Invariance groups of finite functions and orbit equivalence of permutation groups

Tamás Waldhauser

University of Szeged

NSAC 2013 Novi Sad, 7th June 2013 Joint work with

- Eszter Horváth,
- ► Reinhard Pöschel,
- Géza Makay.

Joint work with

- Eszter Horváth,
- Reinhard Pöschel,
- Géza Makay.

We acknowledge helpful discussions with

- Erik Friese,
- Keith Kearnes,
- Erkko Lehtonen,
- P³ (Péter Pál Pálfy),
- Sándor Radeleczki.

Definition

The invariance group of a function $f: \mathbf{k}^n \to \mathbf{m}$ is

$$S(f) = \{ \sigma \in S_n \mid f(x_1, \ldots, x_n) \equiv f(x_{1\sigma}, \ldots, x_{n\sigma}) \}.$$

Definition

The invariance group of a function $f: \mathbf{k}^n \to \mathbf{m}$ is

$$S(f) = \{ \sigma \in S_n \mid f(x_1, \ldots, x_n) \equiv f(x_{1\sigma}, \ldots, x_{n\sigma}) \}.$$

Definition

▶ A group G is (k, m)-representable if there is a function $f : k^n \to m$ such that S(f) = G.

Definition

The invariance group of a function $f: \mathbf{k}^n \to \mathbf{m}$ is

$$S(f) = \{ \sigma \in S_n \mid f(x_1, \ldots, x_n) \equiv f(x_{1\sigma}, \ldots, x_{n\sigma}) \}.$$

Definition

- ▶ A group G is (k, m)-representable if there is a function $f : k^n \to m$ such that S(f) = G.
- A group G is (k,∞)-representable if G is (k, m)-representable for some m.

Definition

The invariance group of a function $f: \mathbf{k}^n \to \mathbf{m}$ is

$$S(f) = \{ \sigma \in S_n \mid f(x_1, \ldots, x_n) \equiv f(x_{1\sigma}, \ldots, x_{n\sigma}) \}.$$

Definition

- ▶ A group G is (k, m)-representable if there is a function $f : k^n \to m$ such that S(f) = G.
- A group G is (k,∞)-representable if G is (k, m)-representable for some m.

Special cases:

 G is (2, 2)-representable iff G is the invariance group of a Boolean function f: 2ⁿ → 2.

Definition

The invariance group of a function $f: \mathbf{k}^n \to \mathbf{m}$ is

$$S(f) = \{ \sigma \in S_n \mid f(x_1, \ldots, x_n) \equiv f(x_{1\sigma}, \ldots, x_{n\sigma}) \}.$$

Definition

- ▶ A group G is (k, m)-representable if there is a function $f : k^n \to m$ such that S(f) = G.
- A group G is (k,∞)-representable if G is (k, m)-representable for some m.

Special cases:

- G is (2, 2)-representable iff G is the invariance group of a Boolean function f: 2ⁿ → 2.
- G is (2,∞)-representable iff G is the invariance group of a pseudo-Boolean function f: 2ⁿ → m.

Frucht 1939:

Every group is isomorphic to the automorphism group of a graph.

Frucht 1939:

Every group is isomorphic to the automorphism group of a graph.

Corollary

Every group is isomorphic to the invariance group of some Boolean function (i.e., (2,2)-representable).

Frucht 1939:

Every group is isomorphic to the automorphism group of a graph.

Corollary

Every group is isomorphic to the invariance group of some Boolean function (i.e., (2,2)-representable).

Proof.

$$f: \mathbf{2}^n \to \mathbf{2} \iff \mathcal{H} = \left(\mathbf{n}, \{E \subseteq \mathbf{n} \mid f(\chi_E) = 1\}\right)$$

Frucht 1939:

Every group is isomorphic to the automorphism group of a graph.

Corollary

Every group is isomorphic to the invariance group of some Boolean function (i.e., (2,2)-representable).

Proof.

$$f: \mathbf{2}^n \to \mathbf{2} \iff \mathcal{H} = \left(\mathbf{n}, \{E \subseteq \mathbf{n} \mid f(\chi_E) = 1\}\right)$$

Example

Example

Suppose that $S(f) = A_3$ for some $f: \mathbf{2}^3 \to \mathbf{m}$.

