Relation between pentagonal and GS-quasigroups

Stipe Vidak

Faculty of Science
Department of Mathematics
University of Zagreb
Croatia
June 8, 2013

Contents

(1) Definitions and basic examples
(2) Geometry
(3) Relation between pentagonal and GS-quasigroups

4 Future work

Definition

A quasigroup (Q, \cdot) is a grupoid in which for every $a, b \in Q$ there exist unique $x, y \in Q$ such that $a \cdot x=b$ and $y \cdot a=b$.

To make some expressions shorter and more readable we use abbreviations. For example, instead of writing $a \cdot((b \cdot c) \cdot d)$ we write $a(b c \cdot d)$.

Definition

A quasigroup (Q, \cdot) is a grupoid in which for every $a, b \in Q$ there exist unique $x, y \in Q$ such that $a \cdot x=b$ and $y \cdot a=b$.

To make some expressions shorter and more readable we use abbreviations. For example, instead of writing $a \cdot((b \cdot c) \cdot d)$ we write $a(b c \cdot d)$.

Definition

An IM-quasigroup is a quasigroup (Q, \cdot) in which following properties hold:

$$
\begin{aligned}
& \text { - } a \cdot a=a \quad \forall a \in Q \\
& \text { - } a b \cdot c d=a c \cdot b d \quad \forall a, b, c, d \in Q
\end{aligned}
$$

idempotency mediality

Along with idempotency and mediality, in IM-quasigroups next three properties are valid:

- $a b \cdot a=a \cdot b a \quad \forall a, b \in Q$
- $a b \cdot c=a c \cdot b c \quad \forall a, b, c \in Q$
- $a \cdot b c=a b \cdot a c \quad \forall a, b, c \in Q$

elasticity
right distributivity
left distributivity

Along with idempotency and mediality, in IM-quasigroups next three properties are valid:

- $a b \cdot a=a \cdot b a \quad \forall a, b \in Q$
- $a b \cdot c=a c \cdot b c \quad \forall a, b, c \in Q$
- $a \cdot b c=a b \cdot a c \quad \forall a, b, c \in Q$
elasticity right distributivity left distributivity

Example

$C(q)=(\mathbb{C}, *)$, where $*$ is defined with

$$
a * b=(1-q) a+q b,
$$

and $q \in \mathbb{C}, q \neq 0,1$.

Definition

A GS-quasigroup is a quasigroup (Q, \cdot) in which following properties hold:

- $a \cdot a=a \quad \forall a \in Q$
idempotency
- $a(a b \cdot c) \cdot c=b \quad \forall a, b, c \in Q$
- every GS-quasigroup is an IM-quasigroup

Definition

A GS-quasigroup is a quasigroup (Q, \cdot) in which following properties hold:

- $a \cdot a=a \quad \forall a \in Q$
idempotency
- $a(a b \cdot c) \cdot c=b \quad \forall a, b, c \in Q$
- every GS-quasigroup is an IM-quasigroup

Example

$C(q)=(\mathbb{C}, *)$, where $*$ is defined with

$$
a * b=(1-q) a+q b,
$$

and q is a solution of the equation $q^{2}-q-1=0$.

Solutions of the equation $q^{2}-q-1=0$ are

$$
q_{1}=\frac{1+\sqrt{5}}{2} \text { and } q_{2}=\frac{1-\sqrt{5}}{2}
$$

Solutions of the equation $q^{2}-q-1=0$ are

$$
q_{1}=\frac{1+\sqrt{5}}{2} \text { and } q_{2}=\frac{1-\sqrt{5}}{2}
$$

If we regard the complex numbers as the points of the Euclidean plane and if we rewrite $a * b=(1-q) a+q b$ as

$$
\frac{a * b-a}{b-a}=q
$$

we notice that the point $a * b$ divides the pair a, b in the ratio q, i.e. golden-section ratio.

