = \emptyset \Rightarrow \Gamma^G_{U,W} \neq \emptyset). \\ &(\kappa, \lambda, \mu)\text{-dense bigraph:} \\ &\forall U, W \in [X]^{<\mu} \; (U \cap W = \emptyset \Rightarrow \exists y \in Y (\forall u \in U \; uy \in E \; \land \; \forall w \in W \; wy \notin E)). \end{split}$$

Lemma

(a) In a (κ, λ, μ) -random bigraph (X, Y, E) we can find for every disjoint $U, W \in [Y]^{<\mu} \mu$ -many vertices $x \in X$ that satisfy $xu \in E$ for all $u \in U$ and $xw \notin E$ for all $w \in W$.

(b) In a (κ, λ, μ) -dense bigraph (X, Y, E) we can find for every disjoint $U, W \in [X]^{<\mu} \mu$ -many vertices $y \in Y$ that satisfy $uy \in E$ for all $u \in U$ and $wy \notin E$ for all $w \in W$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

$$\begin{split} &\Gamma^G_{U,W} = \{x \in X : \forall u \in U \; xu \in E \land \forall w \in W \; xw \notin E\} \\ &(\kappa, \lambda, \mu)\text{-random bigraph:} \; \forall U, W \in [Y]^{<\mu} \; (U \cap W = \emptyset \Rightarrow \Gamma^G_{U,W} \neq \emptyset). \\ &(\kappa, \lambda, \mu)\text{-dense bigraph:} \\ &\forall U, W \in [X]^{<\mu} \; (U \cap W = \emptyset \Rightarrow \exists y \in Y (\forall u \in U \; uy \in E \; \land \; \forall w \in W \; wy \notin E)). \end{split}$$

Lemma

(a) In a (κ, λ, μ) -random bigraph (X, Y, E) we can find for every disjoint $U, W \in [Y]^{<\mu} \mu$ -many vertices $x \in X$ that satisfy $xu \in E$ for all $u \in U$ and $xw \notin E$ for all $w \in W$.

(b) In a (κ, λ, μ) -dense bigraph (X, Y, E) we can find for every disjoint $U, W \in [X]^{<\mu} \mu$ -many vertices $y \in Y$ that satisfy $uy \in E$ for all $u \in U$ and $wy \notin E$ for all $w \in W$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Independent and dense families

 $\kappa\text{-random graph: } \forall U, W \in [V]^{<\kappa} (U \cap W = \emptyset \Rightarrow \exists v \in V (\forall u \in U \ vu \in E \land \forall w \in W \ vw \notin E)).$

Definition

Let $\mu \leq \lambda$. A family $\mathcal{A} = \{A_{\alpha} : \alpha < \lambda\}$ of subsets of κ is called (κ, λ, μ) -independent if

$$\forall U, W \in [\lambda]^{<\mu} (U \cap W = \emptyset \Rightarrow \bigcap_{\alpha \in U} A_{\alpha} \cap \bigcap_{\alpha \in W} (\kappa \setminus A_{\alpha}) \neq \emptyset).$$

- 32

6 / 20

The connection

Let $\mathcal{A} = \{A_{\alpha} : \alpha < \lambda\}$ be a (κ, λ, μ) -independent family. Let X and Y be disjoint sets of cardinalities κ and λ respectively. We enumerate them: $X = \{x_{\beta} : \beta < \kappa\}, Y = \{y_{\alpha} : \alpha < \lambda\}$, and define the relation $E \subseteq X \times Y$: let $x_{\beta}y_{\alpha} \in E$ iff $\beta \in A_{\alpha}$. Then (X, Y, E) is a (κ, λ, μ) -random bigraph.

On the other hand, let G = (X, Y, E) be a (κ, λ, μ) -random bigraph. We enumerate $X = \{x_{\beta} : \beta < \kappa\}$ and $Y = \{y_{\alpha} : \alpha < \lambda\}$ and define, for each $\alpha \in \lambda$, $A_{\alpha} = \{\beta \in \kappa : x_{\beta}y_{\alpha} \in E\}$. Then $\{A_{\alpha} : \alpha < \lambda\}$ is a (κ, λ, μ) -independent family.

