Introduction	Preliminaries	Formal contexts	Properties & relationships	Conclusion	References

On morphisms of lattice-valued formal contexts

Sergejs Solovjovs

Department of Mathematics and Statistics, Faculty of Science, Masaryk University Kotlarska 2, 611 37 Brno, Czech Republic e-mail: solovjovs@math.muni.cz web page: http://www.math.muni.cz/~solovjovs

The 4th Novi Sad Algebraic Conference

in conjunction with the workshop Semigroups and Applications 2013

Novi Sad, Serbia June 5 - 9, 2013

On morphisms of lattice-valued formal contexts

Introduction	Preliminaries	Formal contexts	Properties & relationships	Conclusion	References
000000	000000	0000000	000000000	00	00
Acknow	ledgemen	ts			

The author gratefully acknowledges the support of the ESF project CZ.1.07/2.3.00/20.0051 "Algebraic methods in Quantum Logic" of the Masaryk University in Brno, Czech Republic.

INVESTMENTS IN EDUCATION DEVELOPMENT

Introduction	Preliminaries	Formal contexts	Properties & relationships	Conclusion	References
000000	000000	0000000	000000000	00	00
Outline					

2 Preliminaries on powerset operators

- 3 Categories of lattice-valued formal contexts
- Properties of the categories of lattice-valued formal contexts

5 Conclusion

Introduction ●00000	Preliminaries 000000	Formal contexts 0000000	Properties & relationships 0000000000	Conclusion 00	References 00
Formal Concept /	Analysis				
Formal	Concept ,	Analysis			

• Formal Concept Analysis (FCA) has taken its origin as an attempt to restructure mathematics, e.g., lattice theory.

- Since then, FCA has been developed as a subfield of applied mathematics, based in mathematization of concept hierarchies.
- The aim of FCA is to support the rational communication of humans by mathematically developing appropriate conceptual structures, which can be logically activated.

Introduction	Preliminaries	Formal contexts	Properties & relationships	Conclusion	References
00000					
Formal Concept	Analysis				
Formal	Concept /	Analysis			

- Formal Concept Analysis (FCA) has taken its origin as an attempt to restructure mathematics, e.g., lattice theory.
- Since then, FCA has been developed as a subfield of applied mathematics, based in mathematization of concept hierarchies.
- The aim of FCA is to support the rational communication of humans by mathematically developing appropriate conceptual structures, which can be logically activated.

Introduction	Preliminaries	Formal contexts	Properties & relationships	Conclusion	References
•00000	000000	0000000	000000000	00	00
Formal Concept	Analysis				
Formal	Concept /	Analysis			

- Formal Concept Analysis (FCA) has taken its origin as an attempt to restructure mathematics, e.g., lattice theory.
- Since then, FCA has been developed as a subfield of applied mathematics, based in mathematization of concept hierarchies.
- The aim of FCA is to support the rational communication of humans by mathematically developing appropriate conceptual structures, which can be logically activated.

Introduction 00000	Preliminaries 000000	Formal contexts	Properties & relationships 000000000	Conclusion 00	References 00
Formal Concept An	alysis				
Formal c	ontexts				

One of the main building blocks of FCA provide *formal contexts*.

Definition 1

A formal context is a triple (G, M, I), which comprises a set of objects G, a set of attributes M, and a binary incidence relation I between G and M, where $g \mid m$ means "object g has attribute m".

Introduction ○●○○○○	Preliminaries 000000	Formal contexts 0000000	Properties & relationships 0000000000	Conclusion	References 00
Formal Concept An	alysis				
Formal c	ontexts				

One of the main building blocks of FCA provide *formal contexts*.

Definition 1

A *formal context* is a triple (G, M, I), which comprises a set of objects G, a set of attributes M, and a binary incidence relation I between G and M, where g I m means "object g has attribute m".

Introduction 000000	Preliminaries 000000	Formal contexts 0000000	Properties & relationships 000000000	Conclusion	References 00
Formal Concept	Analysis				
Formal	context n	norphisms			

There exist at least three (different) ways of defining a morphism between two formal contexts (G_1, M_1, I_1) and (G_2, M_2, I_2) .

- The theory of FCA employs pairs of maps $G_1 \xrightarrow{\alpha} G_2$, $M_1 \xrightarrow{\beta} M_2$ such that $g \ l_1 \ m$ iff $\alpha(g) \ l_2 \ \beta(m)$ for every $g \in G_1$, $m \in M_1$.
- The theory of *Chu spaces* uses pairs of maps $G_1 \xrightarrow{\alpha} G_2$, $M_2 \xrightarrow{\beta} M_1$ such that $g \ l_1 \ \beta(m)$ iff $\alpha(g) \ l_2 \ m$ for every $g \in G_1$, $m \in M_2$.

Introduction	Preliminaries 000000	Formal contexts 0000000	Properties & relationships 0000000000	Conclusion 00	References 00
Formal Concept	Analysis				
Formal	context n	norphisms			

There exist at least three (different) ways of defining a morphism between two formal contexts (G_1, M_1, I_1) and (G_2, M_2, I_2) .

• The theory of FCA employs pairs of maps $G_1 \xrightarrow{\alpha} G_2$, $M_1 \xrightarrow{\beta} M_2$ such that $g \ l_1 m$ iff $\alpha(g) \ l_2 \ \beta(m)$ for every $g \in G_1$, $m \in M_1$.

② The theory of *Chu spaces* uses pairs of maps $G_1 \xrightarrow{\alpha} G_2$, $M_2 \xrightarrow{\beta} M_1$ such that $g \ l_1 \ \beta(m)$ iff $\alpha(g) \ l_2 \ m$ for every $g \in G_1$, $m \in M_2$.

Introduction	Preliminaries 000000	Formal contexts 0000000	Properties & relationships 000000000	Conclusion 00	References 00
Formal Concept	Analysis				
Formal	context n	norphisms			

There exist at least three (different) ways of defining a morphism between two formal contexts (G_1, M_1, I_1) and (G_2, M_2, I_2) .

- The theory of FCA employs pairs of maps $G_1 \xrightarrow{\alpha} G_2$, $M_1 \xrightarrow{\beta} M_2$ such that $g \ l_1 m$ iff $\alpha(g) \ l_2 \beta(m)$ for every $g \in G_1$, $m \in M_1$.
- So The theory of *Chu spaces* uses pairs of maps $G_1 \xrightarrow{\alpha} G_2$, $M_2 \xrightarrow{\beta} M_1$ such that $g \ l_1 \ \beta(m)$ iff $\alpha(g) \ l_2 \ m$ for every $g \in G_1$, $m \in M_2$.

