Direction cones for the representation of tomonoids

Thomas Vetterlein

Department of Knowledge-Based Mathematical Systems, Johannes Kepler University (Linz)

June 2013

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Background (Lotfi Zadeh)

Fuzzy logic deals with (is supposed to deal with) vague properties:

Background (Lotfi Zadeh)

Fuzzy logic deals with (is supposed to deal with) vague properties:

<ロト <四ト <注入 <注下 <注下 <

Background (Lotfi Zadeh)

Fuzzy logic deals with (is supposed to deal with) vague properties:

The collection of vague propositions gives rise (is supposed to give rise) to a residuated ℓ -monoid $(L; \land, \lor, \odot, \rightarrow, 0, 1)$ (PETR HÁJEK).

《曰》 《聞》 《理》 《理》 三世

Algebras for fuzzy logic

We frequently deal with certain residuated *l*-monoids called MTL-algebras (LL. GODO, F. ESTEVA):

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Algebras for fuzzy logic

We frequently deal with certain residuated ℓ -monoids called MTL-algebras (LL. GODO, F. ESTEVA):

<ロ> (四) (四) (四) (日) (日)

æ

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

Theorem (A. Ciabattoni, G. Metcalfe, F. Montagna)

MTL-algebras form a variety,

which is generated by its totally ordered finite members.

Theorem (A. Ciabattoni, G. Metcalfe, F. Montagna)

MTL-algebras form a variety,

which is generated by its totally ordered finite members.

One of the big issues of many-valued logics: How can totally ordered finite MTL-algebras be described?

Tomonoids

(E. GABOVICH, J. J. MADDEN ET AL., ...)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

We identify finite totally ordered MTL-algebras with "c.p.f. tomonoids":

Tomonoids

(E. GABOVICH, J. J. MADDEN ET AL., ...)

We identify finite totally ordered MTL-algebras with "c.p.f. tomonoids":

Definition

 $(L;\leqslant,+,0)$ is a totally ordered monoid, or tomonoid, if:

(T1) (L; +, 0) is a monoid;

(T2) \leq is a translation-invariant total order: $a \leq b$ implies $a + c \leq b + c$ and $c + a \leq c + b$.

Tomonoids

(E. GABOVICH, J. J. MADDEN ET AL., ...)

We identify finite totally ordered MTL-algebras with "c.p.f. tomonoids":

Definition

 $(L;\leqslant,+,0)$ is a totally ordered monoid, or tomonoid, if:

(T1) (L; +, 0) is a monoid;

(T2) \leq is a translation-invariant total order: $a \leq b$ implies $a + c \leq b + c$ and $c + a \leq c + b$.

A tomonoid is called

commutative if + is commutative;

positive if 0 is the bottom element.

finitely generated if L is so as a monoid.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Consider the free monoid over $n \ge 1$ elements, $(\mathbb{N}^n; +, 0)$.

Consider the free monoid over $n \ge 1$ elements, $(\mathbb{N}^n; +, 0)$. Let \le be a translation-invariant, positive total order on \mathbb{N}^n . Then $(\mathbb{N}^n; \le, +, 0)$ is a c.p.f. tomonoid.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Consider the free monoid over $n \ge 1$ elements, $(\mathbb{N}^n; +, 0)$. Let \le be a translation-invariant, positive total order on \mathbb{N}^n . Then $(\mathbb{N}^n; \le, +, 0)$ is a c.p.f. tomonoid.

Definition

A tomonoid that is a quotient of a tomonoid \mathbb{N}^n is called formally integral.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Consider the free monoid over $n \ge 1$ elements, $(\mathbb{N}^n; +, 0)$. Let \le be a translation-invariant, positive total order on \mathbb{N}^n . Then $(\mathbb{N}^n; \le, +, 0)$ is a c.p.f. tomonoid.

Definition

A tomonoid that is a quotient of a tomonoid \mathbb{N}^n is called formally integral.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

 \leq can be described by a positive cone on $(\mathbb{Z}^n; +, 0)$, making \mathbb{Z}^n a totally ordered Abelian group.

Consider the free monoid over $n \ge 1$ elements, $(\mathbb{N}^n; +, 0)$. Let \le be a translation-invariant, positive total order on \mathbb{N}^n . Then $(\mathbb{N}^n; \le, +, 0)$ is a c.p.f. tomonoid.

Definition

A tomonoid that is a quotient of a tomonoid \mathbb{N}^n is called formally integral.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

 \leq can be described by a positive cone on $(\mathbb{Z}^n; +, 0)$, making \mathbb{Z}^n a totally ordered Abelian group.

However: Not all tomonoids are formally integral.

Consider the free monoid over n elements, $(\mathbb{N}^n; +, 0)$. Let \preccurlyeq be a translation-invariant, positive total **pre**order on \mathbb{N}^n .