The connection

Let $\mathcal{A} = \{A_{\alpha} : \alpha < \lambda\}$ be a (κ, λ, μ) -independent family. Let X and Y be disjoint sets of cardinalities κ and λ respectively. We enumerate them: $X = \{x_{\beta} : \beta < \kappa\}, Y = \{y_{\alpha} : \alpha < \lambda\}$, and define the relation $E \subseteq X \times Y$: let $x_{\beta}y_{\alpha} \in E$ iff $\beta \in A_{\alpha}$. Then (X, Y, E) is a (κ, λ, μ) -random bigraph.

On the other hand, let G = (X, Y, E) be a (κ, λ, μ) -random bigraph. We enumerate $X = \{x_{\beta} : \beta < \kappa\}$ and $Y = \{y_{\alpha} : \alpha < \lambda\}$ and define, for each $\alpha \in \lambda$, $A_{\alpha} = \{\beta \in \kappa : x_{\beta}y_{\alpha} \in E\}$. Then $\{A_{\alpha} : \alpha < \lambda\}$ is a (κ, λ, μ) -independent family.

Lemma

Every bigraph obtained from a $(\kappa,\lambda,\mu)\text{-random bigraph }(X,Y,E)$ by

(a) adding $\leq \kappa$ vertices to X (connected to arbitrary vertices from Y)

(b) removing $< \mu$ vertices from X

(c) removing $< \lambda$ vertices from Y

(d) replacing $< \mu$ edges with non-edges and $< \mu$ non-edges with edges

is also a (κ, λ, μ) -random bigraph.

Lemma

Let μ be a regular cardinal. Every bigraph obtained from a (κ, λ, μ) -random dense bigraph by deleting $< \mu$ edges from each vertex is also a (κ, λ, μ) -random dense bigraph.

3

Lemma

Every bigraph obtained from a $(\kappa,\lambda,\mu)\text{-random bigraph }(X,Y,E)$ by

(a) adding ≤ κ vertices to X (connected to arbitrary vertices from Y)
(b) removing < μ vertices from X

(c) removing $< \lambda$ vertices from Y

(d) replacing $< \mu$ edges with non-edges and $< \mu$ non-edges with edges

is also a (κ, λ, μ) -random bigraph.

Lemma

Let μ be a regular cardinal. Every bigraph obtained from a (κ, λ, μ) -random dense bigraph by deleting $< \mu$ edges from each vertex is also a (κ, λ, μ) -random dense bigraph.

3

Lemma

Every bigraph obtained from a $(\kappa,\lambda,\mu)\text{-random bigraph }(X,Y,E)$ by

(a) adding $\leq \kappa$ vertices to X (connected to arbitrary vertices from Y)

- (b) removing $< \mu$ vertices from X
- (c) removing $< \lambda$ vertices from Y

(d) replacing $< \mu$ edges with non-edges and $< \mu$ non-edges with edges

is also a (κ, λ, μ) -random bigraph.

Lemma

Let μ be a regular cardinal. Every bigraph obtained from a (κ, λ, μ) -random dense bigraph by deleting $< \mu$ edges from each vertex is also a (κ, λ, μ) -random dense bigraph.

3

Lemma

Every bigraph obtained from a $(\kappa,\lambda,\mu)\text{-random bigraph }(X,Y,E)$ by

(a) adding $\leq \kappa$ vertices to X (connected to arbitrary vertices from Y)

- (b) removing $< \mu$ vertices from X
- (c) removing $< \lambda$ vertices from Y
- (d) replacing $< \mu$ edges with non-edges and $< \mu$ non-edges with edges

is also a (κ, λ, μ) -random bigraph.

Lemma

Let μ be a regular cardinal. Every bigraph obtained from a (κ, λ, μ) -random dense bigraph by deleting $< \mu$ edges from each vertex is also a (κ, λ, μ) -random dense bigraph.

- 32

・ロン ・四マ ・ヨマ ・ロマ

Lemma

Every bigraph obtained from a (κ, λ, μ) -random bigraph (X, Y, E) by

(a) adding $\leq \kappa$ vertices to X (connected to arbitrary vertices from Y)

- (b) removing $< \mu$ vertices from X
- (c) removing $< \lambda$ vertices from Y
- (d) replacing $< \mu$ edges with non-edges and $< \mu$ non-edges with edges

is also a (κ, λ, μ) -random bigraph.