Introduction 000●00	Preliminaries 000000	Formal contexts 0000000	Properties & relationships	Conclusion	References 00
Formal Concept	Analysis				
Formal	contaxt n	orphicme			

• The theory of *Galois connections* relies on the pairs of maps $\mathcal{P}(G_1) \xrightarrow{\alpha} \mathcal{P}(G_2), \ \mathcal{P}(M_2) \xrightarrow{\beta} \mathcal{P}(M_1)$, where $\mathcal{P}(X)$ stands for the powerset of X, such that the diagrams

commute, where $H_j(S) = \{m \in M_j \mid s \mid j \text{ m for every } s \in S\}$ and $K_j(T) = \{g \in G_j \mid g \mid j t \text{ for every } t \in T\}$ (*Birkhoff operators*).

Introduction	Preliminaries 000000	Formal contexts 0000000	Properties & relationships 000000000	Conclusion 00	References 00
Lattice-valued Fo	ormal Concept Analys	sis			
Lattice-	valued for	rmal contex	cts		

- J. T. Denniston, A. Melton, and S. E. Rodabaugh compared the approaches of items (2) and (3) by considering their respective categories of *lattice-valued formal contexts* (in the sense of R. Bělohlávek) over a fixed commutative quantale Q, and constructing an embedding of each category into its counterparts.
- They finally arrived at the conclusion that the two viewpoints on formal context morphisms were not categorically isomorphic.

On morphisms of lattice-valued formal contexts

Sergejs Solovjovs

Introduction	Preliminaries 000000	Formal contexts 0000000	Properties & relationships 000000000	Conclusion 00	References 00
Lattice-valued Fo	ormal Concept Analys	sis			
Lattice-	valued for	rmal contex	kts		

- J. T. Denniston, A. Melton, and S. E. Rodabaugh compared the approaches of items (2) and (3) by considering their respective categories of *lattice-valued formal contexts* (in the sense of R. Bělohlávek) over a fixed commutative quantale Q, and constructing an embedding of each category into its counterparts.
- They finally arrived at the conclusion that the two viewpoints on formal context morphisms were not categorically isomorphic.

Introduction ○○○○○●	Preliminaries 000000	Formal contexts 0000000	Properties & relationships 000000000	Conclusion 00	References 00			
Lattice-valued Formal Concept Analysis								
Lattice-	valued for	rmal contex	kts					

- This talk compares all three of the above-mentioned approaches to morphisms in the framework of lattice-valued formal contexts over a category of not necessarily commutative quantales.
- We construct a number of embeddings between their respective categories of formal contexts, showing that the approach of item (3) falls out of the FCA setting in the lattice-valued case.

Introduction	Preliminaries 000000	Formal contexts 0000000	Properties & relationships 000000000	Conclusion	References 00
Lattice-valued Fo	ormal Concept Analys	sis			
Lattice-	valued for	rmal contex	kts		

- This talk compares all three of the above-mentioned approaches to morphisms in the framework of lattice-valued formal contexts over a category of not necessarily commutative quantales.
- We construct a number of embeddings between their respective categories of formal contexts, showing that the approach of item (3) falls out of the FCA setting in the lattice-valued case.

Introduction 000000	Preliminaries ••••••	Formal contexts 0000000	Properties & relationships 000000000	Conclusion 00	References 00
Quantales					
V-semi	lattices				

CSLat(\bigvee) is the variety of \bigvee -*semilattices*, i.e., partially ordered sets (posets), which have arbitrary joins.

Every \bigvee -semilattice homomorphism $A_1 \xrightarrow{\varphi} A_2$ has the *upper adjoint map* $A_2 \xrightarrow{\varphi^{\vdash}} A_1$ given by $\varphi^{\vdash}(a_2) = \bigvee \{a_1 \in A_1 \mid \varphi(a_1) \leq a_2\}.$

On morphisms of lattice-valued formal contexts

Sergejs Solovjovs

Introduction 000000	Preliminaries	Formal contexts 0000000	Properties & relationships 000000000	Conclusion	References 00
Quantales					
V-semi	lattices				

CSLat(\bigvee) is the variety of \bigvee *-semilattices*, i.e., partially ordered sets (posets), which have arbitrary joins.

Every \bigvee -semilattice homomorphism $A_1 \xrightarrow{\varphi} A_2$ has the *upper adjoint map* $A_2 \xrightarrow{\varphi^{\vdash}} A_1$ given by $\varphi^{\vdash}(a_2) = \bigvee \{a_1 \in A_1 \mid \varphi(a_1) \leq a_2\}.$

On morphisms of lattice-valued formal contexts

Introduction 000000	Preliminaries ○●○○○○	Formal contexts 0000000	Properties & relationships	Conclusion	References 00
Quantales					
Quanta	les				

- **Quant** is the variety of *quantales*, i.e., triples (Q, \bigvee, \otimes) , where
 - (Q, \bigvee) is a \bigvee -semilattice;
 - (Q, \otimes) is a semigroup;
 - \otimes distributes across \bigvee from both sides.
- **Quant** is the variety of *unital quantales*, i.e., quantales Q, which have an element 1_Q such that (Q, ⊗, 1_Q) is a monoid.

A quantale Q has two residuations, which are given by $q_1 \rightarrow_I q_2 = \bigvee \{q \in Q \mid q \otimes q_1 \leqslant q_2\}$ and $q_1 \rightarrow_r q_2 = \bigvee \{q \in Q \mid q_1 \otimes q \leqslant q_2\}.$

On morphisms of lattice-valued formal contexts

Sergejs Solovjovs

Introduction 000000	Preliminaries ○●○○○○	Formal contexts 0000000	Properties & relationships	Conclusion	References 00
Quantales					
Quanta	les				

- **Quant** is the variety of *quantales*, i.e., triples (Q, \bigvee, \otimes) , where
 - (Q, \bigvee) is a \bigvee -semilattice;
 - (Q, \otimes) is a semigroup;
 - $\bullet~\otimes$ distributes across \bigvee from both sides.
- **2 UQuant** is the variety of *unital quantales*, i.e., quantales Q, which have an element 1_Q such that $(Q, \otimes, 1_Q)$ is a monoid.

A quantale Q has two residuations, which are given by $q_1 \rightarrow_l q_2 = \bigvee \{q \in Q \mid q \otimes q_1 \leqslant q_2\}$ and $q_1 \rightarrow_r q_2 = \bigvee \{q \in Q \mid q_1 \otimes q \leqslant q_2\}$.

On morphisms of lattice-valued formal contexts

Introduction 000000	Preliminaries	Formal contexts 0000000	Properties & relationships 000000000	Conclusion 00	References 00						
Powerset operato	rs										
Crisp fo	Crisp forward powerset operator										

Given a map $X_1 \xrightarrow{f} X_2$, the *forward powerset operator* w.r.t. f is the map $\mathcal{P}(X_1) \xrightarrow{f^{\rightarrow}} \mathcal{P}(X_2)$, which is defined by $f^{\rightarrow}(S) = \{f(s) \mid s \in S\}$.

