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Invariance groups

Definition
The invariance group of a function f : kn → m is

S (f ) = {σ ∈ Sn | f (x1, . . . , xn) ≡ f (x1σ, . . . , xnσ)} .

Definition

I A group G is (k , m)-representable if
there is a function f : kn → m such that S (f ) = G .

I A group G is (k , ∞)-representable if
G is (k , m)-representable for some m.

Special cases:

I G is (2, 2)-representable iff G is the invariance group of a
Boolean function f : 2n → 2.

I G is (2, ∞)-representable iff G is the invariance group of a
pseudo-Boolean function f : 2n → m.



Invariance groups

Definition
The invariance group of a function f : kn → m is

S (f ) = {σ ∈ Sn | f (x1, . . . , xn) ≡ f (x1σ, . . . , xnσ)} .

Definition

I A group G is (k , m)-representable if
there is a function f : kn → m such that S (f ) = G .

I A group G is (k , ∞)-representable if
G is (k , m)-representable for some m.

Special cases:

I G is (2, 2)-representable iff G is the invariance group of a
Boolean function f : 2n → 2.

I G is (2, ∞)-representable iff G is the invariance group of a
pseudo-Boolean function f : 2n → m.



Invariance groups

Definition
The invariance group of a function f : kn → m is

S (f ) = {σ ∈ Sn | f (x1, . . . , xn) ≡ f (x1σ, . . . , xnσ)} .

Definition

I A group G is (k , m)-representable if
there is a function f : kn → m such that S (f ) = G .

I A group G is (k , ∞)-representable if
G is (k , m)-representable for some m.

Special cases:

I G is (2, 2)-representable iff G is the invariance group of a
Boolean function f : 2n → 2.

I G is (2, ∞)-representable iff G is the invariance group of a
pseudo-Boolean function f : 2n → m.



Invariance groups

Definition
The invariance group of a function f : kn → m is

S (f ) = {σ ∈ Sn | f (x1, . . . , xn) ≡ f (x1σ, . . . , xnσ)} .

Definition

I A group G is (k , m)-representable if
there is a function f : kn → m such that S (f ) = G .

I A group G is (k , ∞)-representable if
G is (k , m)-representable for some m.

Special cases:

I G is (2, 2)-representable iff G is the invariance group of a
Boolean function f : 2n → 2.

I G is (2, ∞)-representable iff G is the invariance group of a
pseudo-Boolean function f : 2n → m.



Invariance groups

Definition
The invariance group of a function f : kn → m is

S (f ) = {σ ∈ Sn | f (x1, . . . , xn) ≡ f (x1σ, . . . , xnσ)} .

Definition

I A group G is (k , m)-representable if
there is a function f : kn → m such that S (f ) = G .

I A group G is (k , ∞)-representable if
G is (k , m)-representable for some m.

Special cases:

I G is (2, 2)-representable iff G is the invariance group of a
Boolean function f : 2n → 2.

I G is (2, ∞)-representable iff G is the invariance group of a
pseudo-Boolean function f : 2n → m.



Abstract representation

Frucht 1939:
Every group is isomorphic to the automorphism group of a graph.

Corollary

Every group is isomorphic to the invariance group of some
Boolean function (i.e., (2, 2)-representable).

Proof.
f : 2n → 2 ! H =

(
n, {E ⊆ n | f (χE ) = 1}

)
Example

S

( )
∼= A3
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Concrete representation

Example

Suppose that S (f ) = A3 for some f : 23 → m.

Then f must be
constant on the orbits of A3 acting on 23:

000 7→ a
100, 010, 001 7→ b
011, 101, 110 7→ c
111 7→ d

However, such a function is totally symmetric, i.e., S (f ) = S3.
Thus A3 is not (2, ∞)-representable.

Let g : 33 → 2 such that g (0, 1, 2) = g (1, 2, 0) = g (2, 1, 0) = 1
and g = 0 everywhere else.
Then S (g) = A3, thus A3 is (3, 2)-representable.
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Ein Kleines Problem

Clote, Kranakis 1991:
If G is (2, ∞)-representable, then G is (2, 2)-representable.

Kisielewicz 1998:
False! The Klein four-group

V = {id, (12) (34) , (13) (24) , (14) (23)} ≤ S4

is a counterexample; moreover, it is the only counterexample that
one could “easily” find.

V = S

( )

= S

( )
∩ S

( )
=⇒ V is (2, 3)-representable but not (2, 2)-representable.

Dalla Volta, Siemons 2012:
There are infinitely many groups that are (2, ∞)-representable but
not (2, 2)-representable. (?)
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Orbit closure

Clote, Kranakis 1991:
The following are equivalent for any group G ≤ Sn:

(i) G is the invariance group of a pseudo-Boolean function
(i.e., G is (2, ∞)-representable).

(ii) G is the intersection of invariance groups of Boolean functions
(i.e., (2, 2)-representable groups).

(iii) G is orbit closed.

Two subgroups of Sn are orbit equivalent if they have the same
orbits on P (n) ! 2n.

The orbit closure of G is the greatest element of its
orbit equivalence class.
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Primitive groups

Inglis; Cameron, Neumann, Saxl; Siemons, Wagner 1984–85:
Almost all primitive groups are orbit closed.

Seress 1997:
All primitive subgroups of Sn are orbit closed except for An and
C5, AGL (1, 5), PGL (2, 5), AGL (1, 8), AΓL(1, 8), AGL (1, 9),
ASL (2, 3), PSL (2, 8), PΓL(2, 8) and PGL (2, 9).

Theorem
All primitive groups are (3, ∞)-representable except for the
alternating groups.
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A Galois connection

For a = (a1, . . . , an) ∈ kn and σ ∈ Sn, let aσ = (a1σ, . . . , anσ) .

If f : kn → k and σ ∈ Sn, then we write

σ ` f :⇐⇒ f (aσ) = f (a) for all a ∈ kn.

Let O
(n)
k = {f | f : kn → k}, and for F ⊆ O

(n)
k and G ⊆ Sn define

F ` := {σ ∈ Sn | ∀f ∈ F : σ ` f }, F
(k) := (F `)`,

G` := {f ∈ O
(n)
k | ∀σ ∈ G : σ ` f }, G

(k) := (G`)`.

For G ≤ Sn, we call G
(k)

the Galois closure of G over k.

n: number of variables, k: size of domain
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Galois closed groups as invariance groups

Fact
The following are equivalent for any group G ≤ Sn:

(i) G is Galois closed over k.

(ii) G is (k , ∞)-representable.

(iii) G is the invariance group of a function f : kn → ∞.

(iv) G is the intersection of invariance groups of functions kn → 2.

(v) G is the intersection of invariance groups of functions kn → k.

(vi) G is orbit closed with respect to the action of Sn on kn.

n: number of variables, k: size of domain
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Orbits and closures

For a = (a1, . . . , an) ∈ kn and G ≤ Sn, define

aG = {aσ | σ ∈ G} , Orb(k) (G ) =
{

aG | a ∈ kn
}

.

For all G , H ≤ Sn we have

G
(k) = H

(k) ⇐⇒ G` = H` ⇐⇒ Orb(k) (G ) = Orb(k) (H) ;

G
(k) =

{
σ ∈ Sn | ∀a ∈ kn : aσ ∈ aG

}
.

The case k = 2 corresponds to orbit equivalence and orbit closure.

Proposition

For all G ≤ Sn we have G
(2)≥ G

(3)≥ · · ·≥ G
(n) = · · ·= G .

n: number of variables, k: size of domain
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The case k = n− 1

Theorem
If k = n− 1 ≥ 2, then all subgroups of Sn except An are Galois
closed over k.

Definition (Clote, Kranakis 1991)

A group G ≤ Sn is weakly representable, if G is
(k , ∞)-representable for some k < n.

Corollary

All subgroups of G ≤ Sn except for An are weakly representable.

Proof.

G ≤ Sn is weakly representable ⇐⇒ ∃k < n : G
(k) = G

⇐⇒ G
(n−1) = G

⇐⇒ G 6= An

n: number of variables, k: size of domain
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The case k = n− 2

Theorem
If k = n− 2 ≥ 2, then the Galois closures of subgroups of Sn are:

I An
(k) = Sn;

I An−1
(k) = Sn−1;

I C4
(k) = D4 (for n = 4);

I all other subgroups of Sn are closed.

n: number of variables, k: size of domain
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The case k = n− d

Theorem
Let n > max

(
2d , d2 + d

)
and G ≤ Sn. Then G is not Galois

closed over k if and only if

1. G ≤sd AL × ∆ or

2. G <sd SL × ∆,

where n = L ∪̇D with |L| > d , |D | < d and ∆ ≤ SD .

The closure of these groups is G
(k) = SL × ∆.

Remark
Using the simplicity of alternating groups, one can show that these
subdirect products are of the following form:

1. G = AL × ∆;

2. G = (AL × ∆0) ∪
(
(SL \ AL)× (∆ \ ∆0)

)
,

where ∆0 ≤ ∆ is a subgroup of index 2.

n: number of variables, k: size of domain



The case k = n− d

Theorem
Let n > max

(
2d , d2 + d

)
and G ≤ Sn. Then G is not Galois

closed over k if and only if

1. G ≤sd AL × ∆ or

2. G <sd SL × ∆,

where n = L ∪̇D with |L| > d , |D | < d and ∆ ≤ SD .

The closure of these groups is G
(k) = SL × ∆.

Remark
Using the simplicity of alternating groups, one can show that these
subdirect products are of the following form:

1. G = AL × ∆;

2. G = (AL × ∆0) ∪
(
(SL \ AL)× (∆ \ ∆0)

)
,

where ∆0 ≤ ∆ is a subgroup of index 2.

n: number of variables, k: size of domain



The case k = n− d

Theorem
Let n > max

(
2d , d2 + d

)
and G ≤ Sn. Then G is not Galois

closed over k if and only if

1. G ≤sd AL × ∆ or

2. G <sd SL × ∆,

where n = L ∪̇D with |L| > d , |D | < d and ∆ ≤ SD .

The closure of these groups is G
(k) = SL × ∆.

Remark
Using the simplicity of alternating groups, one can show that these
subdirect products are of the following form:

1. G = AL × ∆;

2. G = (AL × ∆0) ∪
(
(SL \ AL)× (∆ \ ∆0)

)
,

where ∆0 ≤ ∆ is a subgroup of index 2.

n: number of variables, k: size of domain



Interesting subgroups of S4, S5 and S6

G ≤ Sn G
(2)

G
(3)

G
(4)

C4 D4 C4 C4

C5 D5 C5 C5

AGL (1, 5) S5 AGL (1, 5) AGL (1, 5)

C4 × S2 D4 × S2 C4 × S2 C4 × S2

D4 ×sd S2 D4 × S2 D4 ×sd S2 D4 ×sd S2

A3 o A2 S3 o S2 A3 o A2 A3 o A2

S3 osd S2 S3 o S2 S3 osd S2 S3 osd S2

(S3 o S2) ∩ A6 S3 o S2 S3 o S2 (S3 o S2) ∩ A6

PGL (2, 5) S6 PGL (2, 5) PGL (2, 5)

Rot (�) Sym (�) Rot (�) Rot (�)
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