Example

Suppose that $S(f) = A_3$ for some $f: \mathbf{2}^3 \to \mathbf{m}$. Then f must be constant on the orbits of A_3 acting on $\mathbf{2}^3$:

000	\mapsto	а
100, 010, 001	\mapsto	b
011, 101, 110	\mapsto	с
111	\mapsto	d

Example

Suppose that $S(f) = A_3$ for some $f: \mathbf{2}^3 \to \mathbf{m}$. Then f must be constant on the orbits of A_3 acting on $\mathbf{2}^3$:

000	\mapsto	а
100, 010, 001	\mapsto	b
011, 101, 110	\mapsto	с
111	\mapsto	d

However, such a function is totally symmetric, i.e., $S(f) = S_3$.

Example

Suppose that $S(f) = A_3$ for some $f: \mathbf{2}^3 \to \mathbf{m}$. Then f must be constant on the orbits of A_3 acting on $\mathbf{2}^3$:

000	\mapsto	а
100, 010, 001	\mapsto	b
011, 101, 110	\mapsto	с
111	\mapsto	d

However, such a function is totally symmetric, i.e., $S(f) = S_3$. Thus A_3 is not $(2, \infty)$ -representable.

Example

Suppose that $S(f) = A_3$ for some $f: \mathbf{2}^3 \to \mathbf{m}$. Then f must be constant on the orbits of A_3 acting on $\mathbf{2}^3$:

000	\mapsto	а
100, 010, 001	\mapsto	b
011, 101, 110	\mapsto	с
111	\mapsto	d

However, such a function is totally symmetric, i.e., $S(f) = S_3$. Thus A_3 is not $(2, \infty)$ -representable.

Let $g: \mathbf{3}^3 \to \mathbf{2}$ such that g(0, 1, 2) = g(1, 2, 0) = g(2, 1, 0) = 1and g = 0 everywhere else. Then $S(g) = A_3$, thus A_3 is (3, 2)-representable.

```
Clote, Kranakis 1991:
```

If G is $(2, \infty)$ -representable, then G is (2, 2)-representable.

Clote, Kranakis 1991:

If G is $(2, \infty)$ -representable, then G is (2, 2)-representable.

Kisielewicz 1998: False!

Clote, Kranakis 1991:

If G is $(2, \infty)$ -representable, then G is (2, 2)-representable.

Kisielewicz 1998:

False! The Klein four-group

 $V=\left\{ \mathsf{id},\left(12
ight)\left(34
ight),\left(13
ight)\left(24
ight),\left(14
ight)\left(23
ight)
ight\} \leq S_{4}$

is a counterexample;

Clote, Kranakis 1991:

If G is $(2, \infty)$ -representable, then G is (2, 2)-representable.

Kisielewicz 1998:

False! The Klein four-group

 $V=\left\{ \mathsf{id},\left(12
ight)\left(34
ight),\left(13
ight)\left(24
ight),\left(14
ight)\left(23
ight)
ight\} \leq S_{4}$

is a counterexample; moreover, it is the only counterexample that one could "easily" find.

Clote, Kranakis 1991:

If G is $(2, \infty)$ -representable, then G is (2, 2)-representable.

Kisielewicz 1998:

False! The Klein four-group

$$V=\left\{ \mathsf{id},\left(12
ight)\left(34
ight),\left(13
ight)\left(24
ight),\left(14
ight)\left(23
ight)
ight\} \leq S_{4}$$

is a counterexample; moreover, it is the only counterexample that one could "easily" find.

Clote, Kranakis 1991:

If G is $(2, \infty)$ -representable, then G is (2, 2)-representable.

Kisielewicz 1998:

False! The Klein four-group

$$V=\left\{ \mathsf{id},\left(12
ight)\left(34
ight),\left(13
ight)\left(24
ight),\left(14
ight)\left(23
ight)
ight\} \leq S_{4}$$

is a counterexample; moreover, it is the only counterexample that one could "easily" find.

 \implies V is (2, 3)-representable but not (2, 2)-representable.

Clote, Kranakis 1991:

If G is $(2, \infty)$ -representable, then G is (2, 2)-representable.