Introduction	Preliminaries	Formal contexts	Properties & relationships	Conclusion	References
	000000				
Powerset operators					

Lattice-valued forward powerset operators I

Theorem 5

- Given a variety L, which extends CSLat(V), every subcategory
 S of L provides a functor Set × S (-)→ CSLat(V), which is defined by ((X₁, L₁) (f,φ)/(X₂, L₂))→ = L₁^{X₁} (f,φ)→ L₂^{X₂}, where ((f,φ)→(α))(x₂) = φ(V_{f(x1)=x2} α(x1)).
- 2 Let L be a variety, which extends CSLat(∨), and let S be a subcategory of L^{op} such that for every S-morphism L₁ → L₂, the map L₁ → L₂ is ∨-preserving. Then there exists a functor Set × S $\xrightarrow{(-)^{\vdash -+}}$ CSLat(∨) defined by $((X_1, L_1) \xrightarrow{(f, \varphi)})$ $(X_2, L_2))^{\vdash -+} = L_1^{X_1} \xrightarrow{(f, \varphi)^{\vdash -+}} L_2^{X_2}$, where $((f, \varphi)^{\vdash -+}(\alpha))(x_2) = \varphi^{op\vdash}(∨_{f(x_1)=x_2} \alpha(x_1))$.

Introduction	Preliminaries	Formal contexts	Properties & relationships	Conclusion	References
	000000				
Powerset operators					

Lattice-valued forward powerset operators II

Theorem 6

• Given a variety L, which extends CSLat(V), every subcategory **S** of L^{op} provides a functor $Set^{op} \times S \xrightarrow{(-)^{\rightarrow o}} (CSLat(\vee))^{op}$ with $((X_1, L_1) \xrightarrow{(f,\varphi)} (X_2, L_2))^{\rightarrow o} = L_1^{X_1} \xrightarrow{((f,\varphi)^{\rightarrow o})^{op}} L_2^{X_2}$, where $((f,\varphi)^{\to o}(\alpha))(x_1) = \varphi^{op}(\bigvee_{f^{op}(x_2)=x_1} \alpha(x_2)).$ 2 Let L be a variety, which extends $CSLat(\backslash)$, and let S be a subcategory of **L** such that for every **S**-morphism $L_1 \xrightarrow{\varphi}$ L_2 , the map $L_2 \xrightarrow{\varphi^{\vdash}} L_1$ is \bigvee -preserving. Then there exists a functor $\operatorname{Set}^{op} \times \operatorname{S} \xrightarrow{(-)^{\vdash \rightarrow \circ}} (\operatorname{CSLat}(\vee))^{op}$ defined by $((X_1, L_1) \xrightarrow{(f,\varphi)} (X_2, L_2))^{\vdash - \rightarrow o} = L_1^{X_1} \xrightarrow{((f,\varphi)^{\vdash - \rightarrow o})^{op}} L_2^{X_2}$, where $((f,\varphi)^{\vdash \to o}(\alpha))(x_1) = \varphi^{\vdash}(\bigvee_{f^{op}(x_2)=x_1} \alpha(x_2)).$

Galois co	onnectior	าร			
Galois connections					
Introduction 000000	Preliminaries ○○○○○●	Formal contexts 0000000	Properties & relationships 000000000	Conclusion	References 00

A tuple $((X_1, \leq), f, g, (X_2, \leq))$ is an order-reversing Galois connection provided that $(X_1, \leq), (X_2, \leq)$ are posets, and $X_1 \xrightarrow[]{f} X_2$ are maps with $x_1 \leq g(x_2)$ iff $x_2 \leq f(x_1)$ for every $x_1 \in X_1, x_2 \in X_2$.

Introduction	Preliminaries	Formal contexts	Properties & relationships	Conclusion	References
000000	000000	•000000	000000000	00	00
Lattice-valued forma	al contexts				

Formal contexts as Chu spaces

Definition 8

Let L be a variety, which extends Quant, and let S be a subcategory of L^{op}. S-FC^C is the category, which comprises the following data. Objects: tuples $\mathcal{K} = (G, M, L, I)$ (*(lattice-valued) formal contexts*), where G is the set of context *objects*, M is the set of context *attributes*, L is an S-object, and $G \times M \xrightarrow{I} L$ is a map, which is called the context *incidence relation*. Morphisms: $\mathcal{K}_1 \xrightarrow{f} \mathcal{K}_2$ (*(lattice-valued) formal context morphisms*) are triples $(G_1, M_1, L_1) \xrightarrow{f=(\alpha, \beta, \varphi)} (G_2, M_2, L_2)$ in Set × Set^{op} × S with $l_1(g, \beta^{op}(m)) = \varphi^{op} \circ l_2(\alpha(g), m)$ for every $g \in G_1, m \in M_2$.

Introduction 000000	Preliminaries 000000	Formal contexts 0●00000	Properties & relationships 000000000	Conclusion 00	References 00
Lattice-valued form	mal contexts				
NA 11C			CI		

Modified formal contexts as Chu spaces

Definition 9

Let **L** be a variety, which extends **Quant**, and let **S** be a subcategory of **L**. **S-FC**^{*C*}_{*m*} is the category, which comprises the following data. Objects: (lattice-valued) formal contexts.

Morphisms: $\mathcal{K}_1 \xrightarrow{f} \mathcal{K}_2$ are triples $(G_1, M_1, L_1) \xrightarrow{f=(\alpha, \beta, \varphi)} (G_2, M_2, L_2)$ in **Set**×**Set**^{op}×**S** with $\varphi \circ l_1(g, \beta^{op}(m)) = l_2(\alpha(g), m)$ for every $g \in G_1$, $m \in M_2$.

Introduction	Preliminaries	Formal contexts	Properties & relationships	Conclusion	References
000000	000000	00●0000	0000000000	00	00
Lattice-valued form	al contexts				

Formal contexts of B. Ganter and R. Wille

Definition 10

Let **L** be a variety, which extends **Quant**, and let **S** be a subcategory of L^{op} . **S-FC**^{*GW*} is the category, which comprises the following data. Objects: (lattice-valued) formal contexts.

Morphisms: $\mathcal{K}_1 \xrightarrow{f} \mathcal{K}_2$ are triples $(G_1, M_1, L_1) \xrightarrow{f=(\alpha, \beta, \varphi)} (G_2, M_2, L_2)$ in **Set** × **Set** × **S** with $I_1(g, m) = \varphi^{op} \circ I_2(\alpha(g), \beta(m))$ for every $g \in G_1$, $m \in M_1$.

