# Combinatorial semigroups and induced/deduced operators 

G. Stacey Staples

Department of Mathematics and Statistics
Southern Illinois University Edwardsville

Particular groups \& semigroups

## Hypercube $\mathcal{Q}_{4}$



## Multi-index notation

- Let $[n]=\{1,2, \ldots, n\}$ and denote arbitrary, canonically ordered subsets of $[n]$ by capital Roman characters.
- $2^{[n]}$ denotes the power set of $[n]$.
- Elements indexed by subsets:

$$
\gamma_{J}=\prod_{j \in J} \gamma_{j}
$$

- Natural binary representation

Introduction
Operator Induction \& Reduction
Operator Calculus
Applications

Particular groups \& semigroups

## Modified hypercubes



Introduction
Operator Induction \& Reduction
Operator Calculus
Applications

Particular groups \& semigroups

## Modified hypercubes



## Special elements

- $\gamma_{\emptyset}$ (identity)
- $\gamma_{\alpha}$ (commutes with generators, $\gamma_{\alpha}{ }^{2}=\gamma_{\emptyset}$ )
- $0_{\gamma}$ ("absorbing element" or "zero" )
- "Special" elements do not contribute to Hamming weight.


## Groups

- Nonabelian - $\mathcal{B}_{p, q}$ "Blade group" (Clifford Lipschitz groups)

$$
\text { - } \gamma_{i} \gamma_{j}=\gamma_{\alpha} \gamma_{j} \gamma_{i}(1 \leq i \neq j \leq p+q)
$$

- 

$$
\gamma_{i}^{2}= \begin{cases}\gamma_{\emptyset} & 1 \leq i \leq p \\ \gamma_{\alpha} & p+1 \leq i \leq p+q\end{cases}
$$

- Abelian $-\mathcal{B}_{p, q}$ sum "Abelian blade group"
- $\gamma_{i} \gamma_{j}=\gamma_{j} \gamma_{i}(1 \leq i \neq j \leq p+q)$

$$
\gamma_{i}^{2}= \begin{cases}\gamma_{\emptyset} & 1 \leq i \leq p, \\ \gamma_{\alpha} & p+1 \leq i \leq p+q\end{cases}
$$

## Semigroups

- Nonabelian - "Null blade semigroup" $\mathfrak{Z n}_{n}$
- $\gamma_{i} \gamma_{j}=\gamma_{\alpha} \gamma_{j} \gamma_{i}(1 \leq i \neq j \leq n)$
- 

$$
\gamma_{i}^{2}= \begin{cases}0 & 1 \leq i \leq n \\ \gamma_{\emptyset} & i=\alpha\end{cases}
$$

- Abelian - "Zeon semigroup" $\mathfrak{Z}^{\text {sym }}$
- $\gamma_{i} \gamma_{j}=\gamma_{j} \gamma_{i}(1 \leq i \neq j \leq n)$

$$
\gamma_{i}^{2}= \begin{cases}0 & 1 \leq i \leq n \\ \gamma_{\emptyset} & i=\emptyset\end{cases}
$$

## Passing to semigroup algebra:

- Canonical expansion of arbitrary $u \in \mathcal{A}$ :

$$
\begin{aligned}
u & =\sum_{J \in 2^{[n] \cup\{\alpha\}}} u_{J} \gamma_{J} \\
& =\sum_{J \in 2^{[n]}} u_{J}^{+} \gamma_{J}+\gamma_{\alpha} \sum_{J \in 2^{[n]}} u_{J}^{-} \gamma_{J} .
\end{aligned}
$$

- Naturally graded by Hamming weight (cardinality of $J$ ).

| Group or <br> Semigroup | Quotient | Isomorphic |
| :---: | :---: | :---: |
| $\mathcal{B}_{p, q}$ | $\mathbb{R} \mathcal{B}_{p, q} /\left\langle\gamma_{\alpha}+\gamma_{\emptyset}\right\rangle$ | $\mathcal{C} \ell_{p, q}$ |
| $\mathcal{B}_{p, q}$ sym | $\mathbb{R} \mathcal{B}_{p, q}$ sym $/\left\langle\gamma_{\alpha}+\gamma_{\emptyset}\right\rangle$ | $\mathcal{C} \ell_{p, q}{ }^{\text {sym }}$ |
| $\mathcal{Z}_{n}$ | $\mathbb{R} \mathfrak{Z}_{n} /\left\langle 0_{\gamma}, \gamma_{\alpha}+\gamma_{\emptyset}\right\rangle$ | $\bigwedge_{\mathbb{R}^{n}}$ |
| $\mathfrak{Z}_{n}{ }^{\text {sym }}$ | $\mathbb{R} \mathfrak{Z}_{n}{ }^{\text {sm }} /\left\langle 0_{\gamma}\right\rangle$ | $\mathcal{C} \ell_{n}{ }^{\text {nil }}$ |