Kisielewicz 1998:

False! The Klein four-group

$$V=\left\{ \mathsf{id},\left(12
ight)\left(34
ight),\left(13
ight)\left(24
ight),\left(14
ight)\left(23
ight)
ight\} \leq S_{4}$$

is a counterexample; moreover, it is the only counterexample that one could "easily" find.

$$V = S\left($$

 \implies V is (2,3)-representable but not (2,2)-representable.

Dalla Volta, Siemons 2012:

There are infinitely many groups that are $(2, \infty)$ -representable but not (2, 2)-representable. (?)

Clote, Kranakis 1991:

If G is $(2, \infty)$ -representable, then G is (2, 2)-representable.

Kisielewicz 1998:

False! The Klein four-group

$$V=\left\{ \mathsf{id},\left(12
ight)\left(34
ight),\left(13
ight)\left(24
ight),\left(14
ight)\left(23
ight)
ight\} \leq S_{4}$$

is a counterexample; moreover, it is the only counterexample that one could "easily" find.

$$V = S\left(\begin{array}{c} \\ \end{array} \right) = S\left(\begin{array}{c} \\ \end{array} \right) \cap S\left(\begin{array}{c} \\ \end{array} \right)$$

 \implies V is (2, 3)-representable but not (2, 2)-representable.

Dalla Volta, Siemons 2012:

There are infinitely many groups that are $(2, \infty)$ -representable but not (2, 2)-representable. (?)

Clote, Kranakis 1991:

The following are equivalent for any group $G \leq S_n$:

- (i) G is the invariance group of a pseudo-Boolean function (i.e., G is $(2, \infty)$ -representable).
- (ii) G is the intersection of invariance groups of Boolean functions (i.e., (2, 2)-representable groups).

Clote, Kranakis 1991:

The following are equivalent for any group $G \leq S_n$:

- (i) G is the invariance group of a pseudo-Boolean function (i.e., G is $(2, \infty)$ -representable).
- (ii) G is the intersection of invariance groups of Boolean functions (i.e., (2, 2)-representable groups).
- (iii) G is orbit closed.

Clote, Kranakis 1991:

The following are equivalent for any group $G \leq S_n$:

- (i) G is the invariance group of a pseudo-Boolean function (i.e., G is $(2, \infty)$ -representable).
- (ii) G is the intersection of invariance groups of Boolean functions (i.e., (2, 2)-representable groups).
- (iii) G is orbit closed.

Two subgroups of S_n are orbit equivalent if they have the same orbits on $\mathcal{P}(\mathbf{n})$

Clote, Kranakis 1991:

The following are equivalent for any group $G \leq S_n$:

- (i) G is the invariance group of a pseudo-Boolean function (i.e., G is $(2, \infty)$ -representable).
- (ii) G is the intersection of invariance groups of Boolean functions (i.e., (2, 2)-representable groups).
- (iii) G is orbit closed.

Two subgroups of S_n are orbit equivalent if they have the same orbits on $\mathcal{P}(\mathbf{n}) \iff \mathbf{2}^n$.

Clote, Kranakis 1991:

The following are equivalent for any group $G \leq S_n$:

- (i) G is the invariance group of a pseudo-Boolean function (i.e., G is $(2, \infty)$ -representable).
- (ii) G is the intersection of invariance groups of Boolean functions (i.e., (2, 2)-representable groups).
- (iii) G is orbit closed.

Two subgroups of S_n are orbit equivalent if they have the same orbits on $\mathcal{P}(\mathbf{n}) \iff \mathbf{2}^n$.

The orbit closure of G is the greatest element of its orbit equivalence class.

Primitive groups

Inglis; Cameron, Neumann, Saxl; Siemons, Wagner 1984–85: Almost all primitive groups are orbit closed.

Primitive groups

Inglis; Cameron, Neumann, Saxl; Siemons, Wagner 1984–85: Almost all primitive groups are orbit closed.

Seress 1997:

All primitive subgroups of S_n are orbit closed except for A_n and C_5 , AGL (1, 5), PGL (2, 5), AGL (1, 8), A Γ L(1, 8), AGL (1, 9), ASL (2, 3), PSL (2, 8), P Γ L(2, 8) and PGL (2, 9).

Primitive groups

Inglis; Cameron, Neumann, Saxl; Siemons, Wagner 1984–85: Almost all primitive groups are orbit closed.