On morphisms of lattice-valued formal contexts

Introduction	Preliminaries	Formal contexts	Properties & relationships	Conclusion	Reference
		0000000			
Lattice-valued form	al contexts				

Modified formal contexts of B. Ganter and R. Wille

Definition 11

Let **L** be a variety, which extends **Quant**, and let **S** be a subcategory of **L**. **S**-**F**C^{*GW*}_{*m*} is the category, which comprises the following data. Objects: (lattice-valued) formal contexts.

Morphisms: $\mathcal{K}_1 \xrightarrow{f} \mathcal{K}_2$ are triples $(G_1, M_1, L_1) \xrightarrow{f=(\alpha, \beta, \varphi)} (G_2, M_2, L_2)$ in **Set** × **Set** × **S** with $\varphi \circ I_1(g, m) = I_2(\alpha(g), \beta(m))$ for every $g \in G_1$, $m \in M_1$.

On morphisms of lattice-valued formal contexts

Introduction 000000	Preliminaries 000000	Formal contexts 0000●00	Properties & relationships 0000000000	Conclusion 00	References 00
Lattice-valued form	nal contexts				

Lattice-valued Birkhoff operators

Definition 12

Every lattice-valued formal context \mathcal{K} provides the following *(lattice-valued) Birkhoff operators*:

•
$$L^G \xrightarrow{H} L^M$$
 given by $(H(s))(m) = \bigwedge_{g \in G} (s(g) \to_I I(g, m));$

$$2 L^M \xrightarrow{K} L^G \text{ given by } (K(t))(g) = \bigwedge_{m \in M} (t(m) \to_r I(g, m)).$$

Theorem 13

For every lattice-valued context \mathcal{K} , (L^G, H, K, L^M) is an orderreversing Galois connection.

On morphisms of lattice-valued formal contexts

Introduction 000000	Preliminaries 000000	Formal contexts 0000●00	Properties & relationships 0000000000	Conclusion 00	References 00
Lattice-valued form	al contexts				

Lattice-valued Birkhoff operators

Definition 12

Every lattice-valued formal context \mathcal{K} provides the following *(lattice-valued) Birkhoff operators*:

•
$$L^G \xrightarrow{H} L^M$$
 given by $(H(s))(m) = \bigwedge_{g \in G} (s(g) \to_I I(g, m));$

$$2 L^M \xrightarrow{K} L^G \text{ given by } (K(t))(g) = \bigwedge_{m \in M} (t(m) \to_r I(g,m)).$$

Theorem 13

For every lattice-valued context \mathcal{K} , (L^G, H, K, L^M) is an orderreversing Galois connection.

On morphisms of lattice-valued formal contexts

000000 Lattice-valued for	000000 mal contexts	0000000	0000000000	00	00
Crisp Bi	rkhoff op	erators			

Example 14

Every crisp context \mathcal{K} provides the maps

which are the classical Birkhoff operators of a binary relation.

Introduction	Preliminaries	Formal contexts	Properties & relationships	Conclusion	References
000000	000000	000000	000000000		
Lattice-valued forma	al contexts				

Formal contexts of J. T. Denniston et al.

Definition 15

Given a variety L, which extends **Quant**, and a subcategory S of L, S-FC^{DMR} is the category, concrete over the product category Set \times Set^{op}, which comprises the following data.

Objects: lattice-valued formal contexts \mathcal{K} with L an object of **S**.

On morphisms of lattice-valued formal contexts

Sergejs Solovjovs

Introduction 000000	Preliminaries 000000	Formal contexts 0000000	Properties & relationships	Conclusion	References 00
Formal contexts	as Galois connection	5			
Relation	ns versus	Birkhoff op	erators		

- There is a one-to-one correspondence between relations $I \subseteq G \times M$ and order-reversing Galois connections on $(\mathcal{P}(G), \mathcal{P}(M))$.
- What about the lattice-valued case?

Given a \bigvee -semilattice L and a set X, every $S \subseteq X$ and every $a \in L$ provide the map $X \xrightarrow{\chi_{S}^{a}} L$, which is defined by

$$\chi^a_S(x) = egin{cases} a, & x \in S \ ot_L, & ext{otherwise}. \end{cases}$$

Introduction 000000	Preliminaries 000000	Formal contexts 0000000	Properties & relationships •••••	Conclusion	References 00			
Formal contexts as Galois connections								
Relation	ns versus	Birkhoff on	erators					

- There is a one-to-one correspondence between relations $I \subseteq G \times M$ and order-reversing Galois connections on $(\mathcal{P}(G), \mathcal{P}(M))$.
- What about the lattice-valued case?

Given a \bigvee -semilattice L and a set X, every $S \subseteq X$ and every $a \in L$ provide the map $X \xrightarrow{\chi_{S}^{a}} L$, which is defined by

$$\chi^a_S(x) = egin{cases} a, & x \in S \ ot_L, & ext{otherwise}. \end{cases}$$

On morphisms of lattice-valued formal contexts

Sergejs Solovjovs

Introduction 000000	Preliminaries 000000	Formal contexts 0000000	Properties & relationships ••••••	Conclusion 00	References 00		
Formal contexts as Galois connections							
Relation	ns versus	Birkhoff on	erators				

- There is a one-to-one correspondence between relations $I \subseteq G \times M$ and order-reversing Galois connections on $(\mathcal{P}(G), \mathcal{P}(M))$.
- What about the lattice-valued case?

Given a \bigvee -semilattice L and a set X, every $S \subseteq X$ and every $a \in L$ provide the map $X \xrightarrow{\chi_{S}^{a}} L$, which is defined by

$$\chi^a_{\mathcal{S}}(x) = egin{cases} \mathsf{a}, & x \in \mathcal{S} \ oldsymbol{\perp}_L, & ext{otherwise.} \end{cases}$$

On morphisms of lattice-valued formal contexts

Introduction 000000 Preliminaries F 000000 0

Formal contexts

Properties & relationships

Conclusion 00 References 00

Formal contexts as Galois connections

Lattice-valued relations versus Birkhoff operators

Theorem 17

Let G, M be sets and let L be a unital quantale. For every orderreversing Galois connection ($L^{G}, \alpha, \beta, L^{M}$), equivalent are:

• There exists a map $G \times M \xrightarrow{I} L$ such that $\alpha = H$ and $\beta = K$.