## Idea: Induced Operators

(1) Let $V$ be the vector space spanned by generators $\left\{\gamma_{j}\right\}$ of (semi)group $\mathcal{S}$.
(2) Let $A$ be a linear operator on $V$.
(3) A naturally induces an operator $\mathfrak{A}$ on the semigroup algebra $\mathbb{R} \mathcal{S}$ according to action (multiplication, conjugation, etc.) on $\mathcal{S}$.

- $\mathfrak{A}\left(\gamma_{J}\right):=\prod_{j \in J} \boldsymbol{A}\left(\gamma_{j}\right)$


## The Clifford algebra $\mathcal{C} \ell_{p, q}$

(1) Real, associative algebra of dimension $2^{n}$.
(2) Generators $\left\{\mathbf{e}_{i}: 1 \leq i \leq n\right\}$ along with the unit scalar $\mathbf{e}_{\emptyset}=1 \in \mathbb{R}$.
(3) Generators satisfy:

- $\left[\mathbf{e}_{i}, \mathbf{e}_{j}\right]:=\mathbf{e}_{i} \mathbf{e}_{j}+\mathbf{e}_{j} \mathbf{e}_{i}=0$ for $1 \leq i \neq j \leq n$,

$$
\mathbf{e}_{i}{ }^{2}= \begin{cases}1 & \text { if } 1 \leq i \leq p \\ -1 & \text { if } p+1 \leq i \leq p+q .\end{cases}
$$

Operator Calculus
Applications

## Rotations \& Reflections: $x \mapsto u v x v u$



## Hyperplane Reflections

(1) Product of orthogonal vectors is a blade.
(2) Given unit blade $\mathfrak{u} \in \mathcal{C} l_{Q}(V)$, where $Q$ is positive definite.
( The map $\mathbf{x} \mapsto u \mathbf{x} u^{-1}$ represents a composition of hyperplane reflections across pairwise-orthogonal hyperplanes.
(0) This is group action by conjugation.
(0. Each vertex of the hypercube underlying the Cayley graph corresponds to a hyperplane arrangement.

## Blade conjugation

(1) $\mathfrak{u} \in \mathcal{B} \ell_{p, q} \simeq \mathcal{C} \ell_{Q}(V)$ a blade.
(2) $\Phi_{\mathfrak{u}}(\mathbf{x}):=\mathfrak{u} \mathbf{x} \mathfrak{u}^{-1}$ is a $Q$-orthogonal transformation on $V$.
(3) $\Phi_{\mathfrak{u}}$ induces $\varphi_{\mathfrak{u}}$ on $\mathcal{C} \ell_{Q}(V)$.
(4) The operators are self-adjoint w.r.t. $\langle\cdot, \cdot\rangle_{Q}$; i.e., they are quantum random variables.
(5) Characteristic polynomial of $\Phi_{\mathfrak{u}}$ generates Kravchuk polynomials.

## Blade conjugation

(1) Conjugation operators allow factoring of blades.

- Eigenvalues $\pm 1$
- Basis for each eigenspace provides factorization of corresponding blade.
(2) Quantum random variables obtained at every level of induced operators.
- $\varphi^{(\ell)}$ is self-adjoint w.r.t. $Q$-inner product for each $\ell=1, \ldots, n$.
(3) Kravchuk polynomials appear in traces at every level.
(9) Kravchuk matrices represent blade conjugation operators (in most cases ${ }^{1}$ ).

[^0]
## More generally...

(1) Suppose $X$ is a linear operator on $V$.
(2) Suppose $I, J \in 2^{|V|}$ with $|I|=|J|=\ell$.
(3) Then, $\left\langle v_{\|}\right| \mathfrak{X}^{(\ell)}\left|v_{J}\right\rangle=\operatorname{det}\left(X_{I J}\right)$.