Seress 1997:

All primitive subgroups of S_n are orbit closed except for A_n and C_5 , AGL (1, 5), PGL (2, 5), AGL (1, 8), A Γ L(1, 8), AGL (1, 9), ASL (2, 3), PSL (2, 8), P Γ L(2, 8) and PGL (2, 9).

Theorem

All primitive groups are $(3, \infty)$ -representable except for the alternating groups.

A Galois connection

For
$$a = (a_1, \ldots, a_n) \in \mathbf{k}^n$$
 and $\sigma \in S_n$, let $a^{\sigma} = (a_{1\sigma}, \ldots, a_{n\sigma})$.

A Galois connection

For
$$a = (a_1, \ldots, a_n) \in \mathbf{k}^n$$
 and $\sigma \in S_n$, let $a^{\sigma} = (a_{1\sigma}, \ldots, a_{n\sigma})$.

If $f: \mathbf{k}^n \to \mathbf{k}$ and $\sigma \in S_n$, then we write

$$\sigma \vdash f : \iff f(a^{\sigma}) = f(a)$$
 for all $a \in \mathbf{k}^n$.

A Galois connection

For
$$a = (a_1, ..., a_n) \in \mathbf{k}^n$$
 and $\sigma \in S_n$, let $a^{\sigma} = (a_{1\sigma}, ..., a_{n\sigma})$.
If $f : \mathbf{k}^n \to \mathbf{k}$ and $\sigma \in S_n$, then we write
 $\sigma \vdash f : \iff f(a^{\sigma}) = f(a)$ for all $a \in \mathbf{k}^n$.
Let $O_k^{(n)} = \{f \mid f : \mathbf{k}^n \to \mathbf{k}\}$, and for $F \subseteq O_k^{(n)}$ and $G \subseteq S_n$ define
 $F^{\vdash} := \{\sigma \in S_n \mid \forall f \in F : \sigma \vdash f\}, \quad \overline{F}^{(k)} := (F^{\vdash})^{\vdash},$
 $G^{\vdash} := \{f \in O_k^{(n)} \mid \forall \sigma \in G : \sigma \vdash f\}, \quad \overline{G}^{(k)} := (G^{\vdash})^{\vdash}.$
A Galois connection

For
$$a = (a_1, ..., a_n) \in \mathbf{k}^n$$
 and $\sigma \in S_n$, let $a^{\sigma} = (a_{1\sigma}, ..., a_{n\sigma})$.
If $f : \mathbf{k}^n \to \mathbf{k}$ and $\sigma \in S_n$, then we write
 $\sigma \vdash f : \iff f(a^{\sigma}) = f(a)$ for all $a \in \mathbf{k}^n$.
Let $O_k^{(n)} = \{f \mid f : \mathbf{k}^n \to \mathbf{k}\}$, and for $F \subseteq O_k^{(n)}$ and $G \subseteq S_n$ define
 $F^{\vdash} := \{\sigma \in S_n \mid \forall f \in F : \sigma \vdash f\}, \quad \overline{F}^{(k)} := (F^{\vdash})^{\vdash},$
 $G^{\vdash} := \{f \in O_k^{(n)} \mid \forall \sigma \in G : \sigma \vdash f\}, \quad \overline{G}^{(k)} := (G^{\vdash})^{\vdash}.$
For $G \leq S_n$, we call $\overline{G}^{(k)}$ the Galois closure of G over \mathbf{k} .

Fact

The following are equivalent for any group $G \leq S_n$:

(i) G is Galois closed over k.

(ii) G is (k, ∞) -representable.

Fact

The following are equivalent for any group $G \leq S_n$:

(i) G is Galois closed over k.

(ii) G is (k, ∞) -representable.

(iii) G is the invariance group of a function $f: \mathbf{k}^n \to \infty$.

Fact

The following are equivalent for any group $G \leq S_n$:

- (i) G is Galois closed over k.
- (ii) G is (k, ∞) -representable.
- (iii) G is the invariance group of a function $f: \mathbf{k}^n \to \infty$.
- (iv) *G* is the intersection of invariance groups of functions $\mathbf{k}^n \rightarrow \mathbf{2}$.
- (v) G is the intersection of invariance groups of functions $\mathbf{k}^n \to \mathbf{k}$.