② For every
$$g\in G$$
, $m\in M$, $a\in L$, it follows that

(a)
$$(\alpha(\chi_{\lbrace g \rbrace}^{\iota_{L}}))(m) = (\beta(\chi_{\lbrace m \rbrace}^{\iota_{L}}))(g);$$

(b) $(\alpha(\underline{a} \otimes \chi_{\lbrace g \rbrace}^{\iota_{L}}))(m) = a \rightarrow_{l} (\alpha(\chi_{\lbrace g \rbrace}^{\iota_{L}}))(m);$
(c) $(\beta(\chi_{\lbrace m \rbrace}^{\iota_{L}} \otimes \underline{a}))(g) = a \rightarrow_{r} (\beta(\chi_{\lbrace m \rbrace}^{\iota_{L}}))(g).$

Introduction 000000	Preliminaries 000000	Formal contexts 0000000	Properties & relationships	Conclusion	References 00
Formal contexts	as Galois connection	;			
Conseq	uences				

Every map $G \times M \xrightarrow{l} L$ gives rise to an order-reversing Galois connection, but the converse way needs additional requirements.

Counterexample

Let *L* be the unit interval $\mathbb{I} = ([0,1], \bigvee, \wedge, 1)$, and let both *G* and *M* be singletons. One can assume that both \mathbb{I}^G and \mathbb{I}^M is \mathbb{I} . The order-reversing involution map $\mathbb{I} \xrightarrow{\alpha} \mathbb{I}$, $\alpha(a) = 1 - a$ is a part of the order-reversing Galois connection $(\mathbb{I}, \alpha, \alpha, \mathbb{I})$. The condition of, e.g., Theorem 17(3)(a) gives $\alpha(a) = a \rightarrow \alpha(1)$ for every $a \in \mathbb{I}$. However, for $a = \frac{1}{2}$, one obtains that $\alpha(\frac{1}{2}) = \frac{1}{2} \neq 0 = \frac{1}{2} \rightarrow 0 = \frac{1}{2} \rightarrow \alpha(1)$.

On morphisms of lattice-valued formal contexts

Introduction 000000	Preliminaries 000000	Formal contexts 0000000	Properties & relationships	Conclusion	References 00
Formal contexts	as Galois connection	5			
Conseq	uences				

Every map $G \times M \xrightarrow{l} L$ gives rise to an order-reversing Galois connection, but the converse way needs additional requirements.

Counterexample

Let *L* be the unit interval $\mathbb{I} = ([0,1], \bigvee, \wedge, 1)$, and let both *G* and *M* be singletons. One can assume that both \mathbb{I}^G and \mathbb{I}^M is \mathbb{I} . The order-reversing involution map $\mathbb{I} \xrightarrow{\alpha} \mathbb{I}$, $\alpha(a) = 1 - a$ is a part of the order-reversing Galois connection $(\mathbb{I}, \alpha, \alpha, \mathbb{I})$. The condition of, e.g., Theorem 17(3)(a) gives $\alpha(a) = a \rightarrow \alpha(1)$ for every $a \in \mathbb{I}$. However, for $a = \frac{1}{2}$, one obtains that $\alpha(\frac{1}{2}) = \frac{1}{2} \neq 0 = \frac{1}{2} \rightarrow 0 = \frac{1}{2} \rightarrow \alpha(1)$.

On morphisms of lattice-valued formal contexts

Introduction	Preliminaries	Formal contexts	Properties & relationships	Conclusion	References
000000	000000	0000000		00	00
Relationships betwe	en the categories o	of lattice-valued formal o	contexts		

From **S-FC**^C to **S-FC**^{DMI}

Definition 18

- S-FC^C_{*} is a subcategory of S-FC^C, with the same objects, and whose morphisms $\mathcal{K}_1 \xrightarrow{f} \mathcal{K}_2$ have surjective maps $G_1 \xrightarrow{\alpha} G_2$, $M_2 \xrightarrow{\beta^{op}} M_1$, and an S-isomorphism $L_1 \xrightarrow{\varphi} L_2$.
- Let L extend UQuant. S-FC^C_{**} (resp. S-FC^C_{*•}) is a full subcategory of S-FC^C_{*}, whose objects $\mathcal{K} = (G, M, L, I)$ have non-empty G (resp. M) and, moreover, $1_L \neq \bot_L$.

Theorem 19

There exists a functor $\mathbf{S}\operatorname{-FC}^{C}_{*} \xrightarrow{H_{CD}} \mathbf{S}\operatorname{-FC}^{DMR}_{*}$, which is given by $H_{CD}(\mathcal{K}_{1} \xrightarrow{f} \mathcal{K}_{2}) = \mathcal{K}_{1} \xrightarrow{((\alpha, \varphi)^{\vdash \cdots}, ((\beta, \varphi)^{\rightarrow \circ})^{\circ p})} \mathcal{K}_{2}$. Its restriction to $\mathbf{S}\operatorname{-FC}^{C}_{**}$ (resp. $\mathbf{S}\operatorname{-FC}^{C}_{*\bullet}$) is a (non-full) embedding.

On morphisms of lattice-valued formal contexts

Sergejs Solovjovs

Introduction	Preliminaries	Formal contexts	Properties & relationships	Conclusion	References
000000	000000	0000000		00	00
Relationships betwe	en the categories o	of lattice-valued formal o	contexts		

From \mathbf{S} - \mathbf{FC}^C to \mathbf{S} - \mathbf{FC}^{DM}

Definition 18

- S-FC^C_{*} is a subcategory of S-FC^C, with the same objects, and whose morphisms $\mathcal{K}_1 \xrightarrow{f} \mathcal{K}_2$ have surjective maps $G_1 \xrightarrow{\alpha} G_2$, $M_2 \xrightarrow{\beta^{op}} M_1$, and an S-isomorphism $L_1 \xrightarrow{\varphi} L_2$.
- Let L extend UQuant. S-FC^C_{**} (resp. S-FC^C_{*•}) is a full subcategory of S-FC^C_{*}, whose objects $\mathcal{K} = (G, M, L, I)$ have non-empty G (resp. M) and, moreover, $1_L \neq \bot_L$.

Theorem 19

There exists a functor $\mathbf{S}\operatorname{-FC}^{C}_{*} \xrightarrow{\mathsf{H}_{CD}} \mathbf{S}\operatorname{-FC}^{DMR}_{*}$, which is given by $\mathsf{H}_{CD}(\mathcal{K}_{1} \xrightarrow{f} \mathcal{K}_{2}) = \mathcal{K}_{1} \xrightarrow{((\alpha, \varphi)^{\vdash - \rightarrow}, ((\beta, \varphi)^{\rightarrow o})^{op})} \mathcal{K}_{2}$. Its restriction to $\mathbf{S}\operatorname{-FC}^{C}_{**}$ (resp. $\mathbf{S}\operatorname{-FC}^{C}_{*\bullet}$) is a (non-full) embedding.

