# Commutator Theory for Loops 

## David Stanovský

Charles University, Prague, Czech Republic stanovsk@karlin.mff.cuni.cz
joint work with Petr Vojtěchovský, University of Denver
June 2013

## Feit-Thompson theorem

Theorem (Feit-Thompson, 1962)
Groups of odd order are solvable.

Can be extended?

- To which class of algebras ? (containing groups)
- What is odd order ?
- What is solvable ?


## Feit-Thompson theorem

## Theorem (Feit-Thompson, 1962)

Groups of odd order are solvable.

Can be extended?

- To which class of algebras ? (containing groups)
- What is odd order ?
- What is solvable ?


## Theorem (Glauberman 1964/68)

Moufang loops of odd order are solvable.

Moufang loop $=$ replace associativity by $x(z(y z))=((x z) y) z$
solvable $=$ there are $N_{i} \unlhd L$ such that $1=N_{0} \leq N_{1} \leq \ldots \leq N_{k}=L$ and $N_{i+1} / N_{i}$ are abelian groups.

## Loops

A loop is an algebra $(L, \cdot, 1)$ such that

- $1 x=x 1=x$
- for every $x, y$ there are unique $u, v$ such that $x u=y, v x=y$

For universal algebra purposes: $(L, \cdot, \backslash, /, 1)$, where $u=x \backslash y, v=y / x$.
Examples:

- octonions $\rightsquigarrow$ Moufang loops
- various other classes of weakly associative loops
- various combinatorial constructions, e.g., from Steiner triples systems, coordinatization of projective geometries, etc.


## Loops

A loop is an algebra $(L, \cdot, 1)$ such that

- $1 x=x 1=x$
- for every $x, y$ there are unique $u, v$ such that $x u=y, v x=y$

For universal algebra purposes: $(L, \cdot, \backslash, /, 1)$, where $u=x \backslash y, v=y / x$.
Examples:

- octonions $\rightsquigarrow$ Moufang loops
- various other classes of weakly associative loops
- various combinatorial constructions, e.g., from Steiner triples systems, coordinatization of projective geometries, etc.

Normal subloops $\leftrightarrow$ congruences
$=$ kernels of a homomorphisms
$=$ subloops invariant with respect to $\operatorname{Inn}(L)$

$$
\operatorname{Inn}(L)=\operatorname{Mlt}(L)_{1}, \quad \operatorname{Mlt}(L)=\left\langle L_{a}, R_{a}: a \in L\right\rangle
$$

## Solvability, nilpotence - after R. H. Bruck

Bruck's approach (1950's), by direct analogy to group theory:
$L$ is solvable if there are $N_{i} \unlhd L$ such that $1=N_{0} \leq N_{1} \leq \ldots \leq N_{k}=L$ and $N_{i+1} / N_{i}$ are abelian groups.
$L$ is nilpotent if there are $N_{i} \unlhd L$ such that $1=N_{0} \leq N_{1} \leq \ldots \leq N_{k}=L$ and $N_{i+1} / N_{i} \leq Z\left(L / N_{i}\right)$.
$Z(L)=\{a \in L: a x=x a, a(x y)=(a x) y,(x a) y=x(a y) \forall x, y \in L\}$

## Solvability, nilpotence - after R. H. Bruck

Bruck's approach (1950's), by direct analogy to group theory:
$L$ is solvable if there are $N_{i} \unlhd L$ such that $1=N_{0} \leq N_{1} \leq \ldots \leq N_{k}=L$ and $N_{i+1} / N_{i}$ are abelian groups.
$L$ is nilpotent if there are $N_{i} \unlhd L$ such that $1=N_{0} \leq N_{1} \leq \ldots \leq N_{k}=L$ and $N_{i+1} / N_{i} \leq Z\left(L / N_{i}\right)$.
$Z(L)=\{a \in L: a x=x a, a(x y)=(a x) y,(x a) y=x(a y) \forall x, y \in L\}$
Alternatively, define

$$
L^{(0)}=L_{(0)}=L, \quad L_{(i+1)}=\left[L_{(i)}, L_{(i)}\right], \quad L^{(i+1)}=\left[L^{(i)}, L\right]
$$

- L solvable iff $L_{(n)}=1$ for some $n$
- L nilpotent iff $L^{(n)}=1$ for some $n$


## Need commutator!

- $[N, N]$ is the smallest $M$ such that $N / M$ is abelian
- $[N, L]$ is the smallest $M$ such that $N / M \leq Z(L / M)$
- $\left[N_{1}, N_{2}\right]$ is ???