Fact

The following are equivalent for any group $G \leq S_n$:

- (i) G is Galois closed over k.
- (ii) G is (k, ∞) -representable.
- (iii) G is the invariance group of a function $f: \mathbf{k}^n \to \infty$.
- (iv) G is the intersection of invariance groups of functions $\mathbf{k}^n \to \mathbf{2}$.
- (v) G is the intersection of invariance groups of functions $\mathbf{k}^n \to \mathbf{k}$.
- (vi) G is orbit closed with respect to the action of S_n on \mathbf{k}^n .

For
$$a = (a_1, ..., a_n) \in \mathbf{k}^n$$
 and $G \leq S_n$, define
 $a^G = \{a^{\sigma} \mid \sigma \in G\}$, $\operatorname{Orb}^{(k)}(G) = \{a^G \mid a \in \mathbf{k}^n\}.$

For
$$a = (a_1, ..., a_n) \in \mathbf{k}^n$$
 and $G \leq S_n$, define
 $a^G = \{a^{\sigma} \mid \sigma \in G\}$, $\operatorname{Orb}^{(k)}(G) = \{a^G \mid a \in \mathbf{k}^n\}.$

For all $G, H \leq S_n$ we have

$$\overline{G}^{(k)} = \overline{H}^{(k)} \iff G^{\vdash} = H^{\vdash}$$

For
$$a = (a_1, ..., a_n) \in \mathbf{k}^n$$
 and $G \leq S_n$, define
 $a^G = \{a^\sigma \mid \sigma \in G\}, \quad \text{Orb}^{(k)}(G) = \{a^G \mid a \in \mathbf{k}^n\}.$

For all $G, H \leq S_n$ we have

$$\overline{G}^{(k)} = \overline{H}^{(k)} \iff G^{\vdash} = H^{\vdash} \iff \operatorname{Orb}^{(k)}(G) = \operatorname{Orb}^{(k)}(H);$$

For
$$a = (a_1, ..., a_n) \in \mathbf{k}^n$$
 and $G \leq S_n$, define
 $a^G = \{a^\sigma \mid \sigma \in G\}, \quad \text{Orb}^{(k)}(G) = \{a^G \mid a \in \mathbf{k}^n\}.$

For all $G, H \leq S_n$ we have

$$\overline{G}^{\left(k\right)}=\overline{H}^{\left(k\right)}\iff G^{\vdash}=H^{\vdash}\iff \operatorname{Orb}^{\left(k\right)}\left(G\right)=\operatorname{Orb}^{\left(k\right)}\left(H\right);$$

$$\overline{G}^{(k)} = \left\{ \sigma \in S_n \mid \forall a \in \mathbf{k}^n : a^{\sigma} \in a^G \right\}.$$

For
$$a = (a_1, ..., a_n) \in \mathbf{k}^n$$
 and $G \leq S_n$, define
 $a^G = \{a^{\sigma} \mid \sigma \in G\},$ Orb^(k) (G) = $\{a^G \mid a \in \mathbf{k}^n\}.$
For all $G, H \leq S_n$ we have

$$\overline{G}^{\left(k\right)}=\overline{H}^{\left(k\right)}\iff G^{\vdash}=H^{\vdash}\iff \operatorname{Orb}^{\left(k\right)}\left(G\right)=\operatorname{Orb}^{\left(k\right)}\left(H\right);$$

$$\overline{G}^{(k)} = \left\{ \sigma \in S_n \mid \forall a \in \mathbf{k}^n : a^{\sigma} \in a^G \right\}.$$

The case k = 2 corresponds to orbit equivalence and orbit closure.

For
$$a = (a_1, ..., a_n) \in \mathbf{k}^n$$
 and $G \leq S_n$, define
 $a^G = \{a^\sigma \mid \sigma \in G\}, \qquad \operatorname{Orb}^{(k)}(G) = \{a^G \mid a \in \mathbf{k}^n\}.$

For all $G, H \leq S_n$ we have

$$\overline{G}^{\left(k\right)}=\overline{H}^{\left(k\right)}\iff G^{\vdash}=H^{\vdash}\iff \operatorname{Orb}^{\left(k\right)}\left(G\right)=\operatorname{Orb}^{\left(k\right)}\left(H\right);$$

$$\overline{G}^{(k)} = \left\{ \sigma \in S_n \mid \forall a \in \mathbf{k}^n : a^{\sigma} \in a^G \right\}.$$

The case k = 2 corresponds to orbit equivalence and orbit closure.