Lemma

Let μ be a regular cardinal. Every bigraph obtained from a (κ, λ, μ) -random dense bigraph by deleting $< \mu$ edges from each vertex is also a (κ, λ, μ) -random dense bigraph.

< 🗇 🕨

< ⊒ >

Fact

If $\kappa^{<\mu} = \kappa$ then there is a $(\kappa, 2^{\kappa}, \mu)$ -random bigraph.

Boris Šobot (Novi Sad)

Random bipartite graphs

June 5th, 2013

- 2

9 / 20

Theorem (Goldstern, Grossberg, Kojman, 1996)

(a) There is exactly one (up to isomorphism) (\aleph_0, \aleph_0) -random dense bigraph, and it is homogeneous.

(b) Every homogeneous (κ, λ) -bigraph which is neither empty nor complete is either a perfect matching or its complement or a (κ, λ) -random dense bigraph (of course, when $\kappa \neq \lambda$, only the latter option remains).

(c) There is a $(\kappa, 2^{\kappa})$ -random dense bigraph for every infinite cardinal κ .

(d) (\neg CH \land MA) For every $\kappa < \mathfrak{c}$ there is unique (\aleph_0, κ)-random dense bigraph up to isomorphism.

(e) $(2^{\kappa^+} > 2^{\kappa})$ There are 2^{κ^+} -many nonisomorphic (κ, κ^+) -random dense bigraphs.

イロト イヨト イヨト イヨト

Theorem (Goldstern, Grossberg, Kojman, 1996)

(a) There is exactly one (up to isomorphism) (\aleph_0, \aleph_0) -random dense bigraph, and it is homogeneous.

(b) Every homogeneous (κ, λ) -bigraph which is neither empty nor complete is either a perfect matching or its complement or a (κ, λ) -random dense bigraph (of course, when $\kappa \neq \lambda$, only the latter option remains).

(c) There is a $(\kappa, 2^{\kappa})$ -random dense bigraph for every infinite cardinal κ .

(d) (\neg CH \land MA) For every $\kappa < \mathfrak{c}$ there is unique (\aleph_0, κ)-random dense bigraph up to isomorphism.

(e) $(2^{\kappa^+} > 2^{\kappa})$ There are 2^{κ^+} -many nonisomorphic (κ, κ^+) -random dense bigraphs.

Theorem (Goldstern, Grossberg, Kojman, 1996)

(a) There is exactly one (up to isomorphism) (\aleph_0, \aleph_0) -random dense bigraph, and it is homogeneous.

(b) Every homogeneous (κ, λ) -bigraph which is neither empty nor complete is either a perfect matching or its complement or a (κ, λ) -random dense bigraph (of course, when $\kappa \neq \lambda$, only the latter option remains).

(c) There is a $(\kappa, 2^{\kappa})$ -random dense bigraph for every infinite cardinal κ .

(d) (¬CH∧MA) For every κ < c there is unique (ℵ₀, κ)-random dense bigraph up to isomorphism.
(e) (2^{κ+} > 2^κ) There are 2^{κ+}-many nonisomorphic (κ, κ⁺)-random

dense bigraphs.

Theorem (Goldstern, Grossberg, Kojman, 1996)

(a) There is exactly one (up to isomorphism) (\aleph_0, \aleph_0) -random dense bigraph, and it is homogeneous.

(b) Every homogeneous (κ, λ) -bigraph which is neither empty nor complete is either a perfect matching or its complement or a (κ, λ) -random dense bigraph (of course, when $\kappa \neq \lambda$, only the latter option remains).

(c) There is a $(\kappa, 2^{\kappa})$ -random dense bigraph for every infinite cardinal κ .

(d) (\neg CH \land MA) For every $\kappa < \mathfrak{c}$ there is unique (\aleph_0, κ)-random dense bigraph up to isomorphism.

(e) $(2^{\kappa^+} > 2^{\kappa})$ There are 2^{κ^+} -many nonisomorphic (κ, κ^+) -random dense bigraphs.

