Lattices of regular closed sets in closure spaces: semidistributivity and Dedekind-MacNeille completions

Friedrich Wehrung

LMNO (Caen, France)
E-mail: friedrich.wehrung01@unicaen.fr URL: http://www.math.unicaen.fr/ ${ }^{\text {w }}$ wehrung

NSAC 2013, Novi Sad, June 2013
Joint work with Luigi Santocanale

What is the permutohedron?

Lattices of regular closed sets

■ The permutohedron on n letters, denoted by $\mathrm{P}(n)$, can be defined as the set of all permutations of n letters, with the ordering

The precursor
Regular closed sets

Transitive
binary
relations
Convexity and
hyperplane
arrangements
Graphs
Join-
semilattices

What is the permutohedron?

Lattices of regular closed sets

■ The permutohedron on n letters, denoted by $\mathrm{P}(n)$, can be defined as the set of all permutations of n letters, with the ordering

$$
\alpha \leq \beta \underset{\text { def. }}{\Longleftrightarrow} \operatorname{Inv}(\alpha) \subseteq \operatorname{lnv}(\beta),
$$

What is the permutohedron?

Lattices of regular closed sets

■ The permutohedron on n letters, denoted by $\mathrm{P}(n)$, can be defined as the set of all permutations of n letters, with the ordering

$$
\alpha \leq \beta \underset{\mathrm{def} .}{\Longleftrightarrow} \operatorname{lnv}(\alpha) \subseteq \operatorname{lnv}(\beta),
$$

■ where we set

$$
\begin{gathered}
{[n] \underset{\text { def. }}{=}\{1,2, \ldots, n\},} \\
\mathcal{J}_{n} \underset{\text { def. }}{=}\{(i, j) \in[n] \times[n] \mid i<j\}, \\
\operatorname{lnv}(\alpha) \underset{\text { def. }}{=}\left\{(i, j) \in \mathcal{J}_{n} \mid \alpha^{-1}(i)>\alpha^{-1}(j)\right\} .
\end{gathered}
$$

What is the permutohedron?

Lattices of regular closed sets

■ The permutohedron on n letters, denoted by $\mathrm{P}(n)$, can be defined as the set of all permutations of n letters, with the ordering

$$
\alpha \leq \beta \underset{\mathrm{def} .}{\Longleftrightarrow} \operatorname{lnv}(\alpha) \subseteq \operatorname{lnv}(\beta)
$$

- where we set

$$
\begin{gathered}
{[n] \underset{\text { def. }}{=}\{1,2, \ldots, n\},} \\
\mathcal{J}_{n} \underset{\text { def. }}{=}\{(i, j) \in[n] \times[n] \mid i<j\}, \\
\operatorname{lnv}(\alpha) \underset{\text { def. }}{=}\left\{(i, j) \in \mathcal{J}_{n} \mid \alpha^{-1}(i)>\alpha^{-1}(j)\right\} .
\end{gathered}
$$

■ Alternate definition: $\mathrm{P}(n)=\left\{\operatorname{lnv}(\sigma) \mid \sigma \in \mathfrak{S}_{n}\right\}$, ordered by \subseteq.

What are the $\operatorname{lnv}(\sigma)$?

Lattices of
regular closed sets

■ Both $\operatorname{Inv}(\sigma)$ and $\mathcal{J}_{n} \backslash \operatorname{lnv}(\sigma)$ are transitive relations on $[n]$.

What are the $\operatorname{Inv}(\sigma)$?

Lattices of regular closed sets

The precursor
Regular closed sets

Transitive
binary
relations
Convexity and hyperplane arrangements Graphs

Join-
semilattices

■ Both $\operatorname{Inv}(\sigma)$ and $\mathcal{J}_{n} \backslash \operatorname{lnv}(\sigma)$ are transitive relations on $[n]$. (Proof: let $(i, j) \in \mathcal{J}_{n}$. Then $(i, j) \in \operatorname{lnv}(\sigma)$ iff $\sigma^{-1}(i)>\sigma^{-1}(j) ;(i, j) \notin \operatorname{lnv}(\sigma)$ iff $\left.\sigma^{-1}(i)<\sigma^{-1}(j).\right)$

What are the $\operatorname{Inv}(\sigma)$?