Proposition For all $G \leq S_n$ we have $\overline{G}^{(2)} \geq \overline{G}^{(3)} \geq \cdots \geq \overline{G}^{(n)} = \cdots = G$.

Proposition

For every $G \leq S_n$ and $k \geq 2$, we have

$$\overline{G}^{(k)} = \bigcap_{a \in \mathbf{k}^n} \operatorname{Stab}(a) \cdot G.$$

Proposition

For every $G \leq S_n$ and $k \geq 2$, we have

$$\overline{G}^{(k)} = \bigcap_{a \in \mathbf{k}^n} \operatorname{Stab}(a) \cdot G.$$

$$\overline{G}^{(k)} = \left\{ \sigma \in S_n \mid \forall a \in \mathbf{k}^n : a^{\sigma} \in a^G \right\}$$

Proposition

For every $G \leq S_n$ and $k \geq 2$, we have

$$\overline{G}^{(k)} = \bigcap_{a \in \mathbf{k}^n} \operatorname{Stab}(a) \cdot G.$$

$$\overline{G}^{(k)} = \{ \sigma \in S_n \mid \forall a \in \mathbf{k}^n : a^{\sigma} \in a^G \}$$
$$= \{ \sigma \in S_n \mid \forall a \in \mathbf{k}^n \; \exists \pi \in G : a^{\sigma} = a^{\pi} \}$$

Proposition

For every $G \leq S_n$ and $k \geq 2$, we have

$$\overline{G}^{(k)} = \bigcap_{a \in \mathbf{k}^n} \operatorname{Stab}(a) \cdot G.$$

$$\begin{aligned} \overline{G}^{(k)} &= \left\{ \sigma \in S_n \mid \forall a \in \mathbf{k}^n : a^{\sigma} \in a^G \right\} \\ &= \left\{ \sigma \in S_n \mid \forall a \in \mathbf{k}^n \; \exists \pi \in G : a^{\sigma} = a^{\pi} \right\} \\ &= \left\{ \sigma \in S_n \mid \forall a \in \mathbf{k}^n \; \exists \pi \in G : \sigma \pi^{-1} \in \mathrm{Stab}\left(a\right) \right\} \end{aligned}$$

Proposition

For every $G \leq S_n$ and $k \geq 2$, we have

$$\overline{G}^{(k)} = \bigcap_{a \in \mathbf{k}^n} \operatorname{Stab}(a) \cdot G.$$

$$\overline{G}^{(k)} = \left\{ \sigma \in S_n \mid \forall a \in \mathbf{k}^n : a^{\sigma} \in a^G \right\}$$
$$= \left\{ \sigma \in S_n \mid \forall a \in \mathbf{k}^n \; \exists \pi \in G : a^{\sigma} = a^{\pi} \right\}$$
$$= \left\{ \sigma \in S_n \mid \forall a \in \mathbf{k}^n \; \exists \pi \in G : \sigma \pi^{-1} \in \text{Stab}(a) \right\}$$
$$= \left\{ \sigma \in S_n \mid \forall a \in \mathbf{k}^n : \sigma \in \text{Stab}(a) \cdot G \right\}$$

Proposition

For every $G \leq S_n$ and $k \geq 2$, we have

$$\overline{G}^{(k)} = \bigcap_{a \in \mathbf{k}^n} \operatorname{Stab}(a) \cdot G.$$

$$\begin{aligned} \overline{G}^{(k)} &= \left\{ \sigma \in S_n \mid \forall a \in \mathbf{k}^n : a^{\sigma} \in a^G \right\} \\ &= \left\{ \sigma \in S_n \mid \forall a \in \mathbf{k}^n \; \exists \pi \in G : a^{\sigma} = a^{\pi} \right\} \\ &= \left\{ \sigma \in S_n \mid \forall a \in \mathbf{k}^n \; \exists \pi \in G : \sigma \pi^{-1} \in \text{Stab} \left(a \right) \right\} \\ &= \left\{ \sigma \in S_n \mid \forall a \in \mathbf{k}^n : \sigma \in \text{Stab} \left(a \right) \cdot G \right\} \\ &= \bigcap_{a \in \mathbf{k}^n} \text{Stab} \left(a \right) \cdot G. \end{aligned}$$

Theorem

If $k = n - 1 \ge 2$, then all subgroups of S_n except A_n are Galois closed over \mathbf{k} .