Theorem (Goldstern, Grossberg, Kojman, 1996)

(a) There is exactly one (up to isomorphism) (\aleph_0, \aleph_0) -random dense bigraph, and it is homogeneous.

(b) Every homogeneous (κ, λ) -bigraph which is neither empty nor complete is either a perfect matching or its complement or a (κ, λ) -random dense bigraph (of course, when $\kappa \neq \lambda$, only the latter option remains).

(c) There is a $(\kappa, 2^{\kappa})$ -random dense bigraph for every infinite cardinal κ .

(d) (\neg CH \land MA) For every $\kappa < \mathfrak{c}$ there is unique (\aleph_0, κ)-random dense bigraph up to isomorphism.

(e) $(2^{\kappa^+} > 2^{\kappa})$ There are 2^{κ^+} -many nonisomorphic (κ, κ^+) -random dense bigraphs.

Universality

Theorem

Every (κ_1, λ_1) -bigraph for $\kappa_1 \leq \mu$ and $\lambda_1 < \mu$ can be embedded in any (κ, λ, μ) -random bigraph.

Theorem

Every (κ_1, λ_1) -bigraph for $\kappa_1 \leq \mu$ and $\lambda_1 \leq \mu$ can be embedded in any (κ, λ, μ) -random dense bigraph.

Universality

Theorem

Every (κ_1, λ_1) -bigraph for $\kappa_1 \leq \mu$ and $\lambda_1 < \mu$ can be embedded in any (κ, λ, μ) -random bigraph.

Theorem

Every (κ_1, λ_1) -bigraph for $\kappa_1 \leq \mu$ and $\lambda_1 \leq \mu$ can be embedded in any (κ, λ, μ) -random dense bigraph.

Factorization

Theorem

(a) Every $(\kappa,\kappa,\kappa)\text{-random}$ dense bigraph has a perfect matching.

(b) Every (κ, κ, κ) -random dense bigraph has a 1-factorization, i.e. its set of edges can be partitioned into disjoint perfect matchings.

(4月) イヨト イヨト

Factorization

Theorem

(a) Every (κ, κ, κ) -random dense bigraph has a perfect matching. (b) Every (κ, κ, κ) -random dense bigraph has a 1-factorization, i.e. its set of edges can be partitioned into disjoint perfect matchings.

A partition property for graphs

 \mathcal{P} : for every partition of the set of vertices of G into finitely many pieces at least one of the induced graphs is isomorphic to G.

Theorem (Cameron)

The only countable graphs with the property \mathcal{P} up to isomorphism are the empty graph, the complete graph and the Rado graph.

A partition property for graphs

 \mathcal{P} : for every partition of the set of vertices of G into finitely many pieces at least one of the induced graphs is isomorphic to G.

Theorem (Cameron)

The only countable graphs with the property \mathcal{P} up to isomorphism are the empty graph, the complete graph and the Rado graph.

A partition property for tournaments

 \mathcal{P} : for every partition of the set of vertices of T into finitely many pieces at least one of the induced tournaments is isomorphic to T.

Theorem (Bonato, Cameron, Delić, 2000)

The only countable tournaments with the property \mathcal{P} up to isomorphism are the random tournament, and tournaments ω^{α} and $(\omega^{\alpha})^*$ for $0 < \alpha < \omega_1$.

A partition property for tournaments

 \mathcal{P} : for every partition of the set of vertices of T into finitely many pieces at least one of the induced tournaments is isomorphic to T.

Theorem (Bonato, Cameron, Delić, 2000)

The only countable tournaments with the property \mathcal{P} up to isomorphism are the random tournament, and tournaments ω^{α} and $(\omega^{\alpha})^*$ for $0 < \alpha < \omega_1$.

 \mathcal{P} : for every partition of the set of vertices of G into finitely many pieces at least one of the induced digraphs is isomorphic to G.

Theorem (Diestel, Leader, Scott, Thomassé, 2007)

The only countable digraphs with the property \mathcal{P} up to isomorphism are the empty digraph, the random tournament, tournaments ω^{α} and $(\omega^{\alpha})^*$ for $0 < \alpha < \omega_1$, the random digraph, the random acyclic digraph and its inverse.