- Here, $X_{I J}$ is the submatrix of $X$ formed from the rows indexed by $I$ and the columns indexed by $J$.
- This holds for $\mathcal{C} \ell_{Q}(V)$ as well as $\wedge V$. In the latter case, $\mathfrak{X}$ is block diagonal.


## The zeon algebra $\mathcal{C} \ell_{n}^{\text {nil }}$

(1) Real, associative algebra of dimension $2^{n}$.
(2) Generators $\left\{\zeta_{i}: 1 \leq i \leq n\right\}$ along with the unit scalar $\zeta_{\emptyset}=1 \in \mathbb{R}$.
(3) Generators satisfy:

- $\left[\zeta_{i}, \zeta_{j}\right]:=\zeta_{i} \zeta_{j}-\zeta_{j} \zeta_{i}=0$ for $1 \leq i, j \leq n$,
- $\zeta_{i} \zeta_{j}=0 \Leftrightarrow i=j$.


## Zeons

(1) Applications in combinatorics, graph theory, quantum probability explored in monograph by Schott \& Staples ${ }^{2}$. Based on papers by Staples and joint work with Schott.
(2) Induced maps appear in work by Feinsilver \& McSorley ${ }^{3}$

[^1]
## Adjacency matrices

(0) Let $G=(V, E)$ be a graph on $n$ vertices.
(2) Let $A$ denote the adjacency matrix of $G$, viewed as a linear transformation on the vector space generated by $V=\left\{v_{1}, \ldots, v_{n}\right\}$.
(3) $\mathfrak{A}^{(k)}$ denotes the multiplication-induced operator on the grade-k subspace of the semigroup algebra $\mathcal{C} \ell v^{\text {nil }}$.

## Theorem

For fixed subset $I \subseteq V$, let $X$, denote the number of disjoint cycle covers of the subgraph induced by I. Similarly, let $M_{J}$ denote the number of perfect matchings on the subgraph induced by $J \subseteq V$ (nonzero only for $J$ of even cardinality). Then,

$$
\operatorname{tr}\left(\mathfrak{A}^{(k)}\right)=\sum_{\substack{l \subset V \\| |=k}} \sum_{J \subseteq I} x_{\backslash \backslash} M_{J} .
$$

## Sketch of Proof

(1) $\left\langle v_{J}\right| \mathfrak{A}^{(k)}\left|v_{J}\right\rangle=\operatorname{per}\left(A_{J}+\mathcal{I}\right)$, where $A_{J}$ is the adjacency matrix of the subgraph induced by $v_{J}$.
(2) $\operatorname{per}\left(A_{J}+\mathcal{I}\right):=\sum_{\sigma \in S_{\mid J}} \prod_{j=1}^{|J|} a_{j \sigma(j)}$
(3) Each permutation has a unique factorization into disjoint cycles. Each product of 2-cycles corresponds to a perfect matching on a subgraph. Cycles of higher order in $\mathrm{S}_{|J|}$ correspond to cycles in the graph.

## Generating Function

Let $A$ be the adjacency matrix of a graph. Letting $f(t):=\operatorname{per}(A+t \mathcal{I})$, one finds that the coefficient of $t^{n-k}$ satisfies

$$
\left\langle f(t), t^{(n-k)}\right\rangle=\operatorname{tr}\left(\mathfrak{A}^{(k)}\right)
$$

Hence,

$$
f^{(n-k)}(0)=(n-k)!\operatorname{tr}\left(\mathfrak{A}^{(k)}\right)
$$

## Nilpotent Adjacency Operator

Let $G=(V, E)$ be a graph on $n$ vertices, and let $A$ be the adjacency matrix of $G$.
(1) $\left\{\zeta_{i}: 1 \leq i \leq n\right\}$ generators of $\mathcal{C} \ell_{n}{ }^{\text {nil }}$.
(2) The nilpotent adjacency operator associated with $G$ is an operator $\mathfrak{A}$ on $\left(\mathcal{C} \ell_{n}{ }^{\text {nil }}\right)^{n}$ induced by $A$ via

$$
\left\langle v_{i}\right| \mathfrak{A}\left|v_{j}\right\rangle=\left\{\begin{array}{l}
\zeta_{j} \text { if }\left(v_{i}, v_{j}\right) \in E(G) \\
0 \text { otherwise }
\end{array}\right.
$$