## Solvability, nilpotence - universal algebra way

Commutator theory approach (1970's):
$L$ is solvable if there are $\alpha_{i} \in \operatorname{Con}(L)$ such that
$0_{L}=\alpha_{0} \leq \alpha_{1} \leq \ldots \leq \alpha_{k}=1_{L}$ and $\alpha_{i+1}$ is abelian over $\alpha_{i}$.
$L$ is nilpotent if there are $\alpha_{i} \in \operatorname{Con}(L)$ such that
$0_{L}=\alpha_{0} \leq \alpha_{1} \leq \ldots \leq \alpha_{k}=1_{L}$ and $\alpha_{i+1} / \alpha_{i} \leq \zeta\left(L / \alpha_{i}\right)$.
$\zeta(L)=$ the largest $\zeta$ such that $C\left(\zeta, 1_{L} ; 0_{L}\right)$, i.e., $\left[\zeta, 1_{L}\right]=0_{L}$.
Alternatively, define

$$
\alpha^{(0)}=\alpha_{(0)}=1_{L}, \quad \alpha_{(i+1)}=\left[\alpha_{(i)}, \alpha_{(i)}\right], \quad \alpha^{(i+1)}=\left[\alpha^{(i)}, 1_{L}\right]
$$

- $L$ solvable iff $\alpha_{(n)}=1$ for some $n$
- L nilpotent iff $\alpha^{(n)}=1$ for some $n$

We have a commutator!

- $[\alpha, \alpha]$ is the smallest $\beta$ such that $\alpha / \beta$ is abelian
- $\left[\alpha, 1_{L}\right]$ is the smallest $\beta$ such that $\alpha / \beta \leq \zeta(L / \beta)$
- $[\alpha, \beta]$ is the smallest $\delta$ such that $C(\alpha, \beta ; \delta)$


## Translating to loops I

## Good news

(1) A loop is abelian if and only if it is an abelian group.
(2) The congruence center corresponds to the Bruck's center.

Hence, nilpotent loops are really nilpotent loops!

## Translating to loops I

## Good news

(1) A loop is abelian if and only if it is an abelian group.
(2) The congruence center corresponds to the Bruck's center.

Hence, nilpotent loops are really nilpotent loops!
Nevertheless, supernilpotence is a stronger property.

## Translating to loops II

## Bad news

Abelian congruences $\not \equiv$ normal subloops that are abelian groups
$N$ is an abelian group iff $[N, N]_{N}=0$, i.e., $\left[1_{N}, 1_{N}\right]_{N}=0_{N}$
$N$ is abelian in $L$ iff $[N, N]_{L}=0$, i.e., $[\nu, \nu]_{L}=0_{L}$ abelian $\neq$ abelian in L!!!

Example: $L=\mathbb{Z}_{4} \times \mathbb{Z}_{2}$, redefine $(a, 1)+(b, 1)=(a * b, 0)$

| $*$ | 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 2 | 3 |
| 1 | 1 | 3 | 0 | 2 |
| 2 | 2 | 0 | 3 | 1 |
| 3 | 3 | 2 | 1 | 0 |

- $N=\mathbb{Z}_{4} \times\{0\} \unlhd L$
- $N$ is an abelian group
- $[N, N]_{L}=N$, hence $N$ is not abelian in $L$


## Two notions of solvability

$L$ is Bruck-solvable if there are $N_{i} \unlhd L$ such that $1=N_{0} \leq N_{1} \leq \ldots \leq N_{k}=L$ and $N_{i+1} / N_{i}$ are abelian groups
(i.e. $\left[N_{i+1}, N_{i+1}\right]_{N_{i+1}} \leq N_{i}$ )
$L$ is congruence-solvable if there are $N_{i} \unlhd L$ such that $1=N_{0} \leq N_{1} \leq \ldots \leq N_{k}=L$ and $N_{i+1} / N_{i}$ are abelian in $L / N_{i}$
(i.e. $\left[N_{i+1}, N_{i+1}\right]_{L} \leq N_{i}$ )