 \mathcal{P} : for every partition of the set of vertices of G into finitely many pieces at least one of the induced digraphs is isomorphic to G.

Theorem (Diestel, Leader, Scott, Thomassé, 2007)

The only countable digraphs with the property \mathcal{P} up to isomorphism are the empty digraph, the random tournament, tournaments ω^{α} and $(\omega^{\alpha})^*$ for $0 < \alpha < \omega_1$, the random digraph, the random acyclic digraph and its inverse.

 \mathcal{P} : for every partition of the set of vertices of G into finitely many pieces at least one of the induced sub-bigraphs is isomorphic to G.

 \mathcal{P}' : for every partition of the set of vertices of G into finitely many pieces that each induce (\aleph_0, \aleph_0) -bigraphs at least one of the induced sub-bigraphs is isomorphic to G.

Lemma

Let μ be a regular cardinal and $\nu < \mu$. Let $\{V_{\gamma} : \gamma < \nu\}$ be a partition of the set of vertices of (κ, λ, μ) -random bigraph such that each V_{γ} has at least μ vertices on each side. Then at least one of the induced sub-bigraphs is $(\kappa_1, \lambda_1, \mu)$ -random for some $\kappa_1 \leq \kappa$ and $\lambda_1 \leq \lambda$.

Lemma

The (\aleph_0, \aleph_0) -random dense bigraph does not satisfy \mathcal{P}' .

Boris Šobot (Novi Sad)

Random bipartite graphs

イロト イヨト イヨト イヨト

 \mathcal{P}' : for every partition of the set of vertices of G into finitely many pieces that each induce (\aleph_0, \aleph_0) -bigraphs at least one of the induced sub-bigraphs is isomorphic to G.

Lemma

Let μ be a regular cardinal and $\nu < \mu$. Let $\{V_{\gamma} : \gamma < \nu\}$ be a partition of the set of vertices of (κ, λ, μ) -random bigraph such that each V_{γ} has at least μ vertices on each side. Then at least one of the induced sub-bigraphs is $(\kappa_1, \lambda_1, \mu)$ -random for some $\kappa_1 \leq \kappa$ and $\lambda_1 \leq \lambda$.

Lemma

The (\aleph_0, \aleph_0) -random dense bigraph does not satisfy \mathcal{P}' .

 \mathcal{P}' : for every partition of the set of vertices of G into finitely many pieces that each induce (\aleph_0, \aleph_0) -bigraphs at least one of the induced sub-bigraphs is isomorphic to G.

Lemma

Let μ be a regular cardinal and $\nu < \mu$. Let $\{V_{\gamma} : \gamma < \nu\}$ be a partition of the set of vertices of (κ, λ, μ) -random bigraph such that each V_{γ} has at least μ vertices on each side. Then at least one of the induced sub-bigraphs is $(\kappa_1, \lambda_1, \mu)$ -random for some $\kappa_1 \leq \kappa$ and $\lambda_1 \leq \lambda$.

Lemma

The (\aleph_0, \aleph_0) -random dense bigraph does not satisfy \mathcal{P}' .

-

 \mathcal{P}' : for every partition of the set of vertices of G into finitely many pieces that each induce (\aleph_0, \aleph_0) -bigraphs at least one of the induced sub-bigraphs is isomorphic to G.

EXAMPLE

S = (X, Y, E) is defined by $X = \{x_n : n \in \omega\}, Y = \{y_n : n \in \omega\}$ and $E = \{x_n y_0 : n \in \omega\}$. S, S^{*} and their complements have \mathcal{P}' .

 \mathcal{P}' : for every partition of the set of vertices of G into finitely many pieces that each induce (\aleph_0, \aleph_0) -bigraphs at least one of the induced sub-bigraphs is isomorphic to G.

EXAMPLE

S = (X, Y, E) is defined by $X = \{x_n : n \in \omega\}, Y = \{y_n : n \in \omega\}$ and $E = \{x_n y_0 : n \in \omega\}$. S, S^{*} and their complements have \mathcal{P}' .

