Direction cones
 for the representation of tomonoids

Thomas Vetterlein

Department of Knowledge-Based Mathematical Systems,
Johannes Kepler University (Linz)

June 2013

Background

(Lotfi Zadeh)
Fuzzy logic deals with (is supposed to deal with) vague properties:

Background

(Lotfi Zadeh)
Fuzzy logic deals with (is supposed to deal with) vague properties:

Fuzzy sets to model the result of a blood test

Background

(Lotfi Zadeh)
Fuzzy logic deals with (is supposed to deal with) vague properties:

Fuzzy sets to model the result of a blood test

The collection of vague propositions
gives rise (is supposed to give rise)
to a residuated ℓ-monoid $(L ; \wedge, \vee, \odot, \rightarrow, 0,1)$
(Petr Hájek).

Algebras for fuzzy logic

We frequently deal with certain residuated ℓ-monoids called MTL-algebras
(Ll. Godo, F. Esteva):

Algebras for fuzzy logic

We frequently deal with certain residuated ℓ－monoids called MTL－algebras
（Ll．Godo，F．Esteva）：

The finite case

Theorem (A. Ciabattoni, G. Metcalfe, F. Montagna)
MTL-algebras form a variety, which is generated by its totally ordered finite members.

The finite case

Theorem (A. Ciabattoni, G. Metcalfe, F. Montagna)

MTL-algebras form a variety, which is generated by its totally ordered finite members.

One of the big issues of many-valued logics:
How can totally ordered finite MTL-algebras be described?

Tomonoids

（E．Gabovich，J．J．Madden et al．，．．．）

We identify finite totally ordered MTL－algebras with＂c．p．f．tomonoids＂：

Tomonoids

(E. Gabovich, J. J. Madden et al., ...)

We identify finite totally ordered MTL-algebras with "c.p.f. tomonoids":

Definition

$(L ; \leqslant,+, 0)$ is a totally ordered monoid, or tomonoid, if:
(T1) $(L ;+, 0)$ is a monoid;
$(\mathrm{T} 2) \leqslant$ is a translation-invariant total order: $a \leqslant b$ implies $a+c \leqslant b+c$ and $c+a \leqslant c+b$.

Tomonoids

(E. Gabovich, J. J. Madden et al., ...)

We identify finite totally ordered MTL-algebras with "c.p.f. tomonoids":

Definition

$(L ; \leqslant,+, 0)$ is a totally ordered monoid, or tomonoid, if:
(T1) $(L ;+, 0)$ is a monoid;
$(\mathrm{T} 2) \leqslant$ is a translation-invariant total order: $a \leqslant b$ implies $a+c \leqslant b+c$ and $c+a \leqslant c+b$.

A tomonoid is called
commutative if + is commutative;
positive if 0 is the bottom element.
finitely generated if L is so as a monoid.

Congruences and orders on free monoids

Consider the free monoid over $n \geqslant 1$ elements, $\left(\mathbb{N}^{n} ;+, 0\right)$.

Congruences and orders on free monoids

Consider the free monoid over $n \geqslant 1$ elements, $\left(\mathbb{N}^{n} ;+, 0\right)$. Let \leqslant be a translation-invariant, positive total order on \mathbb{N}^{n}. Then $\left(\mathbb{N}^{n} ; \leqslant,+, 0\right)$ is a c.p.f. tomonoid.

Congruences and orders on free monoids

Consider the free monoid over $n \geqslant 1$ elements, $\left(\mathbb{N}^{n} ;+, 0\right)$. Let \leqslant be a translation-invariant, positive total order on \mathbb{N}^{n}. Then $\left(\mathbb{N}^{n} ; \leqslant,+, 0\right)$ is a c.p.f. tomonoid.

Definition

A tomonoid that is a quotient of a tomonoid \mathbb{N}^{n} is called formally integral.

Congruences and orders on free monoids

Consider the free monoid over $n \geqslant 1$ elements, $\left(\mathbb{N}^{n} ;+, 0\right)$. Let \leqslant be a translation-invariant, positive total order on \mathbb{N}^{n}. Then $\left(\mathbb{N}^{n} ; \leqslant,+, 0\right)$ is a c.p.f. tomonoid.