## Form of $\mathfrak{A}^{k}$

## Theorem

Let $\mathfrak{A}$ be the nilpotent adjacency operator of an n-vertex graph
G. For any $k>1$ and $1 \leq i, j \leq n$,

$$
\begin{equation*}
\left\langle v_{i}\right| \mathfrak{A}\left|v_{j}\right\rangle=\sum_{\substack{i \in v \\|l|=k}} \omega_{l} \zeta \mid, \tag{1}
\end{equation*}
$$

where $\omega_{\text {l }}$ denotes the number of $k$-step walks from $v_{i}$ to $v_{j}$ revisiting initial vertex $v_{i}$ exactly once when $i \in I$ and visiting each vertex in I exactly once when $i \notin I$.

## Idea

(1) $\mathfrak{A}$ is represented by a nilpotent adjacency matrix.
(2) Powers of the nilpotent adjacency matrix "sieve-out" the self-avoiding structures in the graph.
(3) "Automatic pruning" of tree structures.

Induced Operators

* Operators on Clifford algebras
* Operators on zeons

Reduced / Deduced Operators

## Example


$\left(\begin{array}{cccccccc}0 & \zeta_{\{2\}} & 0 & \zeta_{\{4\}} & 0 & 0 & 0 & 0 \\ \zeta_{\{1\}} & 0 & 0 & 0 & 0 & \zeta_{\{6\}} & \zeta_{\{7\}} & 0 \\ 0 & 0 & 0 & 0 & \zeta_{\{5\}} & \zeta_{\{6\}} & 0 & 0 \\ \zeta_{\{1\}} & 0 & 0 & 0 & \zeta_{\{5\}} & 0 & \zeta_{\{7\}} & \zeta_{\{8\}} \\ 0 & 0 & \zeta_{\{3\}} & \zeta_{\{4\}} & 0 & 0 & 0 & \zeta_{\{8\}} \\ 0 & \zeta_{\{2\}} & \zeta_{\{3\}} & 0 & 0 & 0 & 0 & \zeta_{\{8\}} \\ 0 & \zeta_{\{2\}} & 0 & \zeta_{\{4\}} & 0 & 0 & 0 & \zeta_{\{8\}} \\ 0 & 0 & 0 & \zeta_{\{4\}} & \zeta_{\{5\}} & \zeta_{\{6\}} & \zeta_{\{7\}} & 0\end{array}\right)$

## Cycles from $\mathfrak{A}^{k}$

## Corollary

For any $k \geq 3$ and $1 \leq i \leq n$,

$$
\begin{equation*}
\left\langle v_{i}\right| \mathfrak{A}^{k}\left|v_{i}\right\rangle=\sum_{\substack{i \backslash V \\| | \mid=k}} \xi_{l} \zeta_{l}, \tag{2}
\end{equation*}
$$

where $\xi_{\text {I }}$ denotes the number of $k$-cycles on vertex set I based at $i \in I$.

## Flexibility

(1) Convenient for symbolic computation
(2) Easy to consider other self-avoiding structures (trails, circuits, partitions, etc.)
(3) Extends to random graphs, Markov chains, etc.
(4) Sequences of operators model graph processes
(5) The operators themselves generate finite semigroups.

## Idea: Reduced Operators

(1) Consider operator $\mathfrak{A}$ on the semigroup algebra $\mathbb{R} \mathcal{S}$.
(2) Let $V$ be the vector space spanned by generators $\left\{\gamma_{j}\right\}$ of (semi)group $\mathcal{S}$.
(3) If $\mathfrak{A}$ is induced by an operator $A$ on $V$, then $A=\left.\mathfrak{A}\right|_{V}$ is the operator on $V$ deduced from $\mathfrak{A}$.
(9) Let $V_{*}=\mathbb{R} \oplus V$ be the paravector space associated with $V$.
(0) $\mathfrak{A}$ naturally reduces by grade to an operator $A^{\prime}$ on $V_{*}$.