On morphisms of lattice-valued formal contexts

Sergejs Solovjovs

Introduction 000000	Preliminaries 000000	Formal contexts	Properties & relationships	Conclusion 00	References 00
Relationships be	tween the categories	of lattice-valued formal o	contexts		
From S	$-\mathbf{FC}_m^C$ to \mathbb{S}_m^C	S-FC ^{DMR}			

- S-FC^C_{m*} is a subcategory of S-FC^C_m, with the same objects, and whose morphisms $\mathcal{K}_1 \xrightarrow{f} \mathcal{K}_2$ have surjective maps $G_1 \xrightarrow{\alpha} G_2$, $M_2 \xrightarrow{\beta^{op}} M_1$, and an S-isomorphism $L_1 \xrightarrow{\varphi} L_2$.
- Let L extend UQuant. S-FC^C_{m**} (resp. S-FC^C_{m*•}) is a full subcategory of S-FC^C_{m*}, whose objects $\mathcal{K} = (G, M, L, I)$ have non-empty G (resp. M) and, moreover, $1_L \neq \bot_L$.

Theorem 21

There exists a functor \mathbf{S} - $\mathbf{FC}_{m*}^{C} \xrightarrow{\mathbf{H}_{CmD}} \mathbf{S}$ - \mathbf{FC}^{DMR} , which is given by $\mathbf{H}_{CmD}(\mathcal{K}_1 \xrightarrow{f} \mathcal{K}_2) = \mathcal{K}_1 \xrightarrow{((\alpha, \varphi)^{\rightarrow}, ((\beta, \varphi)^{\vdash \cdots \bullet \circ})^{op})} \mathcal{K}_2$. Its restriction to \mathbf{S} - \mathbf{FC}_{m**}^{C} (resp. \mathbf{S} - $\mathbf{FC}_{m*\bullet}^{C}$) is a (non-full) embedding.

On morphisms of lattice-valued formal contexts

Sergejs Solovjovs

Introduction 000000	Preliminaries 000000	Formal contexts 0000000	Properties & relationships	Conclusion 00	References 00
Relationships betw	veen the categories	of lattice-valued formal o	contexts		
From S-	\mathbf{FC}_{m}^{C} to S	S-FC ^{DMR}			

- S-FC^C_{m*} is a subcategory of S-FC^C_m, with the same objects, and whose morphisms $\mathcal{K}_1 \xrightarrow{f} \mathcal{K}_2$ have surjective maps $G_1 \xrightarrow{\alpha} G_2$, $M_2 \xrightarrow{\beta^{op}} M_1$, and an S-isomorphism $L_1 \xrightarrow{\varphi} L_2$.
- Let L extend UQuant. S-FC^C_{m**} (resp. S-FC^C_{m*•}) is a full subcategory of S-FC^C_{m*}, whose objects $\mathcal{K} = (G, M, L, I)$ have non-empty G (resp. M) and, moreover, $1_L \neq \bot_L$.

Theorem 21

There exists a functor \mathbf{S} - $\mathbf{FC}_{m*}^{C} \xrightarrow{\mathbf{H}_{CmD}} \mathbf{S}$ - \mathbf{FC}^{DMR} , which is given by $\mathbf{H}_{CmD}(\mathcal{K}_1 \xrightarrow{f} \mathcal{K}_2) = \mathcal{K}_1 \xrightarrow{((\alpha, \varphi)^{\rightarrow}, ((\beta, \varphi)^{\vdash \cdots \to \circ})^{op})} \mathcal{K}_2$. Its restriction to \mathbf{S} - \mathbf{FC}_{m**}^{C} (resp. \mathbf{S} - $\mathbf{FC}_{m*\bullet}^{C}$) is a (non-full) embedding.

On morphisms of lattice-valued formal contexts

Introduction 000000 Preliminaries 000000 Formal contexts

Properties & relationships

Conclusion

References 00

Relationships between the categories of lattice-valued formal contexts

Formal concepts, protoconcepts, and preconcepts

Definition 22

Let \mathcal{K} be a lattice-valued formal context, and let $s \in L^G$, $t \in L^M$. The pair (s, t) is called a

- (lattice-valued) formal concept of K provided that H(s) = t and K(t) = s;
- (lattice-valued) formal protoconcept of \mathcal{K} provided that $K \circ H(s) = K(t)$ (equivalently, $H \circ K(t) = H(s)$);
- (lattice-valued) formal preconcept of K provided that s ≤ K(t) (equivalently, t ≤ H(s)).

Introduction 000000	Preliminaries 000000	Formal contexts 0000000	Properties & relationships	Conclusion	References 00
Relationships betw	veen the categories	of lattice-valued formal o	contexts		
Erom C	ECDMR +	SECC			

- Given an L-algebra L, L-FC_i^{DMR} is a subcategory of L-FC^{DMR}, with the same objects, and whose morphisms K₁ ^f→ K₂ have injective maps L^{G₁} ^α→ L^{G₂}, L^{M₂} ^{β^{op}}→ L^{M₁}.
- An L-algebra L is called *quasi-strictly right-sided (qsrs-algebra)* provided that a ≤ (⊤_L →_I a) ⊗ ⊤_L for every a ∈ L.

Theorem 24

There exists a functor L-**FC**^{DMR}_i $\xrightarrow{H^{i}_{DC}}$ **S**-**FC**^C, which is given by $H^{i}_{DC}(\mathcal{K}_{1} \xrightarrow{f} \mathcal{K}_{2}) = (L^{G_{1}}, L^{M_{1}}, L, \hat{l}_{1}) \xrightarrow{(\alpha, \beta, 1_{L})} (L^{G_{2}}, L^{M_{2}}, L, \hat{l}_{2})$, where $\hat{l}_{j}(s, t) = \top_{L}$ if (s, t) is a formal concept of \mathcal{K}_{j} , and \perp_{L} otherwise. If L is a qsrs-algebra, then H^{i}_{DC} is a (non-full) embedding.

On morphisms of lattice-valued formal contexts

Sergejs Solovjovs

Introduction 000000	Preliminaries	Formal contexts 0000000	Properties & relationships	Conclusion	References 00
Relationships betw	veen the categories o	of lattice-valued formal o	contexts		
Erom C	CDMR +	S ECC			

- Given an L-algebra L, L-FC_i^{DMR} is a subcategory of L-FC^{DMR}, with the same objects, and whose morphisms K₁ ^f→ K₂ have injective maps L^{G₁} ^α→ L^{G₂}, L^{M₂} ^{β^{op}}→ L^{M₁}.
- An L-algebra L is called *quasi-strictly right-sided (qsrs-algebra)* provided that $a \leq (\top_L \rightarrow_I a) \otimes \top_L$ for every $a \in L$.