Theorem

The only (\aleph_0, \aleph_0) -bigraphs with the property \mathcal{P}' up to isomorphism are the empty (\aleph_0, \aleph_0) -bigraph, the complete (\aleph_0, \aleph_0) -bigraph, the bigraphs S and S^* and their complements.

Theorem

Let $X = X_0 \cup X_1$ and $Y = Y_0 \cup Y_1$ be partitions of sides of the (\aleph_0, \aleph_0) -random dense bigraph G into infinite subsets.

(a) There is $i \in \{0, 1\}$ such that the sub-bigraph induced by $X_i \cup Y_i$ is (\aleph_0, \aleph_0) -random.

(b) There is $j \in \{0, 1\}$ such that the sub-bigraph induced by $X_j \cup Y_j$ is (\aleph_0, \aleph_0) -dense.

(c) There are $i, j \in \{0, 1\}$ such that the sub-bigraph induced by $X_i \cup Y_j$ is (\aleph_0, \aleph_0) -random dense and hence isomorphic to G.

Theorem

Let $X = X_0 \cup X_1$ and $Y = Y_0 \cup Y_1$ be partitions of sides of the (X = X) because hierarch C into infinite subsets

 (\aleph_0, \aleph_0) -random dense bigraph G into infinite subsets.

(a) There is $i \in \{0, 1\}$ such that the sub-bigraph induced by $X_i \cup Y_i$ is (\aleph_0, \aleph_0) -random.

(b) There is $j \in \{0, 1\}$ such that the sub-bigraph induced by $X_j \cup Y_j$ is (\aleph_0, \aleph_0) -dense.

(c) There are $i, j \in \{0, 1\}$ such that the sub-bigraph induced by $X_i \cup Y_j$ is (\aleph_0, \aleph_0) -random dense and hence isomorphic to G.

Theorem

Let $X = X_0 \cup X_1$ and $Y = Y_0 \cup Y_1$ be partitions of sides of the

 (\aleph_0, \aleph_0) -random dense bigraph G into infinite subsets.

(a) There is $i \in \{0, 1\}$ such that the sub-bigraph induced by $X_i \cup Y_i$ is (\aleph_0, \aleph_0) -random.

(b) There is $j \in \{0, 1\}$ such that the sub-bigraph induced by $X_j \cup Y_j$ is (\aleph_0, \aleph_0) -dense.

(c) There are $i, j \in \{0, 1\}$ such that the sub-bigraph induced by $X_i \cup Y_j$ is (\aleph_0, \aleph_0) -random dense and hence isomorphic to G.

19 / 20

Theorem

Let $X = X_0 \cup X_1$ and $Y = Y_0 \cup Y_1$ be partitions of sides of the

 (\aleph_0, \aleph_0) -random dense bigraph G into infinite subsets.

(a) There is $i \in \{0, 1\}$ such that the sub-bigraph induced by $X_i \cup Y_i$ is (\aleph_0, \aleph_0) -random.

(b) There is $j \in \{0, 1\}$ such that the sub-bigraph induced by $X_j \cup Y_j$ is (\aleph_0, \aleph_0) -dense.

(c) There are $i, j \in \{0, 1\}$ such that the sub-bigraph induced by $X_i \cup Y_j$ is (\aleph_0, \aleph_0) -random dense and hence isomorphic to G.

19 / 20

(日) (周) (日) (日)

References

- A. Bonato, P. Cameron, D. Delić, Tournaments and orders with the pidgeonhole property, Canad. Math. Bull. 43 (2000), 397–405.
- J. Cameron, "The random graph", The Mathematics of Paul Erdos, Vol. 2, J. Nešetřil and R. L. Graham (editors), Springer, Berlin (1997), pp 333–351.
- R. Diestel, I. Leader, A. Scott, S. Thomassé, Partitions and orientations of the Rado graph, Trans. Amer. Math. Soc. 359 (2007), no. 5, 2395–2405.
- M. Goldstern, R. Grossberg, M. Kojman, Infinite homogeneous bipartite graphs with unequal sides, Discrete Math. 149 (1996) 69–82.
 - K. Kunen, Maximal σ -independent families, Fund. Math. 117 (1983), 75–80.