Theorem

If $k = n - 1 \ge 2$, then all subgroups of S_n except A_n are Galois closed over **k**.

Definition (Clote, Kranakis 1991) A group $G \le S_n$ is weakly representable, if G is (k, ∞) -representable for some k < n.

Theorem If $k = n - 1 \ge 2$, then all subgroups of S_n except A_n are Galois closed over \mathbf{k} .

Definition (Clote, Kranakis 1991) A group $G \le S_n$ is weakly representable, if G is (k, ∞) -representable for some k < n.

Corollary

All subgroups of $G \leq S_n$ except for A_n are weakly representable.

Theorem If $k = n - 1 \ge 2$, then all subgroups of S_n except A_n are Galois closed over \mathbf{k} .

Definition (Clote, Kranakis 1991) A group $G \le S_n$ is weakly representable, if G is (k, ∞) -representable for some k < n.

Corollary

All subgroups of $G \leq S_n$ except for A_n are weakly representable. Proof.

 $G \leq S_n$ is weakly representable $\iff \exists k < n : \ \overline{G}^{(k)} = G$

Theorem If $k = n - 1 \ge 2$, then all subgroups of S_n except A_n are Galois closed over \mathbf{k} .

Definition (Clote, Kranakis 1991) A group $G \le S_n$ is weakly representable, if G is (k, ∞) -representable for some k < n.

Corollary

All subgroups of $G \leq S_n$ except for A_n are weakly representable. Proof.

$$G \leq S_n$$
 is weakly representable $\iff \exists k < n : \overline{G}^{(k)} = G$
 $\iff \overline{G}^{(n-1)} = G$

Theorem If $k = n - 1 \ge 2$, then all subgroups of S_n except A_n are Galois closed over \mathbf{k} .

Definition (Clote, Kranakis 1991) A group $G \le S_n$ is weakly representable, if G is (k, ∞) -representable for some k < n.

Corollary

All subgroups of $G \leq S_n$ except for A_n are weakly representable. Proof.

$$G \leq S_n$$
 is weakly representable $\iff \exists k < n : \overline{G}^{(k)} = G$
 $\iff \overline{G}^{(n-1)} = G$
 $\iff G \neq A_n \square$

Theorem If $k = n - 2 \ge 2$, then the Galois closures of subgroups of S_n are:

$$\blacktriangleright \overline{A_n}^{(k)} = S_n;$$

Theorem If $k = n - 2 \ge 2$, then the Galois closures of subgroups of S_n are:

•
$$\overline{A_n}^{(k)} = S_n;$$

• $\overline{A_{n-1}}^{(k)} = S_{n-1};$

Theorem If $k = n - 2 \ge 2$, then the Galois closures of subgroups of S_n are:

Theorem If $k = n - 2 \ge 2$, then the Galois closures of subgroups of S_n are:

•
$$\overline{A_n}^{(k)} = S_n;$$

• $\overline{A_{n-1}}^{(k)} = S_{n-1};$
• $\overline{C_4}^{(k)} = D_4$ (for $n = 4$);

• all other subgroups of S_n are closed.

Theorem

Let $n > \max\left(2^d, d^2 + d\right)$ and $G \le S_n$. Then G is not Galois closed over **k** if and only if

- 1. G $\leq_{\mathsf{sd}} A_L \times \Delta$ or
- 2. $G <_{sd} S_L \times \Delta$,

where $\mathbf{n} = L \cup D$ with |L| > d, |D| < d and $\Delta \leq S_D$. The closure of these groups is $\overline{G}^{(k)} = S_L \times \Delta$.

Theorem

Let $n > \max(2^d, d^2 + d)$ and $G \le S_n$. Then G is not Galois closed over **k** if and only if

- 1. G $\leq_{\mathsf{sd}} A_L \times \Delta$ or
- 2. $G <_{sd} S_L \times \Delta$,

where $\mathbf{n} = L \cup D$ with |L| > d, |D| < d and $\Delta \le S_D$. The closure of these groups is $\overline{G}^{(k)} = S_L \times \Delta$.