Theorem 24

There exists a functor L-**FC**^{DMR}_i $\xrightarrow{H^{i}_{DC}}$ **S**-**FC**^C, which is given by $H^{i}_{DC}(\mathcal{K}_{1} \xrightarrow{f} \mathcal{K}_{2}) = (L^{G_{1}}, L^{M_{1}}, L, \hat{l}_{1}) \xrightarrow{(\alpha, \beta, 1_{L})} (L^{G_{2}}, L^{M_{2}}, L, \hat{l}_{2})$, where $\hat{l}_{j}(s, t) = \top_{L}$ if (s, t) is a formal concept of \mathcal{K}_{j} , and \perp_{L} otherwise. If L is a qsrs-algebra, then H^{i}_{DC} is a (non-full) embedding.

Introduction	Preliminaries	Formal contexts	Properties & relationships	Conclusion	References
			0000000000		
Relationships be	tween the categories	of lattice-valued formal o	contexts		

From **S-FC**^{DMR} to **S-FC**^C

Definition 25

Given an L-algebra L, L-FC^{DMR}_{rfp} is a subcategory of L-FC^{DMR}, with the same objects, and whose morphisms $\mathcal{K}_1 \xrightarrow{f} \mathcal{K}_2$ have maps $L^{G_1} \xrightarrow{\alpha} L^{G_2}$, $L^{M_2} \xrightarrow{\beta^{op}} L^{M_1}$ such that $\mathcal{K}_2 \circ \mathcal{H}_2 \circ \alpha(s) = \alpha(s)$ implies $\mathcal{K}_1 \circ \mathcal{H}_1(s) = s$, and $\mathcal{H}_1 \circ \mathcal{K}_1 \circ \beta^{op}(t) = \beta^{op}(t)$ implies $\mathcal{H}_2 \circ \mathcal{K}_2(t) = t$, for every $s \in L_1^{G_1}$, $t \in L_2^{M_2}$.

Theorem 26

There exists a functor L-**FC**^{DMR}_{fp} $\xrightarrow{\mathsf{H}_{DC}^{mp}}$ **S**-**FC**^C, which is given by $\mathsf{H}_{DC}^{rfp}(\mathcal{K}_1 \xrightarrow{f} \mathcal{K}_2) = (L^{G_1}, L^{M_1}, L, \hat{l}_1) \xrightarrow{(\alpha, \beta, 1_L)} (L^{G_2}, L^{M_2}, L, \hat{l}_2)$, where $\hat{l}_j(s, t) = \top_L$ if (s, t) is a formal concept of \mathcal{K}_j , and \bot_L otherwise. If L is a qsrs-algebra, then the functor is a (non-full) embedding.

On morphisms of lattice-valued formal contexts

Sergejs Solovjovs

Introduction	Preliminaries	Formal contexts	Properties & relationships	Conclusion	References					
			000000000							
Relationships bet	Relationships between the categories of lattice-valued formal contexts									
	DMD									

From \mathbf{S} - $\mathbf{F}\mathbf{C}^{DMR}$ to \mathbf{S} - $\mathbf{F}\mathbf{C}^{C}$

Definition 25

Given an L-algebra L, L-FC^{DMR}_{rfp} is a subcategory of L-FC^{DMR}, with the same objects, and whose morphisms $\mathcal{K}_1 \xrightarrow{f} \mathcal{K}_2$ have maps $L^{G_1} \xrightarrow{\alpha} L^{G_2}$, $L^{M_2} \xrightarrow{\beta^{op}} L^{M_1}$ such that $\mathcal{K}_2 \circ \mathcal{H}_2 \circ \alpha(s) = \alpha(s)$ implies $\mathcal{K}_1 \circ \mathcal{H}_1(s) = s$, and $\mathcal{H}_1 \circ \mathcal{K}_1 \circ \beta^{op}(t) = \beta^{op}(t)$ implies $\mathcal{H}_2 \circ \mathcal{K}_2(t) = t$, for every $s \in L_1^{G_1}$, $t \in L_2^{M_2}$.

Theorem 26

There exists a functor L-**FC**^{DMR}_{rfp} $\xrightarrow{H_{DC}^{rfp}}$ **S**-**FC**^C, which is given by $H_{DC}^{rfp}(\mathcal{K}_1 \xrightarrow{f} \mathcal{K}_2) = (L^{G_1}, L^{M_1}, L, \hat{l}_1) \xrightarrow{(\alpha, \beta, 1_L)} (L^{G_2}, L^{M_2}, L, \hat{l}_2)$, where $\hat{l}_j(s, t) = \top_L$ if (s, t) is a formal concept of \mathcal{K}_j , and \bot_L otherwise. If L is a qsrs-algebra, then the functor is a (non-full) embedding.

Introduction 000000	Preliminaries 000000	Formal contexts 0000000	Properties & relationships ○○○○○○○●○	Conclusion 00	References 00
Relationships betw	ween the categories	of lattice-valued formal o	contexts		
Erom C	CDMR +				

Given an **L**-algebra *L*, *L*-**FC**^{*DMR*}_{*orp*} is a subcategory of *L*-**FC**^{*DMR*}, with the same objects, and whose morphisms $\mathcal{K}_1 \xrightarrow{f} \mathcal{K}_2$ have orderpreserving maps $L^{G_1} \xrightarrow{\alpha} L^{G_2}$, $L^{M_2} \xrightarrow{\beta^{op}} L^{M_1}$.

Theorem 28

There exists a functor L-**FC**^{DMR}_{orp} $\xrightarrow{\mathsf{H}_{DC}^{opp}}$ **S**-**FC**^C, which is given by $\mathsf{H}_{DC}^{orp}(\mathcal{K}_1 \xrightarrow{f} \mathcal{K}_2) = (L^{G_1}, L^{M_1}, L, \hat{l}_1) \xrightarrow{(\alpha, \beta, 1_L)} (L^{G_2}, L^{M_2}, L, \hat{l}_2)$, where $\hat{l}_j(s, t) = \top_L \text{ if } (s, t) \text{ is a formal preconcept of } \mathcal{K}_j, \text{ and } \bot_L \text{ otherwise.}$ If L is a qsrs-algebra, then the functor is a (non-full) embedding.

On morphisms of lattice-valued formal contexts

Introduction 000000	Preliminaries 000000	Formal contexts 0000000	Properties & relationships ○○○○○○○●○	Conclusion 00	References 00
Relationships betw	ween the categories	of lattice-valued formal o	contexts		
	CDMR .	S FCC			

Given an **L**-algebra *L*, *L*-**FC**^{*DMR*}_{*orp*} is a subcategory of *L*-**FC**^{*DMR*}, with the same objects, and whose morphisms $\mathcal{K}_1 \xrightarrow{f} \mathcal{K}_2$ have orderpreserving maps $L^{G_1} \xrightarrow{\alpha} L^{G_2}$, $L^{M_2} \xrightarrow{\beta^{op}} L^{M_1}$.