Lattices of
regular closed sets

The precursor
Regular closed sets

Transitive
binary
relations
Convexity and hyperplane arrangements

Graphs

Join-

semilattices

■ Both $\operatorname{lnv}(\sigma)$ and $\mathcal{J}_{n} \backslash \operatorname{lnv}(\sigma)$ are transitive relations on $[n]$. (Proof: let $(i, j) \in \mathcal{J}_{n}$. Then $(i, j) \in \operatorname{lnv}(\sigma)$ iff $\sigma^{-1}(i)>\sigma^{-1}(j) ;(i, j) \notin \operatorname{lnv}(\sigma)$ iff $\sigma^{-1}(i)<\sigma^{-1}(j)$.)
■ Conversely, every subset $\mathbf{x} \subseteq \mathcal{J}_{n}$, such that both \mathbf{x} and $\mathcal{J}_{n} \backslash \mathbf{x}$ are transitive, is $\operatorname{lnv}(\sigma)$ for a unique $\sigma \in \mathfrak{S}_{n}$
(Dushnik and Miller 1941, Guilbaud and Rosenstiehl 1963).

What are the $\operatorname{Inv}(\sigma)$?

■ Both $\operatorname{lnv}(\sigma)$ and $\mathcal{J}_{n} \backslash \operatorname{lnv}(\sigma)$ are transitive relations on $[n]$. (Proof: let $(i, j) \in \mathcal{J}_{n}$. Then $(i, j) \in \operatorname{lnv}(\sigma)$ iff $\sigma^{-1}(i)>\sigma^{-1}(j) ;(i, j) \notin \operatorname{lnv}(\sigma)$ iff $\sigma^{-1}(i)<\sigma^{-1}(j)$.)
■ Conversely, every subset $\mathbf{x} \subseteq \mathcal{J}_{n}$, such that both \mathbf{x} and $\mathcal{J}_{n} \backslash \mathbf{x}$ are transitive, is $\operatorname{lnv}(\sigma)$ for a unique $\sigma \in \mathfrak{S}_{n}$
(Dushnik and Miller 1941, Guilbaud and Rosenstiehl 1963).

- Say that $\mathbf{x} \subseteq \mathcal{J}_{n}$ is closed if it is transitive, open if $\mathcal{J}_{n} \backslash \mathbf{x}$ is closed, and clopen if it is both closed and open.

What are the $\operatorname{Inv}(\sigma)$?

■ Both $\operatorname{Inv}(\sigma)$ and $\mathcal{J}_{n} \backslash \operatorname{lnv}(\sigma)$ are transitive relations on $[n]$. (Proof: let $(i, j) \in \mathcal{J}_{n}$. Then $(i, j) \in \operatorname{lnv}(\sigma)$ iff $\sigma^{-1}(i)>\sigma^{-1}(j) ;(i, j) \notin \operatorname{lnv}(\sigma)$ iff $\sigma^{-1}(i)<\sigma^{-1}(j)$.)
■ Conversely, every subset $\mathbf{x} \subseteq \mathcal{J}_{n}$, such that both \mathbf{x} and $\mathcal{J}_{n} \backslash \mathbf{x}$ are transitive, is $\operatorname{lnv}(\sigma)$ for a unique $\sigma \in \mathfrak{S}_{n}$
(Dushnik and Miller 1941, Guilbaud and Rosenstiehl 1963).
■ Say that $\mathbf{x} \subseteq \mathcal{J}_{n}$ is closed if it is transitive, open if $\mathcal{J}_{n} \backslash \mathbf{x}$ is closed, and clopen if it is both closed and open.

- Hence $\mathrm{P}(n)=\left\{\mathbf{x} \subseteq \mathcal{J}_{n} \mid \mathbf{x}\right.$ is clopen $\}$, ordered by \subseteq.

What are the $\operatorname{Inv}(\sigma)$?

