Commutator Theory for Loops

David Stanovský

Charles University, Prague, Czech Republic stanovsk@karlin.mff.cuni.cz

joint work with Petr Vojtěchovský, University of Denver

June 2013

Feit-Thompson theorem

Theorem (Feit-Thompson, 1962)

Groups of odd order are solvable.

Can be extended?

- To which *class of algebras* ? (containing groups)
- What is *odd order* ?
- What is *solvable* ?

Feit-Thompson theorem

Theorem (Feit-Thompson, 1962)

Groups of odd order are solvable.

Can be extended?

- To which class of algebras ? (containing groups)
- What is odd order ?
- What is *solvable* ?

Theorem (Glauberman 1964/68)

Moufang loops of odd order are solvable.

Moufang loop = replace associativity by x(z(yz)) = ((xz)y)z

solvable = there are $N_i \leq L$ such that $1 = N_0 \leq N_1 \leq ... \leq N_k = L$ and N_{i+1}/N_i are abelian groups.

Loops

A *loop* is an algebra $(L, \cdot, 1)$ such that

- 1x = x1 = x
- for every x, y there are unique u, v such that xu = y, vx = y

For universal algebra purposes: $(L, \cdot, \backslash, /, 1)$, where $u = x \backslash y$, v = y/x.

Examples:

- octonions → Moufang loops
- various other classes of weakly associative loops
- various combinatorial constructions, e.g., from Steiner triples systems, coordinatization of projective geometries, etc.

Loops

A *loop* is an algebra $(L, \cdot, 1)$ such that

- 1x = x1 = x
- for every x, y there are unique u, v such that xu = y, vx = y

For universal algebra purposes: $(L, \cdot, \backslash, /, 1)$, where $u = x \backslash y$, v = y/x.

Examples:

- octonions → Moufang loops
- various other classes of weakly associative loops
- various combinatorial constructions, e.g., from Steiner triples systems, coordinatization of projective geometries, etc.

Normal subloops \leftrightarrow congruences

- = kernels of a homomorphisms
- = subloops invariant with respect to Inn(L)

 $\operatorname{Inn}(L) = \operatorname{Mlt}(L)_1, \qquad \operatorname{Mlt}(L) = \langle L_a, R_a : a \in L \rangle$

Solvability, nilpotence - after R. H. Bruck Bruck's approach (1950's), by direct analogy to group theory:

L is *solvable* if there are $N_i \leq L$ such that $1 = N_0 \leq N_1 \leq ... \leq N_k = L$ and N_{i+1}/N_i are abelian groups.

L is *nilpotent* if there are $N_i \leq L$ such that $1 = N_0 \leq N_1 \leq ... \leq N_k = L$ and $N_{i+1}/N_i \leq Z(L/N_i)$.

 $Z(L) = \{a \in L : ax = xa, a(xy) = (ax)y, (xa)y = x(ay) \forall x, y \in L\}$

Solvability, nilpotence - after R. H. Bruck Bruck's approach (1950's), by direct analogy to group theory:

L is *solvable* if there are $N_i \leq L$ such that $1 = N_0 \leq N_1 \leq ... \leq N_k = L$ and N_{i+1}/N_i are abelian groups.

L is *nilpotent* if there are $N_i \leq L$ such that $1 = N_0 \leq N_1 \leq ... \leq N_k = L$ and $N_{i+1}/N_i \leq Z(L/N_i)$.

$$Z(L) = \{a \in L : ax = xa, a(xy) = (ax)y, (xa)y = x(ay) \forall x, y \in L\}$$

Alternatively, define

$$L^{(0)} = L_{(0)} = L, \qquad L_{(i+1)} = [L_{(i)}, L_{(i)}], \qquad L^{(i+1)} = [L^{(i)}, L]$$

- L solvable iff $L_{(n)} = 1$ for some n
- L nilpotent iff $L^{(n)} = 1$ for some n

Need commutator!

- [N, N] is the smallest M such that N/M is abelian
- [N, L] is the smallest M such that $N/M \le Z(L/M)$
- [*N*₁, *N*₂] is ???

Solvability, nilpotence - universal algebra way Commutator theory approach (1970's):

L is *solvable* if there are $\alpha_i \in \text{Con}(L)$ such that $0_L = \alpha_0 \le \alpha_1 \le \dots \le \alpha_k = 1_L$ and α_{i+1} is abelian over α_i . *L* is *nilpotent* if there are $\alpha_i \in \text{Con}(L)$ such that

$$0_L = \alpha_0 \leq \alpha_1 \leq \ldots \leq \alpha_k = 1_L$$
 and $\alpha_{i+1}/\alpha_i \leq \zeta(L/\alpha_i)$.

 $\zeta(L)$ = the largest ζ such that $C(\zeta, 1_L; 0_L)$, i.e., $[\zeta, 1_L] = 0_L$.

Alternatively, define

$$\alpha^{(0)} = \alpha_{(0)} = 1_L, \qquad \alpha_{(i+1)} = [\alpha_{(i)}, \alpha_{(i)}], \qquad \alpha^{(i+1)} = [\alpha^{(i)}, 1_L]$$

- L solvable iff $\alpha_{(n)} = 1$ for some n
- L nilpotent iff $\alpha^{(n)} = 1$ for some n

We have a commutator!

- $[\alpha,\alpha]$ is the smallest β such that α/β is abelian
- $[\alpha, 1_L]$ is the smallest β such that $\alpha/\beta \leq \zeta(L/\beta)$
- $[\alpha, \beta]$ is the smallest δ such that $C(\alpha, \beta; \delta)$

Translating to loops I

Good news

- A loop is abelian if and only if it is an abelian group.
- **2** The congruence center corresponds to the Bruck's center.