Theorem 28

There exists a functor L-**FC**^{DMR}_{orp} $\xrightarrow{\mathsf{H}_{DC}^{orp}}$ **S**-**FC**^C, which is given by $\mathsf{H}_{DC}^{orp}(\mathcal{K}_1 \xrightarrow{f} \mathcal{K}_2) = (L^{G_1}, L^{M_1}, L, \hat{l}_1) \xrightarrow{(\alpha, \beta, 1_L)} (L^{G_2}, L^{M_2}, L, \hat{l}_2)$, where $\hat{l}_j(s, t) = \top_L \text{ if } (s, t) \text{ is a formal preconcept of } \mathcal{K}_j, \text{ and } \bot_L \text{ otherwise.}$ If L is a qsrs-algebra, then the functor is a (non-full) embedding.

Introduction 000000	Preliminaries 000000	Formal contexts 0000000	Properties & relationships	Conclusion 00	References 00
Relationships be	tween the categories	of lattice-valued formal o	contexts		
From S	- FC ^{DMR} t	o S-FC ^C			

Theorem 29

There exists a functor L-**FC**^{DMR} $\xrightarrow{H_{DC}}$ **S**-**FC**^C, which is given by $H_{DC}(\mathcal{K}_1 \xrightarrow{f} \mathcal{K}_2) = (L^{G_1}, L^{M_1}, L, \hat{l}_1) \xrightarrow{(\alpha, \beta, l_L)} (L^{G_2}, L^{M_2}, L, \hat{l}_2)$, where $\hat{l}_j(s, t) = \top_L \text{ if } (s, t) \text{ is a formal protoconcept of } \mathcal{K}_j, \text{ and } \perp_L \text{ other-}$ wise. If L is a qsrs-algebra, then H_{DC} is a (non-full) embedding.

On morphisms of lattice-valued formal contexts

Introduction 000000	Preliminaries 000000	Formal contexts 0000000	Properties & relationships 0000000000	Conclusion ●○	References 00
Conclusion					
Final re	marks				

- This talk considered some approaches to morphisms of latticevalued formal contexts of Formal Context Analysis (FCA).
- We constructed several categories, whose objects are latticevalued analogues of formal contexts of FCA, and whose morphisms reflect the crisp setting of Chu spaces, the lattice-valued setting of J. T. Denniston, A. Melton, and S. E. Rodabaugh, as well as the many-valued setting of B. Ganter and R. Wille.
- We considered a number of functors between the categories of formal contexts, embedding each of them into its counterparts.

Introduction 000000	Preliminaries 000000	Formal contexts 0000000	Properties & relationships 0000000000	Conclusion ••	References 00
Conclusion					
Final re	marks				

- This talk considered some approaches to morphisms of latticevalued formal contexts of Formal Context Analysis (FCA).
- We constructed several categories, whose objects are latticevalued analogues of formal contexts of FCA, and whose morphisms reflect the crisp setting of Chu spaces, the lattice-valued setting of J. T. Denniston, A. Melton, and S. E. Rodabaugh, as well as the many-valued setting of B. Ganter and R. Wille.
- We considered a number of functors between the categories of formal contexts, embedding each of them into its counterparts.

On morphisms of lattice-valued formal contexts

Sergejs Solovjovs

Introduction 000000	Preliminaries 000000	Formal contexts 0000000	Properties & relationships 0000000000	Conclusion ••	References 00
Conclusion					
Final re	marks				

- This talk considered some approaches to morphisms of latticevalued formal contexts of Formal Context Analysis (FCA).
- We constructed several categories, whose objects are latticevalued analogues of formal contexts of FCA, and whose morphisms reflect the crisp setting of Chu spaces, the lattice-valued setting of J. T. Denniston, A. Melton, and S. E. Rodabaugh, as well as the many-valued setting of B. Ganter and R. Wille.
- We considered a number of functors between the categories of formal contexts, embedding each of them into its counterparts.

FCA without relations								
Open problem								
				00				
Introduction	Preliminaries	Formal contexts	Properties & relationships	Conclusion	References			

The difference between the settings of relations and Galois connections in the lattice-valued case, motivates the following problem.

Problem 30

Is it possible to build a lattice-valued approach to FCA, which is based in order-reversing Galois connections on lattice-valued powersets, which are not generated by lattice-valued relations on their respective sets of objects and their attributes?

On morphisms of lattice-valued formal contexts

Sergejs Solovjovs

Introduction 000000	Preliminaries 000000	Formal contexts	Properties & relationships 0000000000	Conclusion ○●	References 00			
Open problem								
FCA without relations								

The difference between the settings of relations and Galois connections in the lattice-valued case, motivates the following problem.

Problem 30

Is it possible to build a lattice-valued approach to FCA, which is based in order-reversing Galois connections on lattice-valued powersets, which are not generated by lattice-valued relations on their respective sets of objects and their attributes?

Introduction 000000	Preliminaries 000000	Formal contexts 0000000	Properties & relationships 0000000000	Conclusion 00	References ●○
References					
Referenc	es I				

- J. Adámek, H. Herrlich, and G. E. Strecker, *Abstract and Concrete Categories: The Joy of Cats*, Dover Publications, 2009.
- G. Birkhoff, *Lattice Theory*, American Mathematical Society Publications, 1940.
- R. Bělohlávek, *Fuzzy Relational Systems. Foundations and Principles*, Kluwer Academic Publishers, 2002.
- J. T. Denniston, A. Melton, and S. E. Rodabaugh, *Formal concept analysis and lattice-valued Chu systems*, Fuzzy Sets Syst. **216** (2013), 52–90.
- B. Ganter and R. Wille, *Formale Begriffsanalyse*. *Mathematische Grundlagen*, Berlin: Springer, 1996.

Introduction 000000	Preliminaries 000000	Formal contexts 0000000	Properties & relationships 0000000000	Conclusion	References 0●
References					
Reference	ces II				

- D. Kruml and J. Paseka, Algebraic and Categorical Aspects of Quantales, Handbook of Algebra (M. Hazewinkel, ed.), vol. 5, Elsevier, 2008, pp. 323–362.
- J. M. McDill, A. C. Melton, and G. E. Strecker, *A category of Galois connections*, Lect. Notes Comput. Sci. **283** (1987), 290–300.
- V. Pratt, *Chu spaces*, Coimbra: Universidade de Coimbra, Departamento de Matemática. Textos Mat., Sér. B. **21** (1999), 39–100.
 - S. Solovyov, Lattice-valued topological systems as a framework for lattice-valued Formal Concept Analysis, Journal of Mathematics 2013 (2013), 33 pages, Article ID 506275, http://dx.doi.org/10.1155/2013/506275.

Introduction	Preliminaries	Formal contexts	Properties & relationships	Conclusion	References
000000	000000	0000000	0000000000		00

Thank you for your attention!