■ Both $\operatorname{lnv}(\sigma)$ and $\mathcal{J}_{n} \backslash \operatorname{lnv}(\sigma)$ are transitive relations on $[n]$. (Proof: let $(i, j) \in \mathcal{J}_{n}$. Then $(i, j) \in \operatorname{lnv}(\sigma)$ iff $\sigma^{-1}(i)>\sigma^{-1}(j) ;(i, j) \notin \operatorname{lnv}(\sigma)$ iff $\sigma^{-1}(i)<\sigma^{-1}(j)$.)
■ Conversely, every subset $\mathbf{x} \subseteq \mathcal{J}_{n}$, such that both \mathbf{x} and $\mathcal{J}_{n} \backslash \mathbf{x}$ are transitive, is $\operatorname{lnv}(\sigma)$ for a unique $\sigma \in \mathfrak{S}_{n}$
(Dushnik and Miller 1941, Guilbaud and Rosenstiehl 1963).

- Say that $\mathbf{x} \subseteq \mathcal{J}_{n}$ is closed if it is transitive, open if $\mathcal{J}_{n} \backslash \mathbf{x}$ is closed, and clopen if it is both closed and open.
- Hence $\mathrm{P}(n)=\left\{\mathbf{x} \subseteq \mathcal{J}_{n} \mid \mathbf{x}\right.$ is clopen $\}$, ordered by \subseteq.
- Observe that each $\mathbf{x} \in \mathrm{P}(n)$ is a strict ordering. It can be proved (Dushnik and Miller 1941) that those are exactly the finite strict orderings of order-dimension 2.

The permutohedra $P(2), P(3)$, and $P(4)$.

Lattices of regular closed sets

The precursor
Regular closed sets

Transitive
binary
relations
Convexity and hyperplane arrangements

Graphs
Join
semilattices

教

The permutohedra $P(5)$ and $P(6)$

Lattices of regular closed sets

The precursor
Regular closed sets

Transitive binary relations

Convexity and hyperplane arrangements

Graphs

Join-

semilattices

The permutohedron $\mathrm{P}(7)$

Lattices of regular closed sets

The precursor
Regular closed sets

Transitive binary
relations
Convexity and hyperplane arrangements

Graphs
Join-
semilattices

Permutohedra are ortholattices

Lattices of regular closed sets

Theorem (Guilbaud and Rosenstiehl 1963)

Regular closed sets

Transitive
binary
relations
Convexity and
hyperplane
arrangements
Graphs
Join-
semilattices

Permutohedra are ortholattices

Lattices of regular closed sets

The precursor
Regular closed sets

Transitive
binary
relations
Convexity and
hyperplane
arrangements
Graphs
Join
semilattices

Theorem (Guilbaud and Rosenstiehl 1963)
The permutohedron $\mathrm{P}(n)$ is a lattice, for every positive integer n.

Permutohedra are ortholattices

Lattices of

Theorem (Guilbaud and Rosenstiehl 1963)
The permutohedron $\mathrm{P}(n)$ is a lattice, for every positive integer n.

The assignment $\mathbf{x} \mapsto \mathbf{x}^{\boldsymbol{c}}=\mathcal{J}_{n} \backslash \mathbf{x}$ defines an orthocomplementation on $\mathrm{P}(n)$:

Permutohedra are ortholattices

Lattices of regular closed sets

The precursor

Transitive
binary

relations

Convexity and hyperplane arrangements

Graphs

Theorem (Guilbaud and Rosenstiehl 1963)
The permutohedron $\mathrm{P}(n)$ is a lattice, for every positive integer n.

The assignment $\mathbf{x} \mapsto \mathbf{x}^{\mathrm{C}}=\mathcal{J}_{n} \backslash \mathbf{x}$ defines an orthocomplementation on $\mathrm{P}(n)$:

$$
\begin{aligned}
\mathbf{x} \leq \mathbf{y} & \Rightarrow \mathbf{y}^{c} \leq \mathbf{x}^{c} \\
\left(\mathbf{x}^{c}\right)^{c} & =\mathbf{x} \\
\mathbf{x} \wedge \mathbf{x}^{c} & \left.=0 \quad \text { (equivalently, } \mathbf{x} \vee \mathbf{x}^{c}=1\right)
\end{aligned}
$$

Permutohedra are ortholattices

Lattices of regular closed sets

The precursor

Transitive
binary

relations

Convexity and hyperplane arrangements

Graphs

Theorem (Guilbaud and Rosenstiehl 1963)
The permutohedron $\mathrm{P}(n)$ is a lattice, for every positive integer n.