Hence, nilpotent loops are really nilpotent loops!

Translating to loops I

Good news

- A loop is abelian if and only if it is an abelian group.
- **2** The congruence center corresponds to the Bruck's center.

Hence, nilpotent loops are really nilpotent loops!

Nevertheless, supernilpotence is a stronger property.

Translating to loops II

Bad news

Abelian congruences \neq normal subloops that are abelian groups

N is an abelian group iff $[N, N]_N = 0$, i.e., $[1_N, 1_N]_N = 0_N$ N is abelian in L iff $[N, N]_L = 0$, i.e., $[\nu, \nu]_L = 0_L$ abelian \neq abelian in L !!!

Example: $L = \mathbb{Z}_4 \times \mathbb{Z}_2$, redefine (a, 1) + (b, 1) = (a * b, 0)

*	0	1	2	3
0	0	1	2	3
1	1	3	0	2
2	2	0	3	1
3	3	2	1	0

- $N = \mathbb{Z}_4 \times \{0\} \trianglelefteq L$
- N is an abelian group
- $[N, N]_L = N$, hence N is not abelian in L

Two notions of solvability

L is *Bruck-solvable* if there are $N_i \subseteq L$ such that $1 = N_0 \leq N_1 \leq ... \leq N_k = L$ and N_{i+1}/N_i are *abelian groups* (i.e. $[N_{i+1}, N_{i+1}]_{N_{i+1}} \leq N_i$)

L is *congruence-solvable* if there are $N_i \leq L$ such that $1 = N_0 \leq N_1 \leq ... \leq N_k = L$ and N_{i+1}/N_i are *abelian in* L/N_i (i.e. $[N_{i+1}, N_{i+1}]_L \leq N_i$)

The loop from the previous slide is

- Bruck-solvable
- NOT congruence-solvable

Commutator in loops

$$\begin{split} L_{a,b} &= L_{ab}^{-1} L_a L_b, \qquad R_{a,b} = R_{ba}^{-1} R_a R_b, \qquad T_a = L_a R_a^{-1} \\ M_{a,b} &= M_{b\setminus a}^{-1} M_a M_b, \qquad U_a = R_a^{-1} M_a \\ \text{TotMlt}(L) &= \langle L_a, R_a, M_a : a \in L \rangle \\ \text{TotInn}(L) &= \text{TotMlt}(L)_1 = \langle L_{a,b}, R_{a,b}, T_a, M_{a,b}, U_a : a, b \in L \rangle \end{split}$$

Main Theorem

 \mathcal{V} a variety of loops, Φ a set of words that generates TotInn's in \mathcal{V} , then $[\alpha, \beta] = Cg((\varphi_{u_1,...,u_n}(a), \varphi_{v_1,...,v_n}(a)) : \varphi \in \Phi, \ 1 \alpha a, \ u_i \beta v_i)$ for every $L \in \mathcal{V}, \ \alpha, \beta \in Con(L)$.

Examples:

• in loops,
$$\Phi = \{L_{a,b}, R_{a,b}, M_{a,b}, T_a, U_a\}$$

• in groups,
$$\Phi = \{T_a\}$$

Commutator in loops

$$\begin{split} L_{a,b} &= L_{ab}^{-1} L_a L_b, \qquad R_{a,b} = R_{ba}^{-1} R_a R_b, \qquad T_a = L_a R_a^{-1} \\ M_{a,b} &= M_{b\setminus a}^{-1} M_a M_b, \qquad U_a = R_a^{-1} M_a \\ \text{TotMlt}(L) &= \langle L_a, R_a, M_a : a \in L \rangle \\ \text{TotInn}(L) &= \text{TotMlt}(L)_1 = \langle L_{a,b}, R_{a,b}, T_a, M_{a,b}, U_a : a, b \in L \rangle \end{split}$$

Main Theorem

 \mathcal{V} a variety of loops, Φ a set of words that generates TotInn's in \mathcal{V} , then $[\alpha, \beta] = Cg((\varphi_{u_1,...,u_n}(a), \varphi_{v_1,...,v_n}(a)) : \varphi \in \Phi, \ 1 \alpha a, \ u_i \beta v_i)$ for every $L \in \mathcal{V}, \ \alpha, \beta \in Con(L)$.

Examples:

- in loops, $\Phi = \{L_{a,b}, R_{a,b}, M_{a,b}, T_a, U_a\}$
- in groups, $\Phi = \{T_a\}$

 $[M,N]_L = Ng(\varphi_{u_1,\ldots,u_n}(a)/\varphi_{v_1,\ldots,v_n}(a): \varphi \in \Phi, a \in M, u_i/v_i \in N)$

Solvability and nilpotence summarized Mlt(L) nilpotent \Downarrow (trivial) Inn(L) nilpotent \Downarrow (Niemenmaa) L nilpotent \Downarrow (Bruck) Mlt(L) solvable \Downarrow (Vesanen) L Bruck-solvable

Where to put "L congruence-solvable" ?

Solvability and nilpotence summarized Mlt(*L*) nilpotent \Downarrow (trivial) Inn(L) nilpotent \Downarrow (Niemenmaa) L nilpotent \Downarrow (Bruck) Mlt(L) solvable \Downarrow (Vesanen) L Bruck-solvable

Where to put "L congruence-solvable" ?

We know: stronger Vesanen fails.

Problem

Let L be a congruence-solvable loop. Is the group Mlt(L) solvable?

Feit-Thompson revisited

Theorem (Glauberman 1964/68)

Moufang loops of odd order are Bruck-solvable.

Problem

Are Moufang loops of odd order congruence-solvable?

For Moufang loops,

- we know that abelian \neq abelian in L (in a 16-element loop)
- is it so that Bruck-solvable iff congruence-solvable?