Consider the free monoid over n elements, $(\mathbb{N}^n; +, 0)$. Let \preccurlyeq be a translation-invariant, positive total **pre**order on \mathbb{N}^n . Then the symmetrisation \approx of \preccurlyeq is a tomonoid congruence, and $(\langle \mathbb{N}^n \rangle_{\approx}; \preccurlyeq, +, \langle 0 \rangle_{\approx})$ is a c.p.f. tomonoid.

Consider the free monoid over n elements, $(\mathbb{N}^n; +, 0)$.

Let \preccurlyeq be a translation-invariant, positive total **pre**order on \mathbb{N}^n .

(日) (문) (문) (문) (문)

Then the symmetrisation \approx of \preccurlyeq is a tomonoid congruence, and $(\langle \mathbb{N}^n \rangle_{\approx}; \preccurlyeq, +, \langle 0 \rangle_{\approx})$ is a c.p.f. tomonoid.

Theorem

All c.p.f. tomonoids arise in this way.

Consider the free monoid over n elements, $(\mathbb{N}^n; +, 0)$.

Let \preccurlyeq be a translation-invariant, positive total **pre**order on \mathbb{N}^n .

Then the symmetrisation \approx of \preccurlyeq is a tomonoid congruence, and $(\langle \mathbb{N}^n \rangle_{\approx}; \preccurlyeq, +, \langle 0 \rangle_{\approx})$ is a c.p.f. tomonoid.

Theorem

All c.p.f. tomonoids arise in this way.

Indeed, given a monoid epimorphism $\mathbb{N}^n \to L$, we can pull back the total order on L to \mathbb{N}^n .

Consider the free monoid over n elements, $(\mathbb{N}^n; +, 0)$.

Let \preccurlyeq be a translation-invariant, positive total **pre**order on \mathbb{N}^n .

Then the symmetrisation \approx of \preccurlyeq is a tomonoid congruence, and $(\langle \mathbb{N}^n \rangle_{\approx}; \preccurlyeq, +, \langle 0 \rangle_{\approx})$ is a c.p.f. tomonoid.

Theorem

All c.p.f. tomonoids arise in this way.

Indeed, given a monoid epimorphism $\mathbb{N}^n \to L$, we can pull back the total order on L to \mathbb{N}^n .

Question: Can we describe \preccurlyeq by means of something like a positive cone?

A translation-invariant, positive total order on \mathbb{N}^n is called a monomial order.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

A translation-invariant, positive total order on \mathbb{N}^n is called a monomial order.

The describing positive cone is

 $C_{\leqslant} = \{ z \in \mathbb{Z}^n \colon a \leqslant b \text{ for any } a, b \in \mathbb{N}^n \text{ such that } z = b - a. \}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

A translation-invariant, positive total order on \mathbb{N}^n is called a monomial order.

The describing positive cone is

 $C_{\leqslant} = \{ z \in \mathbb{Z}^n \colon a \leqslant b \text{ for any } a, b \in \mathbb{N}^n \text{ such that } z = b - a. \}$

Definition

Let \preccurlyeq be a translation-invariant, positive total preorder on \mathbb{N}^n . Then we call \preccurlyeq a monomial preorder.

A translation-invariant, positive total order on \mathbb{N}^n is called a monomial order.

The describing positive cone is

$$C_{\leqslant} = \{ z \in \mathbb{Z}^n \colon a \leqslant b \text{ for any } a, b \in \mathbb{N}^n \text{ such that } z = b - a. \}$$

Definition

Let \preccurlyeq be a translation-invariant, positive total preorder on \mathbb{N}^n . Then we call \preccurlyeq a monomial preorder.

Moreover, the direction cone of \preccurlyeq is

$$C_{\preccurlyeq} = \{ z \in \mathbb{Z}^n \colon a \preccurlyeq b \text{ for any } a, b \in \mathbb{N}^n \text{ such that } z = b - a \}.$$

▲ロト ▲母ト ▲目ト ▲目ト 三目 - のへで

Direction cones

Theorem

- $C \subseteq \mathbb{Z}^n$ is the direction cone of a monomial preorder iff:
 - (C1) Let $z \in \mathbb{N}^n$. Then $z \in C$ and, if $z \neq 0, -z \notin C$.
 - (C2) Let (x_1, \ldots, x_k) , $k \ge 2$, be an addable k-tuple of elements of C. Then $x_1 + \ldots + x_k \in C$.

<ロ> (四) (四) (四) (四) (四) (四) (四)

(C3) For each $z \in \mathbb{Z}^n$, either $z \in C$ or $-z \in C$.

Direction cones

Theorem

- $C \subseteq \mathbb{Z}^n$ is the direction cone of a monomial preorder iff:
 - (C1) Let $z \in \mathbb{N}^n$. Then $z \in C$ and, if $z \neq 0, -z \notin C$.
 - (C2) Let (x_1, \ldots, x_k) , $k \ge 2$, be an addable k-tuple of elements of C. Then $x_1 + \ldots + x_k \in C$.