Remark

Using the simplicity of alternating groups, one can show that these subdirect products are of the following form:

1.
$$G = A_L \times \Delta;$$

Theorem

Let $n > \max(2^d, d^2 + d)$ and $G \le S_n$. Then G is not Galois closed over **k** if and only if

- 1. G $\leq_{\mathsf{sd}} A_L imes \Delta$ or
- 2. $G <_{sd} S_L \times \Delta$,

where $\mathbf{n} = L \cup D$ with |L| > d, |D| < d and $\Delta \le S_D$. The closure of these groups is $\overline{G}^{(k)} = S_L \times \Delta$.

Remark

Using the simplicity of alternating groups, one can show that these subdirect products are of the following form:

1.
$$G = A_L \times \Delta;$$

2.
$$G = (A_L \times \Delta_0) \cup ((S_L \setminus A_L) \times (\Delta \setminus \Delta_0)),$$

where $\Delta_0 \leq \Delta$ is a subgroup of index 2.

$G \leq S_n$	$\overline{G}^{(2)}$	$\overline{G}^{(3)}$	$\overline{G}^{(4)}$
<i>C</i> ₄	<i>D</i> ₄	<i>C</i> ₄	C ₄

$G \leq S_n$	$\overline{G}^{(2)}$	$\overline{G}^{(3)}$	$\overline{G}^{(4)}$
<i>C</i> ₄	<i>D</i> ₄	<i>C</i> ₄	<i>C</i> ₄
<i>C</i> ₅	D_5	C_5	<i>C</i> ₅
AGL (1, 5)	S_5	AGL (1, 5)	AGL (1, 5)

$G \leq S_n$	$\overline{G}^{(2)}$	$\overline{G}^{(3)}$	$\overline{G}^{(4)}$
<i>C</i> ₄	<i>D</i> ₄	<i>C</i> ₄	<i>C</i> ₄
<i>C</i> ₅	D_5	C_5	<i>C</i> ₅
$AGL\left(1,5 ight)$	S_5	AGL(1,5)	AGL(1,5)
$C_4 imes S_2$	$D_4 imes S_2$	$C_4 \times S_2$	$C_4 \times S_2$
$D_4 imes_{\sf sd} S_2$	$D_4 \times S_2$	$D_4 imes_{ m sd} S_2$	$D_4 imes_{ m sd} S_2$
$A_3 \wr A_2$	$S_3 \wr S_2$	$A_3 \wr A_2$	$A_3 \wr A_2$
$S_3 \wr_{\sf sd} S_2$	$S_3 \wr S_2$	$S_3 \wr_{sd} S_2$	$S_3 \wr_{sd} S_2$
$(S_3 \wr S_2) \cap A_6$	$S_3 \wr S_2$	$S_3 \wr S_2$	$(S_3 \wr S_2) \cap A_6$
PGL (2, 5)	S_6	PGL (2, 5)	PGL (2, 5)
$Rot(\varpi)$	Sym (🗊)	Rot (🗊)	Rot (II)

References

- P.J. Cameron, P.M. Neumann, J. Saxl, On groups with no regular orbits on the set of subsets, Arch. Math. 43 (1984), 295–296.
- P. Clote, E. Kranakis, Boolean functions, invariance groups, and parallel complexity, SIAM J. Comput. 20 (1991), 553–590.
- F. Dalla Volta, J. Siemons, Orbit equivalence and permutation groups defined by unordered relations, J. Algebr. Comb. **35** (2012), 547–564.
- E. K. Horváth, G. Makay, R. Pöschel, T. Waldhauser, Invariance groups of finite functions and orbit equivalence of permutation groups, arXiv:1210.1015.
- N.F.J. Inglis, On orbit equivalent permutation groups, Arch. Math. 43 (1984), 297–300.
- A. Kisielewicz, Symmetry groups of Boolean functions and constructions of permutation groups, J. Algebra 199 (1998), 379–403.
- Á. Seress, Primitive groups with no regular orbits on the set of subsets, Bull. Lond. Math. Soc., 29 (1997), 697–704.
- J. Siemons, A. Wagner, *On finite permutation groups with the same orbits on unordered sets,* Arch. Math. **45** (1985), 492–500.