The loop from the previous slide is

- Bruck-solvable
- NOT congruence-solvable


## Commutator in loops

$L_{a, b}=L_{a b}^{-1} L_{a} L_{b}, \quad R_{a, b}=R_{b a}^{-1} R_{a} R_{b}, \quad T_{a}=L_{a} R_{a}^{-1}$
$M_{a, b}=M_{b \backslash a}^{-1} M_{a} M_{b}, \quad U_{a}=R_{a}^{-1} M_{a}$
$\operatorname{TotMlt}(L)=\left\langle L_{a}, R_{a}, M_{a}: a \in L\right\rangle$
$\operatorname{TotInn}(L)=\operatorname{TotMlt}(L)_{1}=\left\langle L_{a, b}, R_{a, b}, T_{a}, M_{a, b}, U_{a}: a, b \in L\right\rangle$

## Main Theorem

$\mathcal{V}$ a variety of loops, $\Phi$ a set of words that generates Totlnn's in $\mathcal{V}$, then

$$
[\alpha, \beta]=C g\left(\left(\varphi_{u_{1}, \ldots, u_{n}}(a), \varphi_{v_{1}, \ldots, v_{n}}(a)\right): \varphi \in \Phi, 1 \alpha a, u_{i} \beta v_{i}\right)
$$

for every $L \in \mathcal{V}, \alpha, \beta \in \operatorname{Con}(L)$.

## Examples:

- in loops, $\Phi=\left\{L_{a, b}, R_{a, b}, M_{a, b}, T_{a}, U_{a}\right\}$
- in groups, $\Phi=\left\{T_{a}\right\}$


## Commutator in loops

$L_{a, b}=L_{a b}^{-1} L_{a} L_{b}, \quad R_{a, b}=R_{b a}^{-1} R_{a} R_{b}, \quad T_{a}=L_{a} R_{a}^{-1}$
$M_{a, b}=M_{b \backslash a}^{-1} M_{a} M_{b}, \quad U_{a}=R_{a}^{-1} M_{a}$
$\operatorname{TotMlt}(L)=\left\langle L_{a}, R_{a}, M_{a}: a \in L\right\rangle$
$\operatorname{TotInn}(L)=\operatorname{TotMlt}(L)_{1}=\left\langle L_{a, b}, R_{a, b}, T_{a}, M_{a, b}, U_{a}: a, b \in L\right\rangle$

## Main Theorem

$\mathcal{V}$ a variety of loops, $\Phi$ a set of words that generates Totlnn's in $\mathcal{V}$, then

$$
[\alpha, \beta]=C g\left(\left(\varphi_{u_{1}, \ldots, u_{n}}(a), \varphi_{v_{1}, \ldots, v_{n}}(a)\right): \varphi \in \Phi, 1 \alpha a, u_{i} \beta v_{i}\right)
$$

for every $L \in \mathcal{V}, \alpha, \beta \in \operatorname{Con}(L)$.

## Examples:

- in loops, $\Phi=\left\{L_{a, b}, R_{a, b}, M_{a, b}, T_{a}, U_{a}\right\}$
- in groups, $\Phi=\left\{T_{a}\right\}$
$[M, N]_{L}=N g\left(\varphi_{u_{1}, \ldots, u_{n}}(a) / \varphi_{v_{1}, \ldots, v_{n}}(a): \varphi \in \Phi, a \in M, u_{i} / v_{i} \in N\right)$


## Solvability and nilpotence summarized

> Mlt $(L)$ nilpotent
> $\Downarrow$ (trivial)
> Inn $(L)$ nilpotent
> $\Downarrow$ (Niemenmaa)
> $L$ nilpotent
> $\Downarrow$ (Bruck)
> Mlt $(L)$ solvable
> $\Downarrow$ (Vesanen)
> $L$ Bruck-solvable

Where to put " $L$ congruence-solvable" ?

## Solvability and nilpotence summarized

$\operatorname{Mlt}(L)$ nilpotent
$\Downarrow($ trivial $)$
$\operatorname{Inn}(L)$ nilpotent
$\Downarrow$ (Niemenmaa)
$L$ nilpotent
$\Downarrow$ (Bruck)
Mlt(L) solvable
$\Downarrow$ (Vesanen)
L Bruck-solvable

Where to put " $L$ congruence-solvable" ?
We know: stronger Vesanen fails.

## Problem

Let $L$ be a congruence-solvable loop. Is the group $\operatorname{Mlt}(L)$ solvable?

## Feit-Thompson revisited

## Theorem (Glauberman 1964/68)

Moufang loops of odd order are Bruck-solvable.

## Problem

Are Moufang loops of odd order congruence-solvable?

For Moufang loops,

- we know that abelian $\neq$ abelian in $L$ (in a 16-element loop)
- is it so that Bruck-solvable iff congruence-solvable?