(C3) For each $z \in \mathbb{Z}^n$, either $z \in C$ or $-z \in C$.

$$(x_1,\ldots,x_k)$$
 is addable if for $i=1,\ldots,k$

$$x_i + \ldots + x_k \leqslant (x_1 + \ldots + x_k) \lor 0.$$

<ロ> (四) (四) (王) (王) (王) (王)

A monomial preorder \preccurlyeq has a direction cone C_{\preccurlyeq} .

A monomial preorder \preccurlyeq has a direction cone C_{\preccurlyeq} .

A direction cone defines in turn a monomial preorder:

Definition

Let $C \subseteq \mathbb{Z}^n$ be a direction cone. Then the monomial preorder induced by C is the smallest preorder \preccurlyeq_C such that

(O) $a \preccurlyeq_C b$ for any $a, b \in \mathbb{N}^n$ such that $b - a \in C$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

A monomial preorder \preccurlyeq has a direction cone C_{\preccurlyeq} .

A direction cone defines in turn a monomial preorder:

Definition

Let $C \subseteq \mathbb{Z}^n$ be a direction cone. Then the monomial preorder induced by C is the smallest preorder \preccurlyeq_C such that

(O) $a \preccurlyeq_C b$ for any $a, b \in \mathbb{N}^n$ such that $b - a \in C$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The tomonoid represented by \preccurlyeq_C is called a cone tomonoid.

A monomial preorder \preccurlyeq has a direction cone C_{\preccurlyeq} .

A direction cone defines in turn a monomial preorder:

Definition

Let $C \subseteq \mathbb{Z}^n$ be a direction cone. Then the monomial preorder induced by C is the smallest preorder \preccurlyeq_C such that

(O) $a \preccurlyeq_C b$ for any $a, b \in \mathbb{N}^n$ such that $b - a \in C$.

(日) (四) (王) (王)

2

The tomonoid represented by \preccurlyeq_C is called a cone tomonoid.

 $\preccurlyeq_{C_{\preccurlyeq}}$ is contained in \preccurlyeq , hence:

Theorem

Any c.p.f. tomonoid is the quotient of a cone tomonoid.

Example

Let L be a tomonoid generated by a and b:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Example

Let L be a tomonoid generated by a and b:

The monomial preorder \preccurlyeq representing L.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Example, ctd.

The direction cone of \preccurlyeq .

<ロ> (四) (四) (三) (三) (三)

臣

Example, ctd.

The cone tomonoid whose quotient is L.

Summary so far

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

► Any c.p.f. tomonoid is a quotient of a cone tomonoid.

Summary so far

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- ► Any c.p.f. tomonoid is a quotient of a cone tomonoid.
- ► A cone tomonoid is specified by a direction cone, which is a subset of a Zⁿ subject to conditions similar to the case of positive group cones.

Let $(L; \leq, +, 0)$ be finite.

Let $(L; \leq, +, 0)$ be finite.

Drawback:

The direction cone describing L is infinite (unless L is trivial).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let $(L; \leq, +, 0)$ be finite.

Drawback:

The direction cone describing L is infinite (unless L is trivial).

Solution:

Let \approx be the congruence on \mathbb{N}^n inducing the finite tomonoid L.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let $(L; \leq, +, 0)$ be finite.

Drawback:

The direction cone describing L is infinite (unless L is trivial).

Solution:

Let \approx be the congruence on \mathbb{N}^n inducing the finite tomonoid L. Then we choose S ("support"), a finite subset of \mathbb{N}^n having a non-empty intersection with each \approx -class.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Let $(L; \leq, +, 0)$ be finite.

Drawback:

The direction cone describing L is infinite (unless L is trivial).

Solution:

Let \approx be the congruence on \mathbb{N}^n inducing the finite tomonoid L. Then we choose S ("support"), a finite subset of \mathbb{N}^n having a non-empty intersection with each \approx -class. We include into the direction cone only differences of

elements of S.

Example, again

The support of \preccurlyeq .

・ロト ・ 日子・ ・ ヨト・・

臣▶ 臣

Example, ctd.

The direction f-cone of \preccurlyeq .

<ロ> (四) (四) (三) (三)

2

Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

► Any finite c.p.f. tomonoid is a quotient of an f-cone tomonoid.

Summary

- ► Any finite c.p.f. tomonoid is a quotient of an f-cone tomonoid.
- An f-cone tomonoid is specified by the pair (S, C), where S, the support, is a finite ≤-ideal of Nⁿ;
 C, the f-cone, is a subset of the set of differences of elements of S.

Summary

- ► Any finite c.p.f. tomonoid is a quotient of an f-cone tomonoid.
- An f-cone tomonoid is specified by the pair (S, C), where S, the support, is a finite ≤-ideal of Nⁿ;
 C, the f-cone, is a subset of the set of differences of elements of S.
- ► The pairs (S, C) subject to certain conditions lead to an f-cone tomonoid, and all f-cone tomonoids arise in this way.