## Grade-reduced operators

(1) Paravector space $V_{*}=\mathbb{R} \oplus V$ spanned by ordered basis $\left\{\varepsilon_{0}, \ldots, \varepsilon_{n}\right\}$
(2) Operator $A$ on $V_{*}=\mathbb{R} \oplus V$ is grade-reduced from $\mathfrak{A}$ if its action on the basis of $V_{*}$ satisfies

$$
\left\langle\varepsilon_{i}\right| A\left|\varepsilon_{j}\right\rangle=\sum_{\substack{\mathfrak{a}=i \\ \mathfrak{z b}=j}}\langle\mathfrak{a}| \mathfrak{A}|\mathfrak{b}\rangle,
$$

where the sum is taken over blades in some fixed basis of $\mathbb{R} \mathcal{S}$. Write $\mathfrak{A} \searrow A$.

## Properties \& Interpretation

(1) In $\mathcal{C} \ell_{Q}(V)$, Kravchuk matrices and symmetric Kravchuk matrices arise.
(2) Over zeons, graph-theoretic interpretations arise. Suppose $A$ is the adjacency matrix of graph $G$ and that $A \nearrow \mathfrak{A} \searrow A^{\prime}$. Then,

- $\left\langle\varepsilon_{k}\right| A^{\prime}\left|\varepsilon_{k}\right\rangle=\operatorname{tr}\left(\mathfrak{A}^{(k)}\right)=\sum_{\substack{l \subset V \\ \mid \|=k}} \sum_{J \subseteq I} X_{\Lambda \backslash J} M_{J}$.
- $\operatorname{tr}\left(A^{\prime}\right)=\sum_{k=0}^{n} \sum_{\substack{|\subset V\\| \|=k}} \sum_{J \subseteq I} X_{\Lambda \backslash J} M_{J}$


## Operator Calculus (OC)

(1) Lowering operator $\wedge$

- differentiation
- annihilation
- deletion
(2) Raising operator $\equiv$
- integration
- creation
- addition/insertion


## Raising \& Lowering



## OC \& Clifford multiplication

(1) Left lowering $\left.\Lambda_{\mathrm{x}}: u \mapsto \mathbf{x}\right\lrcorner u$
(2) Right lowering $\hat{\Lambda}_{\mathbf{x}}: u \mapsto u\llcorner\mathbf{x}$
(3) Left raising $\Xi_{\mathrm{x}}: u \mapsto \mathbf{x} \wedge u$
(9) Right raising $\hat{\overline{\bar{X}}} \mathbf{x}: u \mapsto u \wedge \mathbf{x}$
(0) Clifford product satisfies

$$
\begin{aligned}
\mathbf{x} u & =\Lambda_{\mathbf{x}} \mathbf{u}+\hat{\bar{\Xi}}_{\mathrm{x}} u \\
u \mathbf{x} & =\hat{\Lambda}_{\mathbf{x}} \mathbf{u}+\bar{\Xi}_{\mathbf{x}} u
\end{aligned}
$$

## OC \& blade conjugation

(1) Given a blade $\mathfrak{u} \in \mathcal{C} \ell_{Q}(V)$;
(2) Extend lowering, raising by associativity to blades, i.e., $\Lambda_{u}$, $\bar{\Xi}_{u}$, etc.
(3) Operator calculus (OC) representation of conjugation operator $\varphi_{\mathfrak{u}}, x \mapsto \mathfrak{u x u}{ }^{-1}$, is

$$
\varphi_{u} \simeq \Lambda_{u} \bar{\Xi}_{u^{-1}}+\hat{\bar{\Xi}}_{u^{\prime}} \hat{\Lambda}_{u^{-1}} .
$$

## Motivation

## Graphs $\rightarrow$ Algebras

Processes on Algebras $\rightarrow$ Processes on Graphs

## Random walks \& stochastic processes

( Walks on hypercubes $\leftrightarrow$ addition-deletion processes on graphs
(2) Walks on "signed hypercubes" $\leftrightarrow$ multiplicative processes on Clifford algebras

## Random walks \& stochastic processes

(1) Partition-dependent stochastic integrals. (Staples, Schott \& Staples)
(2) Random walks on hypercubes can be modeled by raising and lowering operators. (Staples)
(3) Random walks in Clifford algebras (Schott \& Staples)

## Graph processes as algebraic processes

The idea is to encode the entire process using (nilpotent) adjacency operators and use projections to recover information about graphs at different steps of the process:

- Expected numbers of cycles
- Probability of connectedness
- Expected numbers of spanning trees
- Determine size of maximally connected components
- Expected time at which graph becomes connected/disconnected
- Limit theorems


## Addition-deletion processes via hypercubes

(1) Graph $\mathcal{G}_{[n]}$ on vertex set $V=[n]$ with predetermined topology.
(2) Markov chain $\left(X_{k}\right)$ on power set of $V$.