Definition

A tomonoid that is a quotient of a tomonoid \mathbb{N}^{n} is called formally integral.
\leqslant can be described by a positive cone on $\left(\mathbb{Z}^{n} ;+, 0\right)$, making \mathbb{Z}^{n} a totally ordered Abelian group.

Congruences and orders on free monoids

Consider the free monoid over $n \geqslant 1$ elements, $\left(\mathbb{N}^{n} ;+, 0\right)$.
Let \leqslant be a translation-invariant, positive total order on \mathbb{N}^{n}.
Then $\left(\mathbb{N}^{n} ; \leqslant,+, 0\right)$ is a c.p.f. tomonoid.

Definition

A tomonoid that is a quotient of a tomonoid \mathbb{N}^{n} is called formally integral.
\leqslant can be described by a positive cone on $\left(\mathbb{Z}^{n} ;+, 0\right)$, making \mathbb{Z}^{n} a totally ordered Abelian group.

However: Not all tomonoids are formally integral.

Preorders

Consider the free monoid over n elements, $\left(\mathbb{N}^{n} ;+, 0\right)$.
Let \preccurlyeq be a translation-invariant, positive total preorder on \mathbb{N}^{n}.

Preorders

Consider the free monoid over n elements, $\left(\mathbb{N}^{n} ;+, 0\right)$.
Let \preccurlyeq be a translation-invariant, positive total preorder on \mathbb{N}^{n}.
Then the symmetrisation \approx of \preccurlyeq is a tomonoid congruence, and $\left(\left\langle\mathbb{N}^{n}\right\rangle_{\approx} ; \preccurlyeq,+,\langle 0\rangle_{\approx}\right)$ is a c.p.f. tomonoid.

Preorders

Consider the free monoid over n elements，$\left(\mathbb{N}^{n} ;+, 0\right)$ ．
Let \preccurlyeq be a translation－invariant，positive total preorder on \mathbb{N}^{n} ．
Then the symmetrisation \approx of \preccurlyeq is a tomonoid congruence， and $\left(\left\langle\mathbb{N}^{n}\right\rangle_{\approx} ; \preccurlyeq,+,\langle 0\rangle_{\approx}\right)$ is a c．p．f．tomonoid．

Theorem

All c．p．f．tomonoids arise in this way．

Preorders

Consider the free monoid over n elements, $\left(\mathbb{N}^{n} ;+, 0\right)$.
Let \preccurlyeq be a translation-invariant, positive total preorder on \mathbb{N}^{n}.
Then the symmetrisation \approx of \preccurlyeq is a tomonoid congruence, and $\left(\left\langle\mathbb{N}^{n}\right\rangle_{\approx} ; \preccurlyeq,+,\langle 0\rangle_{\approx}\right)$ is a c.p.f. tomonoid.

Theorem

All c.p.f. tomonoids arise in this way.

Indeed, given a monoid epimorphism $\mathbb{N}^{n} \rightarrow L$, we can pull back the total order on L to \mathbb{N}^{n}.

Preorders

Consider the free monoid over n elements, $\left(\mathbb{N}^{n} ;+, 0\right)$.
Let \preccurlyeq be a translation-invariant, positive total preorder on \mathbb{N}^{n}.
Then the symmetrisation \approx of \preccurlyeq is a tomonoid congruence, and $\left(\left\langle\mathbb{N}^{n}\right\rangle_{\approx} ; \preccurlyeq,+,\langle 0\rangle_{\approx}\right)$ is a c.p.f. tomonoid.

Theorem

All c.p.f. tomonoids arise in this way.

Indeed, given a monoid epimorphism $\mathbb{N}^{n} \rightarrow L$, we can pull back the total order on L to \mathbb{N}^{n}.

Question:
Can we describe \preccurlyeq by means of something like a positive cone?

Positive cone and direction cone

A translation-invariant, positive total order on \mathbb{N}^{n} is called a monomial order.