Definition

A pentagonal quasigroup is an IM-quasigroup (Q, \cdot) in which following property holds

- $(a b \cdot a) b \cdot a=b \quad \forall a, b \in Q$
pentagonality

Definition

A pentagonal quasigroup is an IM-quasigroup (Q, \cdot) in which following property holds

- $(a b \cdot a) b \cdot a=b \quad \forall a, b \in Q$

pentagonality

All calculations in pentagonal quasigroups are done using properties of idempotency, mediality, elasticity, left and right distributivity and following properties (which all arise from pentagonality):

- $(a b \cdot a) b \cdot a=b \quad \forall a, b \in Q$
- $(a b \cdot a) c \cdot a=b c \cdot b \quad \forall a, b, c \in Q$
- $(a b \cdot a) a \cdot a=b a \cdot b \quad \forall a, b \in Q$
- $a b \cdot(b a \cdot a) a=b \quad \forall a, b \in Q$
- $a(b \cdot(b a \cdot a) a) \cdot a=b \quad \forall a, b \in Q$

Theorem

In an IM-quasigroup (Q, \cdot) identities (1), (2), (3) and (4) are all mutually equivalent and they imply identity (5).

Example

$C(q)=(\mathbb{C}, *)$, where $*$ is defined with

$$
a * b=(1-q) a+q b,
$$

and q is a solution of the equation $q^{4}-3 q^{3}+4 q^{2}-2 q+1=0$.
This equation arises from the property of pentagonality.

Solutions of the equation $q^{4}-3 q^{3}+4 q^{2}-2 q+1=0$ are:

$$
\begin{aligned}
& q_{1,2}=\frac{1}{4}(3+\sqrt{5} \pm i \sqrt{10+2 \sqrt{5}}) \approx 1.31 \pm 0.95 i \\
& q_{3,4}=\frac{1}{4}(3-\sqrt{5} \pm i \sqrt{10-2 \sqrt{5}}) \approx 0.19 \pm 0.59 i
\end{aligned}
$$

Solutions of the equation $q^{4}-3 q^{3}+4 q^{2}-2 q+1=0$ are:

$$
\begin{aligned}
& q_{1,2}=\frac{1}{4}(3+\sqrt{5} \pm i \sqrt{10+2 \sqrt{5}}) \approx 1.31 \pm 0.95 i \\
& q_{3,4}=\frac{1}{4}(3-\sqrt{5} \pm i \sqrt{10-2 \sqrt{5}}) \approx 0.19 \pm 0.59 i
\end{aligned}
$$

If we regard the complex numbers as the points of the Euclidean plane and if we rewrite $a * b=(1-q) a+q b$ as

$$
\frac{a * b-a}{b-a}=\frac{q-0}{1-0},
$$

we notice that points a, b and $a * b$ are the vertices of a triangle directly similar to the triangle with the vertices 0,1 and q.

Solutions of the equation $q^{4}-3 q^{3}+4 q^{2}-2 q+1=0$ are:

$$
\begin{aligned}
& q_{1,2}=\frac{1}{4}(3+\sqrt{5} \pm i \sqrt{10+2 \sqrt{5}}) \approx 1.31 \pm 0.95 i \\
& q_{3,4}=\frac{1}{4}(3-\sqrt{5} \pm i \sqrt{10-2 \sqrt{5}}) \approx 0.19 \pm 0.59 i
\end{aligned}
$$

If we regard the complex numbers as the points of the Euclidean plane and if we rewrite $a * b=(1-q) a+q b$ as

$$
\frac{a * b-a}{b-a}=\frac{q-0}{1-0}
$$

we notice that points a, b and $a * b$ are the vertices of a triangle directly similar to the triangle with the vertices 0,1 and q. We get a characteristic triangle for each of $q_{i}, i=1,2,3,4$.

A more general example of $G S /$ pentagonal quasigroups is $(Q, *)$,

$$
a * b=a+\varphi(b-a),
$$

where $(Q,+)$ is an abelian group and φ is its automorphism which satisfies $\varphi^{2}-\varphi-\mathbb{1}=0 / \varphi^{4}-3 \varphi^{3}+4 \varphi^{2}-2 \varphi+\mathbb{1}=0$.