- Family of functions $f_{\ell}: 2^{[n]} \rightarrow[0,1]$ such that for each $I \in 2^{[n]}$,

$$
\sum_{\ell=1}^{n} f_{\ell}(I)=1
$$

- 

$$
\mathbb{P}\left(X_{k}=I \mid X_{k-1}=J\right)= \begin{cases}f_{\ell}(J) & I \triangle J=\{\ell\} \\ 0 & \text { otherwise } .\end{cases}
$$

## Walks on $\mathcal{Q}_{n}$

(1) Walk on $\mathcal{Q}_{n}$ corresponds to graph process $\left(\mathcal{G}\left(U_{n}\right): n \in \mathbb{N}_{0}\right)$.
(2) Each vertex of $\mathcal{Q}_{n}$ is uniquely identified with a graph.
(3) Adding a vertex corresponds to combinatorial raising.
4. Deleting a vertex corresponds to combinatorial lowering.

## Addition-deletion processes via hypercubes

(1) Corresponds to Markov chain $\left(\xi_{t}\right)$ on a commutative algebra by $U \mapsto \varsigma U$, with multiplication $\varsigma U \varsigma v=\varsigma U \Delta V$.
(2) Markov chain induced on the state space of all vertex-induced subgraphs. I.e.,

$$
\mathcal{S}=\{\mathcal{G} U: U \subseteq V\}
$$

(3) Let $\Psi_{U}$ denote the nilpotent adjacency operator of the graph $\mathcal{G} u$.

## Addition-deletion processes via hypercubes

(1) Well-defined mapping $\varsigma_{U} \mapsto \varsigma_{U} \Psi_{U}$
(2) Expected value at time $\ell$ :

$$
\left\langle\xi_{\ell}\right\rangle=\sum_{U \in 2^{[n]}} \mathbb{P}\left(\xi_{\ell}=\varsigma U\right) \varsigma U
$$

(3) Define notation:

$$
\Psi_{\left\langle\xi_{\ell}\right\rangle} \sum_{U \in 2^{[n]}} \mathbb{P}\left(\xi_{\ell}=\varsigma_{U}\right) \varsigma_{U} \Psi_{U}
$$

## Paths Lemma

Given vertices $v_{i}, v_{j} \in V$, the expected number of $k$-paths $v_{i}$ to $v_{j}$ at time $\ell$ in the addition-deletion process $\left(\mathcal{G}_{t}\right)$ is given by

$$
\mathbb{E}\left(\mid\left\{k \text {-paths } v_{i} \rightarrow v_{j} \text { at time } \ell\right\} \mid\right)=\zeta_{\{i\}} \sum_{U \in 2^{[n]}}\left\langle v_{i}\right|\left\langle\psi_{\left\langle\xi_{\ell}\right\rangle}, s u\right\rangle^{k}\left|v_{j}\right\rangle .
$$

## Networks

- Wireless sensor networks (Ben Slimane, Nefzi, Schott, \& Song)
- Satellite communications (w. Cruz-Sánchez, Schott, \& Song)
- Mobile ad-hoc networks


## Satellite communications



## Shortest Paths: Motivation

- Goal: To send a data packet from node $v_{\text {initial }}$ to node $v_{\text {term }}$ quickly and reliably.
- In order to route the packet efficiently, you need to know something about the paths from $v_{\text {initial }}$ to $v_{\text {term }}$ in the graph.
- When the graph is changing, a sequence of nilpotent adjacency operators can be used. ${ }^{4}$

[^2]
## To be continued...

THANKS FOR YOUR ATTENTION!