Positive cone and direction cone

A translation-invariant, positive total order on \mathbb{N}^{n} is called a monomial order.

The describing positive cone is

$$
C_{\leqslant}=\left\{z \in \mathbb{Z}^{n}: a \leqslant b \text { for any } a, b \in \mathbb{N}^{n} \text { such that } z=b-a .\right\}
$$

Positive cone and direction cone

A translation－invariant，positive total order on \mathbb{N}^{n} is called a monomial order．

The describing positive cone is

$$
C_{\leqslant}=\left\{z \in \mathbb{Z}^{n}: a \leqslant b \text { for any } a, b \in \mathbb{N}^{n} \text { such that } z=b-a .\right\}
$$

Definition

Let \preccurlyeq be a translation－invariant，positive total preorder on \mathbb{N}^{n} ． Then we call \preccurlyeq a monomial preorder．

Positive cone and direction cone

A translation-invariant, positive total order on \mathbb{N}^{n} is called a monomial order.

The describing positive cone is

$$
C_{\leqslant}=\left\{z \in \mathbb{Z}^{n}: a \leqslant b \text { for any } a, b \in \mathbb{N}^{n} \text { such that } z=b-a .\right\}
$$

Definition

Let \preccurlyeq be a translation-invariant, positive total preorder on \mathbb{N}^{n}. Then we call \preccurlyeq a monomial preorder.
Moreover, the direction cone of \preccurlyeq is

$$
C_{\preccurlyeq}=\left\{z \in \mathbb{Z}^{n}: a \preccurlyeq b \text { for any } a, b \in \mathbb{N}^{n} \text { such that } z=b-a\right\} .
$$

Direction cones

Theorem

$C \subseteq \mathbb{Z}^{n}$ is the direction cone of a monomial preorder iff:
(C1) Let $z \in \mathbb{N}^{n}$. Then $z \in C$ and, if $z \neq 0,-z \notin C$.
(C2) Let $\left(x_{1}, \ldots, x_{k}\right), k \geqslant 2$, be an addable k-tuple of elements of C. Then $x_{1}+\ldots+x_{k} \in C$.
(C3) For each $z \in \mathbb{Z}^{n}$, either $z \in C$ or $-z \in C$.

Direction cones

Theorem

$C \subseteq \mathbb{Z}^{n}$ is the direction cone of a monomial preorder iff:
(C1) Let $z \in \mathbb{N}^{n}$. Then $z \in C$ and, if $z \neq 0,-z \notin C$.
(C2) Let $\left(x_{1}, \ldots, x_{k}\right), k \geqslant 2$, be an addable k-tuple of elements of C. Then $x_{1}+\ldots+x_{k} \in C$.
(C3) For each $z \in \mathbb{Z}^{n}$, either $z \in C$ or $-z \in C$.
$\left(x_{1}, \ldots, x_{k}\right)$ is addable if for $i=1, \ldots, k$

$$
x_{i}+\ldots+x_{k} \preccurlyeq\left(x_{1}+\ldots+x_{k}\right) \vee 0
$$

Cone tomonoids

A monomial preorder \preccurlyeq has a direction cone $C_{\preccurlyeq \text {. }}$.

Cone tomonoids

A monomial preorder \preccurlyeq has a direction cone C_{\preccurlyeq}.
A direction cone defines in turn a monomial preorder:

Definition

Let $C \subseteq \mathbb{Z}^{n}$ be a direction cone. Then the monomial preorder induced by C is the smallest preorder $\preccurlyeq C$ such that
(O) $a \preccurlyeq C b$ for any $a, b \in \mathbb{N}^{n}$ such that $b-a \in C$.