A more general example of $G S /$ pentagonal quasigroups is $(Q, *)$,

$$
a * b=a+\varphi(b-a)
$$

where $(Q,+)$ is an abelian group and φ is its automorphism which satisfies $\varphi^{2}-\varphi-\mathbb{1}=0 / \varphi^{4}-3 \varphi^{3}+4 \varphi^{2}-2 \varphi+\mathbb{1}=0$. It can be shown that these are in fact the most general examples of GS / pentagonal quasigroups. We get Toyoda-like representation theorems for them.

Theorem

GS-quasigroup on the set Q exists if and only if exists an abelian group on the set Q with an automorphism φ which satisfies

$$
\varphi^{2}-\varphi-\mathbb{1}=0
$$

Theorem

Pentagonal quasigroup on the set Q exists if and only if exists an abelian group on the set Q with an automorphism φ which satisfies

$$
\varphi^{4}-3 \varphi^{3}+4 \varphi^{2}-2 \varphi+\mathbb{1}=0
$$

Contents

(1) Definitions and basic examples
(2) Geometry
(3) Relation between pentagonal and GS-quasigroups
(4) Future work

Let's first introduce some basic geometric concepts.

Definition

A point in the quasigroup (Q, \cdot) is an element of the set Q. A segment in the quasigroup (Q, \cdot) is a pair of points $\{a, b\}$. A n-gon in the quasigroup (Q, \cdot) is an ordered n-tuple of points $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ up to a cyclic permutation.

Geometry of pentagonal quasigroups

- parallelogram, midpoint of the segment, center of the parallelogram

Geometry of pentagonal quasigroups

- parallelogram, midpoint of the segment, center of the parallelogram
- midpoint doesn't have to be unique: quasigroup Q_{16} with 16 elements

Geometry of pentagonal quasigroups

- parallelogram, midpoint of the segment, center of the parallelogram
- midpoint doesn't have to be unique: quasigroup Q_{16} with 16 elements
- regular pentagon, center of the regular pentagon

Geometry of pentagonal quasigroups

- parallelogram, midpoint of the segment, center of the parallelogram
- midpoint doesn't have to be unique: quasigroup Q_{16} with 16 elements
- regular pentagon, center of the regular pentagon

Definition

Let a, b, c, d and e be points of a pentagonal quasigroup (Q, \cdot). Pentagon (a, b, c, d, e) is called regular pentagon if $a b=c$, $b c=d$ and $c d=e$. This is denoted by $\operatorname{RP}(a, b, c, d, e)$.

Theorem

A regular pentagon (a, b, c, d, e) is uniquely determined by the ordered pair of points (a, b).

Definition

Let a, b, c, d and e be points in a pentagonal quasigroup (Q, \cdot) such that $R P(a, b, c, d, e)$. The center of the regular pentagon (a, b, c, d, e) is the point o such that $o=o a \cdot b$.

If we rewrite $o=o a \cdot b$ using theorem of characterization, we get $(2 \cdot \mathbb{1}-\varphi)(o)=(\mathbb{1}-\varphi)(a)+b$.

If we rewrite $o=o a \cdot b$ using theorem of characterization, we get

$$
(2 \cdot \mathbb{1}-\varphi)(o)=(\mathbb{1}-\varphi)(a)+b
$$

Example

$\left(Q_{5}, \cdot\right), R P(0,1,2,3,4)$

\cdot	0	1	2	3	4
0	0	2	4	1	3
1	4	1	3	0	2
2	3	0	2	4	1
3	2	4	1	3	0
4	1	3	0	2	4

$00 \cdot 1=2,10 \cdot 1=3,20 \cdot 1=4,30 \cdot 1=0,40 \cdot 1=1$
There is no o such that $o=o a \cdot b$.
Quasigroup $\left(Q_{5}, \cdot\right)$ is generated by the automorphism $\varphi(x)=2 x$.