## More on Clifford algebras, operator calculus, and stochastic processes

- http://www.siue.edu/~sstaple


## More on Clifford algebras, graph theory, and stochastic processes

- R. Schott, G.S. Staples. Operator calculus and invertible Clifford Appell systems: theory and application to the n-particle fermion algebra, Infinite Dimensional Analysis, Quantum Probability and Related Topics, 16 (2013), dx.doi.org/10.1142/S0219025713500070.
- H. Cruz-Sánchez, G.S. Staples, R. Schott, Y-Q. Song, Operator calculus approach to minimal paths:
Precomputed routing in a store-and-forward satellite constellation, Proceedings of IEEE Globecom 2012, Anaheim, USA, December 3-7, 3438-3443.


## More on Clifford algebras, graph theory, and stochastic processes

- G. Harris, G.S. Staples. Spinorial formulations of graph problems, Advances in Applied Clifford Algebras, 22 (2012), 59-77.
- R. Schott, G.S. Staples, Complexity of counting cycles using zeons, Computers and Mathematics with Applications, 62 (2011), 1828-1837.
- R. Schott, G.S. Staples. Connected components and evolution of random graphs: an algebraic approach, J. Alg. Comb., 35 (2012), 141-156.
- R. Schott, G.S. Staples. Nilpotent adjacency matrices and random graphs, Ars Combinatoria, 98 (2011), 225-239.


## More on Clifford algebras, graph theory, and stochastic processes

- R. Schott, G.S. Staples. Zeons, lattices of partitions, and free probability, Comm. Stoch. Anal., 4 (2010), 311-334.
- R. Schott, G.S. Staples. Operator homology and cohomology in Clifford algebras, Cubo, A Mathematical Journal, 12 (2010), 299-326.
- R. Schott, G.S. Staples. Dynamic geometric graph processes: adjacency operator approach, Advances in Applied Clifford Algebras, 20 (2010), 893-921.
- R. Schott, G.S. Staples. Dynamic random walks in Clifford algebras, Advances in Pure and Applied Mathematics, 1 (2010), 81-115.


## More on Clifford algebras, graph theory, and stochastic processes

- R. Schott, G.S. Staples. Reductions in computational complexity using Clifford algebras, Advances in Applied Clifford Algebras, 20 (2010), 121-140.
- G.S. Staples. A new adjacency matrix for finite graphs, Advances in Applied Clifford Algebras, 18 (2008), 979-991.
- R. Schott, G.S. Staples. Nilpotent adjacency matrices, random graphs, and quantum random variables, Journal of Physics A: Mathematical and Theoretical, 41 (2008), 155205.
- R. Schott, G.S. Staples. Random walks in Clifford algebras of arbitrary signature as walks on directed hypercubes, Markov Processes and Related Fields, 14 (2008), 515-542.


## More on Clifford algebras, graph theory, and stochastic processes

- G.S. Staples. Norms and generating functions in Clifford algebras, Advances in Applied Clifford Algebras, 18 (2008), 75-92.
- R. Schott, G.S. Staples. Partitions and Clifford algebras, European Journal of Combinatorics, 29 (2008), 1133-1138.
- G.S. Staples. Graph-theoretic approach to stochastic integrals with Clifford algebras, Journal of Theoretical Probability, 20 (2007), 257-274.


## More on Clifford algebras, graph theory, and stochastic processes

- R. Schott, G.S. Staples. Operator calculus and Appell systems on Clifford algebras, International Journal of Pure and Applied Mathematics, 31 (2006), 427-446.
- G.S. Staples. Clifford-algebraic random walks on the hypercube, Advances in Applied Clifford Algebras, 15 (2005), 213-232.


[^0]:    ${ }^{1}$ G.S. Staples, Kravchuk Polynomials \& Induced/Reduced Operators on Clifford Algebras, Preprint (2013).

[^1]:    ${ }^{2}$ Operator Calculus on Graphs (Theory and Applications in Computer Science), Imperial College Press, London, 2012
    ${ }^{3}$ P. Feinsilver, J. McSorley, Zeons, permanents, the Johnson scheme, and generalized derangements, International Journal of Combinatorics, vol. 2011, Article ID 539030, 29 pages, 2011. doi:10.1155/2011/539030

[^2]:    ${ }^{4}$ H. Cruz-Sánchez, G.S. Staples, R. Schott, Y-Q. Song, Operator calculus approach to minimal paths: Precomputed routing in a store-and-forward satellite constellation, Proceedings of IEEE Globecom 2012, Anaheim, USA, December 3-7, 3438-3443.