Cone tomonoids

A monomial preorder \preccurlyeq has a direction cone C_{\preccurlyeq} ．
A direction cone defines in turn a monomial preorder：

Definition

Let $C \subseteq \mathbb{Z}^{n}$ be a direction cone．Then the monomial preorder induced by C is the smallest preorder $\preccurlyeq C$ such that
（O）$a \preccurlyeq C b$ for any $a, b \in \mathbb{N}^{n}$ such that $b-a \in C$ ．
The tomonoid represented by \preccurlyeq_{C} is called a cone tomonoid．

Cone tomonoids

A monomial preorder \preccurlyeq has a direction cone C_{\preccurlyeq}.
A direction cone defines in turn a monomial preorder:

Definition

Let $C \subseteq \mathbb{Z}^{n}$ be a direction cone. Then the monomial preorder induced by C is the smallest preorder $\preccurlyeq C$ such that

$$
\text { (O) } a \preccurlyeq C b \text { for any } a, b \in \mathbb{N}^{n} \text { such that } b-a \in C \text {. }
$$

The tomonoid represented by \preccurlyeq_{C} is called a cone tomonoid.
$\preccurlyeq C_{\preccurlyeq}$ is contained in \preccurlyeq, hence:

Theorem

Any c.p.f. tomonoid is the quotient of a cone tomonoid.

Example

Let L be a tomonoid generated by a and b :

$$
\begin{aligned}
0 & <a<b<2 a<a+b<2 b<3 a \\
& <2 a+b<a+2 b=4 a<1
\end{aligned}
$$

Example

Let L be a tomonoid generated by a and b :

$$
\begin{aligned}
0 & <a<b<2 a<a+b<2 b<3 a \\
& <2 a+b<a+2 b=4 a<1
\end{aligned}
$$

The monomial preorder \preccurlyeq representing L.

Example，ctd．

The direction cone of \preccurlyeq ．

Example, ctd.

The cone tomonoid whose quotient is L.

Summary so far

－Any c．p．f．tomonoid is a quotient of a cone tomonoid．

Summary so far

- Any c.p.f. tomonoid is a quotient of a cone tomonoid.
- A cone tomonoid is specified by a direction cone, which is a subset of a \mathbb{Z}^{n} subject to conditions similar to the case of positive group cones.

The finite case

Let $(L ; \leqslant,+, 0)$ be finite.

The finite case

Let $(L ; \leqslant,+, 0)$ be finite.

Drawback:
The direction cone describing L is infinite (unless L is trivial).

The finite case

Let $(L ; \leqslant,+, 0)$ be finite.

Drawback:
The direction cone describing L is infinite (unless L is trivial).

Solution:
Let \approx be the congruence on \mathbb{N}^{n} inducing the finite tomonoid L.

The finite case

Let $(L ; \leqslant,+, 0)$ be finite.
Drawback:
The direction cone describing L is infinite (unless L is trivial).

Solution:
Let \approx be the congruence on \mathbb{N}^{n} inducing the finite tomonoid L.
Then we choose S ("support"), a finite subset of \mathbb{N}^{n}
having a non-empty intersection with each \approx-class.

The finite case

Let $(L ; \leqslant,+, 0)$ be finite．

Drawback：
The direction cone describing L is infinite（unless L is trivial）．
Solution：
Let \approx be the congruence on \mathbb{N}^{n} inducing the finite tomonoid L ．
Then we choose S（＂support＂），a finite subset of \mathbb{N}^{n} having a non－empty intersection with each \approx－class．
We include into the direction cone only differences of elements of S ．

Example, again

The support of \preccurlyeq.

Example, ctd.

The direction f-cone of \preccurlyeq.

Summary

- Any finite c.p.f. tomonoid is a quotient of an f-cone tomonoid.

[^0]
Summary

－Any finite c．p．f．tomonoid is a quotient of an f－cone tomonoid．
－An f－cone tomonoid is specified by the pair (S, C) ，where S ，the support，is a finite \downarrow－ideal of \mathbb{N}^{n} ；
C ，the f－cone，is a subset of the set of differences of elements of S ．

Summary

－Any finite c．p．f．tomonoid is a quotient of an f－cone tomonoid．
－An f－cone tomonoid is specified by the pair (S, C) ，where S ，the support，is a finite \downarrow－ideal of \mathbb{N}^{n} ；
C ，the f－cone，is a subset of the set of differences of elements of S ．
－The pairs (S, C) subject to certain conditions lead to an f－cone tomonoid，and all f－cone tomonoids arise in this way．

[^0]:

