Invariance groups of finite functions and orbit equivalence of permutation groups

Tamás Waldhauser

University of Szeged
NSAC 2013
Novi Sad, 7th June 2013

Joint work with

- Eszter Horváth,
- Reinhard Pöschel,
- Géza Makay.

Joint work with

- Eszter Horváth,
- Reinhard Pöschel,
- Géza Makay.

We acknowledge helpful discussions with

- Erik Friese,
- Keith Kearnes,
- Erkko Lehtonen,
- P^{3} (Péter Pál Pálfy),
- Sándor Radeleczki.

Invariance groups

Definition
The invariance group of a function $f: \mathbf{k}^{n} \rightarrow \mathbf{m}$ is

$$
S(f)=\left\{\sigma \in S_{n} \mid f\left(x_{1}, \ldots, x_{n}\right) \equiv f\left(x_{1 \sigma}, \ldots, x_{n \sigma}\right)\right\}
$$

Invariance groups

Definition

The invariance group of a function $f: \mathbf{k}^{n} \rightarrow \mathbf{m}$ is

$$
S(f)=\left\{\sigma \in S_{n} \mid f\left(x_{1}, \ldots, x_{n}\right) \equiv f\left(x_{1 \sigma}, \ldots, x_{n \sigma}\right)\right\}
$$

Definition

- A group G is (k, m)-representable if there is a function $f: \mathbf{k}^{n} \rightarrow \mathbf{m}$ such that $S(f)=G$.

Invariance groups

Definition

The invariance group of a function $f: \mathbf{k}^{n} \rightarrow \mathbf{m}$ is

$$
S(f)=\left\{\sigma \in S_{n} \mid f\left(x_{1}, \ldots, x_{n}\right) \equiv f\left(x_{1 \sigma}, \ldots, x_{n \sigma}\right)\right\}
$$

Definition

- A group G is (k, m)-representable if there is a function $f: \mathbf{k}^{n} \rightarrow \mathbf{m}$ such that $S(f)=G$.
- A group G is (k, ∞)-representable if G is (k, m)-representable for some m.

Invariance groups

Definition

The invariance group of a function $f: \mathbf{k}^{n} \rightarrow \mathbf{m}$ is

$$
S(f)=\left\{\sigma \in S_{n} \mid f\left(x_{1}, \ldots, x_{n}\right) \equiv f\left(x_{1 \sigma}, \ldots, x_{n \sigma}\right)\right\}
$$

Definition

- A group G is (k, m)-representable if there is a function $f: \mathbf{k}^{n} \rightarrow \mathbf{m}$ such that $S(f)=G$.
- A group G is (k, ∞)-representable if G is (k, m)-representable for some m.

Special cases:

- G is $(2,2)$-representable iff G is the invariance group of a Boolean function $f: \mathbf{2}^{n} \rightarrow \mathbf{2}$.

Invariance groups

Definition

The invariance group of a function $f: \mathbf{k}^{n} \rightarrow \mathbf{m}$ is

$$
S(f)=\left\{\sigma \in S_{n} \mid f\left(x_{1}, \ldots, x_{n}\right) \equiv f\left(x_{1 \sigma}, \ldots, x_{n \sigma}\right)\right\}
$$

Definition

- A group G is (k, m)-representable if there is a function $f: \mathbf{k}^{n} \rightarrow \mathbf{m}$ such that $S(f)=G$.
- A group G is (k, ∞)-representable if G is (k, m)-representable for some m.

Special cases:

- G is $(2,2)$-representable iff G is the invariance group of a Boolean function $f: \mathbf{2}^{n} \rightarrow \mathbf{2}$.
- G is $(2, \infty)$-representable iff G is the invariance group of a pseudo-Boolean function $f: \mathbf{2}^{\boldsymbol{n}} \rightarrow \mathbf{m}$.

Abstract representation

Frucht 1939:
Every group is isomorphic to the automorphism group of a graph.

Abstract representation

Frucht 1939:
Every group is isomorphic to the automorphism group of a graph.
Corollary
Every group is isomorphic to the invariance group of some Boolean function (i.e., (2, 2)-representable).

Abstract representation

Frucht 1939:
Every group is isomorphic to the automorphism group of a graph.
Corollary
Every group is isomorphic to the invariance group of some Boolean function (i.e., (2, 2)-representable).

Proof.
$f: \mathbf{2}^{n} \rightarrow \mathbf{2} \leadsto \mathcal{H}=\left(\mathbf{n},\left\{E \subseteq \mathbf{n} \mid f\left(\chi_{E}\right)=1\right\}\right)$

Abstract representation

Frucht 1939:
Every group is isomorphic to the automorphism group of a graph.
Corollary
Every group is isomorphic to the invariance group of some Boolean function (i.e., $(2,2)$-representable).

Proof.
$f: \mathbf{2}^{n} \rightarrow \mathbf{2}$ ↔ $\mathcal{H}=\left(\mathbf{n},\left\{E \subseteq \mathbf{n} \mid f\left(\chi_{E}\right)=1\right\}\right)$

Example

Concrete representation

Example

Suppose that $S(f)=A_{3}$ for some $f: \mathbf{2}^{3} \rightarrow \mathbf{m}$.

Concrete representation

Example

Suppose that $S(f)=A_{3}$ for some $f: \mathbf{2}^{3} \rightarrow \mathbf{m}$. Then f must be constant on the orbits of A_{3} acting on 2^{3} :

000	\mapsto	a
$100,010,001$	\mapsto	b
$011,101,110$	\mapsto	c
111	\mapsto	d

Concrete representation

Example

Suppose that $S(f)=A_{3}$ for some $f: \mathbf{2}^{3} \rightarrow \mathbf{m}$. Then f must be constant on the orbits of A_{3} acting on 2^{3} :

However, such a function is totally symmetric, i.e., $S(f)=S_{3}$.

Concrete representation

Example

Suppose that $S(f)=A_{3}$ for some $f: \mathbf{2}^{3} \rightarrow \mathbf{m}$. Then f must be constant on the orbits of A_{3} acting on 2^{3} :

However, such a function is totally symmetric, i.e., $S(f)=S_{3}$. Thus A_{3} is not $(2, \infty)$-representable.

Concrete representation

Example

Suppose that $S(f)=A_{3}$ for some $f: \mathbf{2}^{3} \rightarrow \mathbf{m}$. Then f must be constant on the orbits of A_{3} acting on 2^{3} :

However, such a function is totally symmetric, i.e., $S(f)=S_{3}$. Thus A_{3} is not $(2, \infty)$-representable.

Let $g: \mathbf{3}^{3} \rightarrow \mathbf{2}$ such that $g(0,1,2)=g(1,2,0)=g(2,1,0)=1$ and $g=0$ everywhere else.
Then $S(g)=A_{3}$, thus A_{3} is $(3,2)$-representable.

Ein Kleines Problem

Clote, Kranakis 1991:
If G is $(2, \infty)$-representable, then G is $(2,2)$-representable.

Ein Kleines Problem

Clote, Kranakis 1991:
If G is $(2, \infty)$-representable, then G is $(2,2)$-representable.
Kisielewicz 1998:
False!

Ein Kleines Problem

Clote, Kranakis 1991:
If G is $(2, \infty)$-representable, then G is $(2,2)$-representable.
Kisielewicz 1998:
False! The Klein four-group

$$
V=\{\text { id, (12) }(34),(13)(24),(14)(23)\} \leq S_{4}
$$

is a counterexample;

Ein Kleines Problem

Clote, Kranakis 1991:

If G is $(2, \infty)$-representable, then G is $(2,2)$-representable.
Kisielewicz 1998:
False! The Klein four-group

$$
V=\{\text { id, (12) (34), (13) (24), (14) (23) }\} \leq S_{4}
$$

is a counterexample; moreover, it is the only counterexample that one could "easily" find.

Ein Kleines Problem

Clote, Kranakis 1991:
If G is $(2, \infty)$-representable, then G is $(2,2)$-representable.
Kisielewicz 1998:
False! The Klein four-group

$$
V=\{\text { id, (12) (34), (13) (24), (14) (23) }\} \leq S_{4}
$$

is a counterexample; moreover, it is the only counterexample that one could "easily" find.

$$
V=S(\square)
$$

Ein Kleines Problem

Clote, Kranakis 1991:
If G is $(2, \infty)$-representable, then G is $(2,2)$-representable.
Kisielewicz 1998:
False! The Klein four-group

$$
V=\{\text { id, (12) }(34),(13)(24),(14)(23)\} \leq S_{4}
$$

is a counterexample; moreover, it is the only counterexample that one could "easily" find.

$\Longrightarrow V$ is $(2,3)$-representable but not $(2,2)$-representable.

Ein Kleines Problem

Clote, Kranakis 1991:
If G is $(2, \infty)$-representable, then G is $(2,2)$-representable.
Kisielewicz 1998:
False! The Klein four-group

$$
V=\{\text { id, (12) }(34),(13)(24),(14)(23)\} \leq S_{4}
$$

is a counterexample; moreover, it is the only counterexample that one could "easily" find.

$\Longrightarrow V$ is $(2,3)$-representable but not $(2,2)$-representable.
Dalla Volta, Siemons 2012:
There are infinitely many groups that are $(2, \infty)$-representable but not (2, 2)-representable. (?)

Ein Kleines Problem

Clote, Kranakis 1991:
If G is $(2, \infty)$-representable, then G is $(2,2)$-representable.
Kisielewicz 1998:
False! The Klein four-group

$$
V=\{\text { id, (12) }(34),(13)(24),(14)(23)\} \leq S_{4}
$$

is a counterexample; moreover, it is the only counterexample that one could "easily" find.

$\Longrightarrow V$ is $(2,3)$-representable but not $(2,2)$-representable.
Dalla Volta, Siemons 2012:
There are infinitely many groups that are $(2, \infty)$-representable but not (2, 2)-representable. (?)

Orbit closure

Clote, Kranakis 1991:
The following are equivalent for any group $G \leq S_{n}$:
(i) G is the invariance group of a pseudo-Boolean function (i.e., G is $(2, \infty)$-representable).
(ii) G is the intersection of invariance groups of Boolean functions (i.e., (2, 2)-representable groups).

Orbit closure

Clote, Kranakis 1991:
The following are equivalent for any group $G \leq S_{n}$:
(i) G is the invariance group of a pseudo-Boolean function (i.e., G is $(2, \infty)$-representable).
(ii) G is the intersection of invariance groups of Boolean functions (i.e., (2, 2)-representable groups).
(iii) G is orbit closed.

Orbit closure

Clote, Kranakis 1991:
The following are equivalent for any group $G \leq S_{n}$:
(i) G is the invariance group of a pseudo-Boolean function (i.e., G is $(2, \infty)$-representable).
(ii) G is the intersection of invariance groups of Boolean functions (i.e., (2,2)-representable groups).
(iii) G is orbit closed.

Two subgroups of S_{n} are orbit equivalent if they have the same orbits on $\mathcal{P}(\mathbf{n})$

Orbit closure

Clote, Kranakis 1991:
The following are equivalent for any group $G \leq S_{n}$:
(i) G is the invariance group of a pseudo-Boolean function (i.e., G is $(2, \infty)$-representable).
(ii) G is the intersection of invariance groups of Boolean functions (i.e., (2,2)-representable groups).
(iii) G is orbit closed.

Two subgroups of S_{n} are orbit equivalent if they have the same orbits on $\mathcal{P}(\mathbf{n}) \leftrightarrow \mathbf{2}^{n}$.

Orbit closure

Clote, Kranakis 1991:
The following are equivalent for any group $G \leq S_{n}$:
(i) G is the invariance group of a pseudo-Boolean function (i.e., G is $(2, \infty)$-representable).
(ii) G is the intersection of invariance groups of Boolean functions (i.e., (2, 2)-representable groups).
(iii) G is orbit closed.

Two subgroups of S_{n} are orbit equivalent if they have the same orbits on $\mathcal{P}(\mathbf{n}) \nVdash \mathbf{2}^{n}$.

The orbit closure of G is the greatest element of its orbit equivalence class.

Primitive groups

Inglis; Cameron, Neumann, Saxl; Siemons, Wagner 1984-85:
Almost all primitive groups are orbit closed.

Primitive groups

Inglis; Cameron, Neumann, Saxl; Siemons, Wagner 1984-85:
Almost all primitive groups are orbit closed.
Seress 1997:
All primitive subgroups of S_{n} are orbit closed except for A_{n} and $C_{5}, \operatorname{AGL}(1,5), \operatorname{PGL}(2,5), \operatorname{AGL}(1,8), \operatorname{A\Gamma L}(1,8), \operatorname{AGL}(1,9)$, $\operatorname{ASL}(2,3), \operatorname{PSL}(2,8), \operatorname{PL}(2,8)$ and $\operatorname{PGL}(2,9)$.

Primitive groups

Inglis; Cameron, Neumann, Saxl; Siemons, Wagner 1984-85:
Almost all primitive groups are orbit closed.
Seress 1997:
All primitive subgroups of S_{n} are orbit closed except for A_{n} and $C_{5}, \operatorname{AGL}(1,5), \operatorname{PGL}(2,5), \operatorname{AGL}(1,8), \operatorname{A\Gamma L}(1,8), \operatorname{AGL}(1,9)$, $\operatorname{ASL}(2,3), \operatorname{PSL}(2,8), \operatorname{PL}(2,8)$ and $\operatorname{PGL}(2,9)$.

Theorem
All primitive groups are $(3, \infty)$-representable except for the alternating groups.

A Galois connection

For $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{k}^{n}$ and $\sigma \in S_{n}$, let $a^{\sigma}=\left(a_{1 \sigma}, \ldots, a_{n \sigma}\right)$.

A Galois connection

For $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{k}^{n}$ and $\sigma \in S_{n}$, let $a^{\sigma}=\left(a_{1 \sigma}, \ldots, a_{n \sigma}\right)$.
If $f: \mathbf{k}^{n} \rightarrow \mathbf{k}$ and $\sigma \in S_{n}$, then we write

$$
\sigma \vdash f: \Longleftrightarrow f\left(a^{\sigma}\right)=f(a) \text { for all } a \in \mathbf{k}^{n} .
$$

A Galois connection

For $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{k}^{n}$ and $\sigma \in S_{n}$, let $a^{\sigma}=\left(a_{1 \sigma}, \ldots, a_{n \sigma}\right)$.
If $f: \mathbf{k}^{n} \rightarrow \mathbf{k}$ and $\sigma \in S_{n}$, then we write

$$
\sigma \vdash f: \Longleftrightarrow f\left(a^{\sigma}\right)=f(a) \text { for all } a \in \mathbf{k}^{n} .
$$

Let $O_{k}^{(n)}=\left\{f \mid f: \mathbf{k}^{n} \rightarrow \mathbf{k}\right\}$, and for $F \subseteq O_{k}^{(n)}$ and $G \subseteq S_{n}$ define

$$
\begin{array}{ll}
F^{\vdash}:=\left\{\sigma \in S_{n} \mid \forall f \in F: \sigma \vdash f\right\}, & \bar{F}^{(k)}:=\left(F^{\vdash}\right)^{\vdash}, \\
G^{\vdash}:=\left\{f \in O_{k}^{(n)} \mid \forall \sigma \in G: \sigma \vdash f\right\}, & \bar{G}^{(k)}:=\left(G^{\vdash}\right)^{\vdash} .
\end{array}
$$

A Galois connection

For $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{k}^{n}$ and $\sigma \in S_{n}$, let $a^{\sigma}=\left(a_{1 \sigma}, \ldots, a_{n \sigma}\right)$.
If $f: \mathbf{k}^{n} \rightarrow \mathbf{k}$ and $\sigma \in S_{n}$, then we write

$$
\sigma \vdash f: \Longleftrightarrow f\left(a^{\sigma}\right)=f(a) \text { for all } a \in \mathbf{k}^{n} .
$$

Let $O_{k}^{(n)}=\left\{f \mid f: \mathbf{k}^{n} \rightarrow \mathbf{k}\right\}$, and for $F \subseteq O_{k}^{(n)}$ and $G \subseteq S_{n}$ define

$$
\begin{array}{ll}
F^{\vdash}:=\left\{\sigma \in S_{n} \mid \forall f \in F: \sigma \vdash f\right\}, & \bar{F}^{(k)}:=\left(F^{\vdash}\right)^{\vdash}, \\
G^{\vdash}:=\left\{f \in O_{k}^{(n)} \mid \forall \sigma \in G: \sigma \vdash f\right\}, & \bar{G}^{(k)}:=\left(G^{\vdash}\right)^{\vdash} .
\end{array}
$$

For $G \leq S_{n}$, we call $\bar{G}^{(k)}$ the Galois closure of G over \mathbf{k}.

Galois closed groups as invariance groups

Galois closed groups as invariance groups

Fact
The following are equivalent for any group $G \leq S_{n}$:
(i) G is Galois closed over \mathbf{k}.
(ii) G is (k, ∞)-representable.

Galois closed groups as invariance groups

Fact
The following are equivalent for any group $G \leq S_{n}$:
(i) G is Galois closed over \mathbf{k}.
(ii) G is (k, ∞)-representable.
(iii) G is the invariance group of a function $f: \mathbf{k}^{n} \rightarrow \infty$.

Galois closed groups as invariance groups

Fact
The following are equivalent for any group $G \leq S_{n}$:
(i) G is Galois closed over \mathbf{k}.
(ii) G is (k, ∞)-representable.
(iii) G is the invariance group of a function $f: \mathbf{k}^{n} \rightarrow \infty$.
(iv) G is the intersection of invariance groups of functions $\mathbf{k}^{n} \rightarrow \mathbf{2}$.
(v) G is the intersection of invariance groups of functions $\mathbf{k}^{n} \rightarrow \mathbf{k}$.

Galois closed groups as invariance groups

Fact
The following are equivalent for any group $G \leq S_{n}$:
(i) G is Galois closed over \mathbf{k}.
(ii) G is (k, ∞)-representable.
(iii) G is the invariance group of a function $f: \mathbf{k}^{n} \rightarrow \infty$.
(iv) G is the intersection of invariance groups of functions $\mathbf{k}^{n} \rightarrow \mathbf{2}$.
(v) G is the intersection of invariance groups of functions $\mathbf{k}^{n} \rightarrow \mathbf{k}$.
(vi) G is orbit closed with respect to the action of S_{n} on \mathbf{k}^{n}.

Orbits and closures

For $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{k}^{n}$ and $G \leq S_{n}$, define

$$
a^{G}=\left\{a^{\sigma} \mid \sigma \in G\right\}, \quad \operatorname{Orb}^{(k)}(G)=\left\{a^{G} \mid a \in \mathbf{k}^{n}\right\} .
$$

Orbits and closures

For $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{k}^{n}$ and $G \leq S_{n}$, define

$$
a^{G}=\left\{a^{\sigma} \mid \sigma \in G\right\}, \quad \operatorname{Orb}^{(k)}(G)=\left\{a^{G} \mid a \in \mathbf{k}^{n}\right\} .
$$

For all $G, H \leq S_{n}$ we have

$$
\bar{G}^{(k)}=\bar{H}^{(k)} \Longleftrightarrow G^{\vdash}=H^{-}
$$

Orbits and closures

For $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{k}^{n}$ and $G \leq S_{n}$, define

$$
a^{G}=\left\{a^{\sigma} \mid \sigma \in G\right\}, \quad \operatorname{Orb}^{(k)}(G)=\left\{a^{G} \mid a \in \mathbf{k}^{n}\right\} .
$$

For all $G, H \leq S_{n}$ we have

$$
\bar{G}^{(k)}=\bar{H}^{(k)} \Longleftrightarrow G^{\vdash}=H^{\vdash} \Longleftrightarrow \operatorname{Orb}^{(k)}(G)=\operatorname{Orb}^{(k)}(H) ;
$$

Orbits and closures

For $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{k}^{n}$ and $G \leq S_{n}$, define

$$
a^{G}=\left\{a^{\sigma} \mid \sigma \in G\right\}, \quad \operatorname{Orb}^{(k)}(G)=\left\{a^{G} \mid a \in \mathbf{k}^{n}\right\} .
$$

For all $G, H \leq S_{n}$ we have

$$
\begin{gathered}
\bar{G}^{(k)}=\bar{H}^{(k)} \Longleftrightarrow G^{\vdash}=H^{\vdash} \Longleftrightarrow \operatorname{Orb}^{(k)}(G)=\operatorname{Orb}^{(k)}(H) ; \\
\bar{G}^{(k)}=\left\{\sigma \in S_{n} \mid \forall a \in \mathbf{k}^{n}: a^{\sigma} \in a^{G}\right\} .
\end{gathered}
$$

Orbits and closures

For $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{k}^{n}$ and $G \leq S_{n}$, define

$$
a^{G}=\left\{a^{\sigma} \mid \sigma \in G\right\}, \quad \operatorname{Orb}^{(k)}(G)=\left\{a^{G} \mid a \in \mathbf{k}^{n}\right\} .
$$

For all $G, H \leq S_{n}$ we have

$$
\begin{gathered}
\bar{G}^{(k)}=\bar{H}^{(k)} \Longleftrightarrow G^{\vdash}=H^{\vdash} \Longleftrightarrow \operatorname{Orb}^{(k)}(G)=\operatorname{Orb}^{(k)}(H) ; \\
\bar{G}^{(k)}=\left\{\sigma \in S_{n} \mid \forall a \in \mathbf{k}^{n}: a^{\sigma} \in a^{G}\right\} .
\end{gathered}
$$

The case $k=2$ corresponds to orbit equivalence and orbit closure.

Orbits and closures

For $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{k}^{n}$ and $G \leq S_{n}$, define

$$
a^{G}=\left\{a^{\sigma} \mid \sigma \in G\right\}, \quad \operatorname{Orb}^{(k)}(G)=\left\{a^{G} \mid a \in \mathbf{k}^{n}\right\} .
$$

For all $G, H \leq S_{n}$ we have

$$
\begin{gathered}
\bar{G}^{(k)}=\bar{H}^{(k)} \Longleftrightarrow G^{\vdash}=H^{\vdash} \Longleftrightarrow \operatorname{Orb}^{(k)}(G)=\operatorname{Orb}^{(k)}(H) ; \\
\bar{G}^{(k)}=\left\{\sigma \in S_{n} \mid \forall a \in \mathbf{k}^{n}: a^{\sigma} \in a^{G}\right\} .
\end{gathered}
$$

The case $k=2$ corresponds to orbit equivalence and orbit closure.

Proposition
For all $G \leq S_{n}$ we have $\bar{G}^{(2)} \geq \bar{G}^{(3)} \geq \cdots \geq \bar{G}^{(n)}=\cdots=G$.

A formula for the closure

Proposition
For every $G \leq S_{n}$ and $k \geq 2$, we have

$$
\bar{G}^{(k)}=\bigcap_{a \in \mathbf{k}^{n}} \operatorname{Stab}(a) \cdot G
$$

A formula for the closure

Proposition
For every $G \leq S_{n}$ and $k \geq 2$, we have

$$
\bar{G}^{(k)}=\bigcap_{a \in \mathbf{k}^{n}} \operatorname{Stab}(a) \cdot G
$$

Proof.

$$
\bar{G}^{(k)}=\left\{\sigma \in S_{n} \mid \forall a \in \mathbf{k}^{n}: a^{\sigma} \in a^{G}\right\}
$$

A formula for the closure

Proposition
For every $G \leq S_{n}$ and $k \geq 2$, we have

$$
\bar{G}^{(k)}=\bigcap_{a \in \mathbf{k}^{n}} \operatorname{Stab}(a) \cdot G .
$$

Proof.

$$
\begin{aligned}
\bar{G}^{(k)} & =\left\{\sigma \in S_{n} \mid \forall a \in \mathbf{k}^{n}: a^{\sigma} \in a^{G}\right\} \\
& =\left\{\sigma \in S_{n} \mid \forall a \in \mathbf{k}^{n} \exists \pi \in G: a^{\sigma}=a^{\pi}\right\}
\end{aligned}
$$

A formula for the closure

Proposition
For every $G \leq S_{n}$ and $k \geq 2$, we have

$$
\bar{G}^{(k)}=\bigcap_{a \in \mathbf{k}^{n}} \operatorname{Stab}(a) \cdot G
$$

Proof.

$$
\begin{aligned}
\bar{G}^{(k)} & =\left\{\sigma \in S_{n} \mid \forall a \in \mathbf{k}^{n}: a^{\sigma} \in a^{G}\right\} \\
& =\left\{\sigma \in S_{n} \mid \forall a \in \mathbf{k}^{n} \exists \pi \in G: a^{\sigma}=a^{\pi}\right\} \\
& =\left\{\sigma \in S_{n} \mid \forall a \in \mathbf{k}^{n} \exists \pi \in G: \sigma \pi^{-1} \in \operatorname{Stab}(a)\right\}
\end{aligned}
$$

A formula for the closure

Proposition
For every $G \leq S_{n}$ and $k \geq 2$, we have

$$
\bar{G}^{(k)}=\bigcap_{a \in \mathbf{k}^{n}} \operatorname{Stab}(a) \cdot G
$$

Proof.

$$
\begin{aligned}
\bar{G}^{(k)} & =\left\{\sigma \in S_{n} \mid \forall a \in \mathbf{k}^{n}: a^{\sigma} \in a^{G}\right\} \\
& =\left\{\sigma \in S_{n} \mid \forall a \in \mathbf{k}^{n} \exists \pi \in G: a^{\sigma}=a^{\pi}\right\} \\
& =\left\{\sigma \in S_{n} \mid \forall a \in \mathbf{k}^{n} \exists \pi \in G: \sigma \pi^{-1} \in \operatorname{Stab}(a)\right\} \\
& =\left\{\sigma \in S_{n} \mid \forall a \in \mathbf{k}^{n}: \sigma \in \operatorname{Stab}(a) \cdot G\right\}
\end{aligned}
$$

A formula for the closure

Proposition
For every $G \leq S_{n}$ and $k \geq 2$, we have

$$
\bar{G}^{(k)}=\bigcap_{a \in \mathbf{k}^{n}} \operatorname{Stab}(a) \cdot G
$$

Proof.

$$
\begin{align*}
\bar{G}^{(k)} & =\left\{\sigma \in S_{n} \mid \forall a \in \mathbf{k}^{n}: a^{\sigma} \in a^{G}\right\} \\
& =\left\{\sigma \in S_{n} \mid \forall a \in \mathbf{k}^{n} \exists \pi \in G: a^{\sigma}=a^{\pi}\right\} \\
& =\left\{\sigma \in S_{n} \mid \forall a \in \mathbf{k}^{n} \exists \pi \in G: \sigma \pi^{-1} \in \operatorname{Stab}(a)\right\} \\
& =\left\{\sigma \in S_{n} \mid \forall a \in \mathbf{k}^{n}: \sigma \in \operatorname{Stab}(a) \cdot G\right\} \\
& =\bigcap_{a \in \mathbf{k}^{n}} \operatorname{Stab}(a) \cdot G .
\end{align*}
$$

The case $k=n-1$

Theorem
If $k=n-1 \geq 2$, then all subgroups of S_{n} except A_{n} are Galois closed over \mathbf{k}.

The case $k=n-1$

Theorem
If $k=n-1 \geq 2$, then all subgroups of S_{n} except A_{n} are Galois closed over \mathbf{k}.

Definition (Clote, Kranakis 1991)
A group $G \leq S_{n}$ is weakly representable, if G is (k, ∞)-representable for some $k<n$.

The case $k=n-1$

Theorem
If $k=n-1 \geq 2$, then all subgroups of S_{n} except A_{n} are Galois closed over \mathbf{k}.

Definition (Clote, Kranakis 1991)
A group $G \leq S_{n}$ is weakly representable, if G is (k, ∞)-representable for some $k<n$.

Corollary
All subgroups of $G \leq S_{n}$ except for A_{n} are weakly representable.

The case $k=n-1$

Theorem
If $k=n-1 \geq 2$, then all subgroups of S_{n} except A_{n} are Galois closed over \mathbf{k}.

Definition (Clote, Kranakis 1991)
A group $G \leq S_{n}$ is weakly representable, if G is (k, ∞)-representable for some $k<n$.

Corollary
All subgroups of $G \leq S_{n}$ except for A_{n} are weakly representable.
Proof.
$G \leq S_{n}$ is weakly representable $\Longleftrightarrow \quad \exists k<n: \bar{G}^{(k)}=G$

The case $k=n-1$

Theorem
If $k=n-1 \geq 2$, then all subgroups of S_{n} except A_{n} are Galois closed over \mathbf{k}.

Definition (Clote, Kranakis 1991)
A group $G \leq S_{n}$ is weakly representable, if G is (k, ∞)-representable for some $k<n$.

Corollary
All subgroups of $G \leq S_{n}$ except for A_{n} are weakly representable.
Proof.
$G \leq S_{n}$ is weakly representable $\Longleftrightarrow \quad \exists k<n: \bar{G}^{(k)}=G$

$$
\Longleftrightarrow \quad \bar{G}^{(n-1)}=G
$$

The case $k=n-1$

Theorem
If $k=n-1 \geq 2$, then all subgroups of S_{n} except A_{n} are Galois closed over \mathbf{k}.

Definition (Clote, Kranakis 1991)
A group $G \leq S_{n}$ is weakly representable, if G is (k, ∞)-representable for some $k<n$.

Corollary
All subgroups of $G \leq S_{n}$ except for A_{n} are weakly representable.
Proof.
$G \leq S_{n}$ is weakly representable $\Longleftrightarrow \quad \exists k<n: \bar{G}^{(k)}=G$

$$
\Longleftrightarrow \quad \bar{G}^{(n-1)}=G
$$

$$
\Longleftrightarrow \quad G \neq A_{n}
$$

The case $k=n-2$

Theorem
If $k=n-2 \geq 2$, then the Galois closures of subgroups of S_{n} are:

- ${\overline{A_{n}}}^{(k)}=S_{n} ;$

The case $k=n-2$

Theorem
If $k=n-2 \geq 2$, then the Galois closures of subgroups of S_{n} are:

- ${\overline{A_{n}}}^{(k)}=S_{n} ;$
- ${\overline{A_{n-1}}}^{(k)}=S_{n-1}$;

The case $k=n-2$

Theorem
If $k=n-2 \geq 2$, then the Galois closures of subgroups of S_{n} are:

- ${\overline{A_{n}}}^{(k)}=S_{n}$;
- ${\overline{A_{n-1}}}^{(k)}=S_{n-1}$;
- $\bar{C}_{4}{ }^{(k)}=D_{4}($ for $n=4)$;

The case $k=n-2$

Theorem
If $k=n-2 \geq 2$, then the Galois closures of subgroups of S_{n} are:

- ${\overline{A_{n}}}^{(k)}=S_{n}$;
- ${\overline{A_{n-1}}}^{(k)}=S_{n-1}$;
- $\bar{C}_{4}{ }^{(k)}=D_{4}($ for $n=4)$;
- all other subgroups of S_{n} are closed.

The case $k=n-d$

Theorem
Let $n>\max \left(2^{d}, d^{2}+d\right)$ and $G \leq S_{n}$. Then G is not Galois closed over \mathbf{k} if and only if

1. $G \leq_{\text {sd }} A_{L} \times \Delta$ or
2. $G<_{\text {sd }} S_{L} \times \Delta$,
where $\mathbf{n}=L \dot{\cup} D$ with $|L|>d,|D|<d$ and $\Delta \leq S_{D}$.
The closure of these groups is $\bar{G}^{(k)}=S_{L} \times \Delta$.

The case $k=n-d$

Theorem
Let $n>\max \left(2^{d}, d^{2}+d\right)$ and $G \leq S_{n}$. Then G is not Galois closed over \mathbf{k} if and only if

1. $G \leq_{\text {sd }} A_{L} \times \Delta$ or
2. $G<_{s d} S_{L} \times \Delta$,
where $\mathbf{n}=L \dot{\cup} D$ with $|L|>d,|D|<d$ and $\Delta \leq S_{D}$.
The closure of these groups is $\bar{G}^{(k)}=S_{L} \times \Delta$.

Remark

Using the simplicity of alternating groups, one can show that these subdirect products are of the following form:

1. $G=A_{L} \times \Delta$;

The case $k=n-d$

Theorem

Let $n>\max \left(2^{d}, d^{2}+d\right)$ and $G \leq S_{n}$. Then G is not Galois closed over \mathbf{k} if and only if

1. $G \leq_{\text {sd }} A_{L} \times \Delta$ or
2. $G<_{\text {sd }} S_{L} \times \Delta$,
where $\mathbf{n}=L \dot{\cup} D$ with $|L|>d,|D|<d$ and $\Delta \leq S_{D}$.
The closure of these groups is $\bar{G}^{(k)}=S_{L} \times \Delta$.

Remark

Using the simplicity of alternating groups, one can show that these subdirect products are of the following form:

1. $G=A_{L} \times \Delta$;
2. $G=\left(A_{L} \times \Delta_{0}\right) \cup\left(\left(S_{L} \backslash A_{L}\right) \times\left(\Delta \backslash \Delta_{0}\right)\right)$,
where $\Delta_{0} \leq \Delta$ is a subgroup of index 2 .

Interesting subgroups of S_{4}, S_{5} and S_{6}

Interesting subgroups of S_{4}, S_{5} and S_{6}

$G \leq S_{n}$	$\bar{G}^{(2)}$	$\bar{G}^{(3)}$	$\bar{G}^{(4)}$
C_{4}	D_{4}	C_{4}	C_{4}

Interesting subgroups of S_{4}, S_{5} and S_{6}

$G \leq S_{n}$	$\bar{G}^{(2)}$	$\bar{G}^{(3)}$	$\bar{G}^{(4)}$
C_{4}	D_{4}	C_{4}	C_{4}
C_{5}	D_{5}	C_{5}	C_{5}
$\operatorname{AGL}(1,5)$	S_{5}	$\operatorname{AGL}(1,5)$	$\operatorname{AGL}(1,5)$

Interesting subgroups of S_{4}, S_{5} and S_{6}

$G \leq S_{n}$	$\bar{G}^{(2)}$	$\bar{G}^{(3)}$	$\bar{G}^{(4)}$
C_{4}	D_{4}	C_{4}	C_{4}
C_{5}	D_{5}	C_{5}	C_{5}
AGL（1，5）	S_{5}	AGL（1，5）	AGL（1，5）
$C_{4} \times S_{2}$	$D_{4} \times S_{2}$	$C_{4} \times S_{2}$	$C_{4} \times S_{2}$
$D_{4} \times{ }_{\text {sd }} S_{2}$	$D_{4} \times S_{2}$	$D_{4} \times{ }_{\text {sd }} S_{2}$	$D_{4} \times{ }_{\text {sd }} S_{2}$
$A_{3} \backslash A_{2}$	$S_{3} \backslash S_{2}$	A_{3} \} A _ { 2 }	$A_{3} \backslash A_{2}$
$S_{3}{ }_{\text {sd }} S_{2}$	$S_{3} \backslash S_{2}$	$S_{3}{ }_{\text {sd }} S_{2}$	$S_{3}{ }_{\text {sdd }} S_{2}$
$\left(S_{3} \backslash S_{2}\right) \cap A_{6}$	$S_{3} \backslash S_{2}$	$S_{3} \backslash S_{2}$	$\left(S_{3} \backslash S_{2}\right) \cap A_{6}$
PGL（ 2,5 ）	S_{6}	PGL（ 2,5 ）	PGL（ 2,5 ）
$\operatorname{Rot}\left(\mathbb{L}^{(1)}\right.$	Sym（罒）	Rot（四）	Rot（罒）

References

P.J. Cameron, P.M. Neumann, J. Saxl, On groups with no regular orbits on the set of subsets, Arch. Math. 43 (1984), 295-296.
P. Clote, E. Kranakis, Boolean functions, invariance groups, and parallel complexity, SIAM J. Comput. 20 (1991), 553-590.
F. Dalla Volta, J. Siemons, Orbit equivalence and permutation groups defined by unordered relations, J. Algebr. Comb. 35 (2012), 547-564.
E. E. K. Horváth, G. Makay, R. Pöschel, T. Waldhauser, Invariance groups of finite functions and orbit equivalence of permutation groups, arXiv:1210.1015.
圊 N.F.J. Inglis, On orbit equivalent permutation groups, Arch. Math. 43 (1984), 297-300.
(1. A. Kisielewicz, Symmetry groups of Boolean functions and constructions of permutation groups, J. Algebra 199 (1998), 379-403.
R. Á. Seress, Primitive groups with no regular orbits on the set of subsets, Bull. Lond. Math. Soc., 29 (1997), 697-704.
(J. Siemons, A. Wagner, On finite permutation groups with the same orbits on unordered sets, Arch. Math. 45 (1985), 492-500.

