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to a residuated `-monoid (L;∧,∨,�,→, 0, 1)
(Petr Hájek).
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The finite case

Theorem (A. Ciabattoni, G. Metcalfe, F. Montagna)

MTL-algebras form a variety,

which is generated by its totally ordered finite members.

One of the big issues of many-valued logics:

How can totally ordered finite MTL-algebras be described?
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Tomonoids
(E. Gabovich, J. J. Madden et al., ...)

We identify finite totally ordered MTL-algebras
with “c.p.f. tomonoids”:

Definition

(L;6,+, 0) is a totally ordered monoid, or tomonoid, if:

(T1) (L; +, 0) is a monoid;

(T2) 6 is a translation-invariant total order:
a 6 b implies a + c 6 b + c and c + a 6 c + b.

A tomonoid is called

commutative if + is commutative;

positive if 0 is the bottom element.

finitely generated if L is so as a monoid.
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Congruences and orders on free monoids

Consider the free monoid over n > 1 elements, (Nn; +, 0).

Let 6 be a translation-invariant, positive total order on Nn.

Then (Nn;6,+, 0) is a c.p.f. tomonoid.

Definition

A tomonoid that is a quotient of a tomonoid Nn is called
formally integral.

6 can be described by a positive cone on (Zn; +, 0),
making Zn a totally ordered Abelian group.

However: Not all tomonoids are formally integral.
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Preorders

Consider the free monoid over n elements, (Nn; +, 0).

Let 4 be a translation-invariant, positive total preorder on Nn.

Then the symmetrisation ≈ of 4 is a tomonoid congruence,
and (〈Nn〉≈;4,+, 〈0〉≈) is a c.p.f. tomonoid.

Theorem

All c.p.f. tomonoids arise in this way.

Indeed, given a monoid epimorphism Nn → L, we can pull back
the total order on L to Nn.

Question:
Can we describe 4 by means of something like a positive cone?
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Positive cone and direction cone

A translation-invariant, positive total order on Nn is called a
monomial order.

The describing positive cone is

C6 = {z ∈ Zn : a 6 b for any a, b ∈ Nn such that z = b− a.}

Definition

Let 4 be a translation-invariant, positive total preorder on Nn.
Then we call 4 a monomial preorder.

Moreover, the direction cone of 4 is

C4 = {z ∈ Zn : a 4 b for any a, b ∈ Nn such that z = b− a}.
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Direction cones

Theorem

C ⊆ Zn is the direction cone of a monomial preorder iff:

(C1) Let z ∈ Nn. Then z ∈ C and, if z 6= 0, −z /∈ C.

(C2) Let (x1, . . . , xk), k > 2, be an addable k-tuple of
elements of C. Then x1 + . . . + xk ∈ C.

(C3) For each z ∈ Zn, either z ∈ C or −z ∈ C.

(x1, . . . , xk) is addable if for i = 1, . . . , k

xi + . . . + xk P (x1 + . . . + xk) ∨ 0.
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Cone tomonoids

A monomial preorder 4 has a direction cone C4.

A direction cone defines in turn a monomial preorder:

Definition

Let C ⊆ Zn be a direction cone. Then the monomial preorder
induced by C is the smallest preorder 4C such that

(O) a 4C b for any a, b ∈ Nn such that b− a ∈ C.

The tomonoid represented by 4C is called a cone tomonoid.

4C4 is contained in 4, hence:

Theorem

Any c.p.f. tomonoid is the quotient of a cone tomonoid.
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Example

Let L be a tomonoid generated by a and b:

0 < a < b < 2a < a + b < 2b < 3a

< 2a + b < a + 2b = 4a < 1.

The monomial preorder 4 representing L.
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Example, ctd.

The direction cone of 4.



Example, ctd.

The cone tomonoid whose quotient is L.



Summary so far

I Any c.p.f. tomonoid is a quotient of a cone tomonoid.

I A cone tomonoid is specified by a direction cone,
which is a subset of a Zn subject to conditions
similar to the case of positive group cones.
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The finite case

Let (L;6,+, 0) be finite.

Drawback:

The direction cone describing L is infinite (unless L is trivial).

Solution:

Let ≈ be the congruence on Nn inducing the finite tomonoid L.

Then we choose S (“support”), a finite subset of Nn

having a non-empty intersection with each ≈-class.

We include into the direction cone only differences of
elements of S.



The finite case

Let (L;6,+, 0) be finite.

Drawback:

The direction cone describing L is infinite (unless L is trivial).

Solution:

Let ≈ be the congruence on Nn inducing the finite tomonoid L.

Then we choose S (“support”), a finite subset of Nn

having a non-empty intersection with each ≈-class.

We include into the direction cone only differences of
elements of S.



The finite case

Let (L;6,+, 0) be finite.

Drawback:

The direction cone describing L is infinite (unless L is trivial).

Solution:

Let ≈ be the congruence on Nn inducing the finite tomonoid L.

Then we choose S (“support”), a finite subset of Nn

having a non-empty intersection with each ≈-class.

We include into the direction cone only differences of
elements of S.



The finite case

Let (L;6,+, 0) be finite.

Drawback:

The direction cone describing L is infinite (unless L is trivial).

Solution:

Let ≈ be the congruence on Nn inducing the finite tomonoid L.

Then we choose S (“support”), a finite subset of Nn

having a non-empty intersection with each ≈-class.

We include into the direction cone only differences of
elements of S.



The finite case

Let (L;6,+, 0) be finite.

Drawback:

The direction cone describing L is infinite (unless L is trivial).

Solution:

Let ≈ be the congruence on Nn inducing the finite tomonoid L.

Then we choose S (“support”), a finite subset of Nn

having a non-empty intersection with each ≈-class.

We include into the direction cone only differences of
elements of S.



Example, again

The support of 4.



Example, ctd.

The direction f-cone of 4.



Summary

I Any finite c.p.f. tomonoid is a quotient
of an f-cone tomonoid.

I An f-cone tomonoid is specified by the pair (S,C), where
S, the support, is a finite P-ideal of Nn;
C, the f-cone, is a subset of the set of differences of
elements of S.

I The pairs (S,C) subject to certain conditions lead to an
f-cone tomonoid, and all f-cone tomonoids arise in this way.
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