Geometry of GS-quasigroups

- geometry of GS-quasigroups is much more developed

Geometry of GS-quasigroups

- geometry of GS-quasigroups is much more developed
- parallelogram, midpoint of the segment, center of the parallelogram

Geometry of GS-quasigroups

- geometry of GS-quasigroups is much more developed
- parallelogram, midpoint of the segment, center of the parallelogram
- golden section ratio

Geometry of GS-quasigroups

- geometry of GS-quasigroups is much more developed
- parallelogram, midpoint of the segment, center of the parallelogram
- golden section ratio
- GS-trapezoids, affine regular pentagons

Geometry of GS-quasigroups

- geometry of GS-quasigroups is much more developed
- parallelogram, midpoint of the segment, center of the parallelogram
- golden section ratio
- GS-trapezoids, affine regular pentagons
- DGS-trapezoids, GS-deltoids, affine regular dodecachedron, affine regular icosahedron...

Contents

(1) Definitions and basic examples
(2) Geometry
(3) Relation between pentagonal and GS-quasigroups
(4) Future work

Theorem

Let (Q, \cdot) be a pentagonal quasigroup and let $*: Q \times Q \rightarrow Q$ be a binary operation definined with

$$
a * b=(b a \cdot a) a \cdot b
$$

Then $(Q, *)$ is $G S$-quasigroup.

Previous theorem tells that pentagonal quasigroup "inherits" entire geometry of GS-quasigroups.

Previous theorem tells that pentagonal quasigroup "inherits" entire geometry of GS-quasigroups.
GS-trapezoid (a, b, c, d) is defined in GS-quasigroup and it is completely determined with its three vertices a, b and c. Previous theorem enables definition of GS-trapezoid in any pentagonal quasigroup.

Definition

Let (Q, \cdot) be a pentagonal quasigroup and $a, b, c, d \in Q$. We say that quadrangle (a, b, c, d) is GS-trapezoid, denoted by $\operatorname{GST}(a, b, c, d)$, if $d=(c a \cdot b) a \cdot c$.

Concept of affine regular pentagon (a, b, c, d, e) is defined in GS-quasigroup if (a, b, c, d) and (b, c, d, e) are GS-trapezoids. It is completely determined with its three vertices a, b and c. Previous theorem enables definition of affine regular pentagon in any pentagonal quasigroup.

Definition

Let (Q, \cdot) be a pentagonal quasigroup and $a, b, c, d, e \in Q$. We say that pentagon (a, b, c, d, e) is affine regular pentagon, denoted by $\operatorname{ARP}(a, b, c, d, e)$, if $d=(c a \cdot b) a \cdot c$ and $e=(a c \cdot b) c \cdot a$.

Barlotti's theorem in pentagonal quasigroups:

Theorem

Let (Q, \cdot) be a pentagonal quasigroup and $\operatorname{ARP}(a, b, c, d, e)$, $R P\left(b, a, a_{1}, a_{2}, a_{3}\right)$ with center $o_{a}, R P\left(c, b, b_{1}, b_{2}, b_{3}\right)$ with center $o_{b}, R P\left(d, c, c_{1}, c_{2}, c_{3}\right), R P\left(e, d, d_{1}, d_{2}, d_{3}\right)$ and $R P\left(a, e, e_{1}, e_{2}, e_{3}\right)$. If $R P\left(o_{a}, o_{b}, o_{c}, o_{d}, o_{e}\right)$, then o_{c}, o_{d} and o_{e} are centers of regular pentagons ($\left.d, c, c_{1}, c_{2}, c_{3}\right),\left(e, d, d_{1}, d_{2}, d_{3}\right)$ and $\left(a, e, e_{1}, e_{2}, e_{3}\right)$, respectivelly.

Contents

(1) Definitions and basic examples
(2) Geometry
(3) Relation between pentagonal and GS-quasigroups

4 Future work

- develop more geometry of pentagonal quasigroups
- develop more geometry of pentagonal quasigroups
- determine the set of possible orders of finite pentagonal quasigroups
- develop more geometry of pentagonal quasigroups
- determine the set of possible orders of finite pentagonal quasigroups
- study similarities with some known subclasses of IM-quasigroups (quadratical, hexagonal, Napoleon's...) and make some generalizations
- develop more geometry of pentagonal quasigroups
- determine the set of possible orders of finite pentagonal quasigroups
- study similarities with some known subclasses of IM-quasigroups (quadratical, hexagonal, Napoleon's...) and make some generalizations
- plane tilings in pentagonal quasigroups