The assignment $\mathbf{x} \mapsto \mathbf{x}^{\mathrm{c}}=\mathcal{J}_{n} \backslash \mathbf{x}$ defines an orthocomplementation on $\mathrm{P}(n)$:

$$
\begin{aligned}
\mathbf{x} \leq \mathbf{y} & \Rightarrow \mathbf{y}^{c} \leq \mathbf{x}^{c} \\
\left(\mathbf{x}^{c}\right)^{c} & =\mathbf{x} \\
\mathbf{x} \wedge \mathbf{x}^{c} & \left.=0 \quad \text { (equivalently, } \mathbf{x} \vee \mathbf{x}^{c}=1\right)
\end{aligned}
$$

Hence $\mathrm{P}(n)$ is an ortholattice.

Permutohedra are even more peculiar lattices

Lattices of
regular closed sets

Theorem (Duquenne and Cherfouh 1994, Le Conte de Poly-Barbut 1994)

The precursor
Regular closed sets

Transitive
binary
relations
Convexity and
hyperplane
arrangements
Graphs
Join-
semilattices

Permutohedra are even more peculiar lattices

Lattices of regular closed sets

The precursor
Regular closed sets

Transitive
binary
relations
Convexity and
hyperplane arrangements

Graphs
Join-

Theorem (Duquenne and Cherfouh 1994, Le Conte de Poly-Barbut 1994)

The permutohedron $\mathrm{P}(n)$ is semidistributive, for every positive integer n. Thus it is also pseudocomplemented.

Permutohedra are even more peculiar lattices

Lattices of regular closed sets

The precursor
Regular closed sets

Transitive
binary
relations
Convexity and
hyperplane
arrangements
Graphs
Join-
semilattices

Theorem (Duquenne and Cherfouh 1994, Le Conte de Poly-Barbut 1994)

The permutohedron $\mathrm{P}(n)$ is semidistributive, for every positive integer n. Thus it is also pseudocomplemented.

Semidistributivity means that

$$
\begin{aligned}
& x \vee z=y \vee z \Rightarrow x \vee z=(x \wedge y) \vee z, \text { and, dually, } \\
& x \wedge z=y \wedge z \Rightarrow x \wedge z=(x \vee y) \wedge z
\end{aligned}
$$

Permutohedra are even more peculiar lattices

Lattices of regular closed sets

The precursor
Regular closed sets

Transitive
binary
relations
Convexity and
hyperplane arrangements

Graphs

Theorem (Duquenne and Cherfouh 1994, Le Conte de Poly-Barbut 1994)

The permutohedron $\mathrm{P}(n)$ is semidistributive, for every positive integer n. Thus it is also pseudocomplemented.

Semidistributivity means that

$$
\begin{aligned}
& x \vee z=y \vee z \Rightarrow x \vee z=(x \wedge y) \vee z, \text { and, dually, } \\
& x \wedge z=y \wedge z \Rightarrow x \wedge z=(x \vee y) \wedge z
\end{aligned}
$$

Theorem (Caspard 2000)

Permutohedra are even more peculiar lattices

Lattices of regular closed sets

The precursor
Regular closed sets

Transitive
binary
relations
Convexity and
hyperplane arrangements

Graphs
Join-
semilattices

Theorem (Duquenne and Cherfouh 1994, Le Conte de Poly-Barbut 1994)

The permutohedron $\mathrm{P}(n)$ is semidistributive, for every positive integer n. Thus it is also pseudocomplemented.

Semidistributivity means that

$$
\begin{aligned}
& x \vee z=y \vee z \Rightarrow x \vee z=(x \wedge y) \vee z, \text { and, dually, } \\
& x \wedge z=y \wedge z \Rightarrow x \wedge z=(x \vee y) \wedge z
\end{aligned}
$$

Theorem (Caspard 2000)

The permutohedron $\mathrm{P}(n)$ is a bounded homomorphic image of a free lattice, for every positive integer n.

Permutohedra are even more peculiar lattices

Theorem (Duquenne and Cherfouh 1994, Le Conte de Poly-Barbut 1994)

The permutohedron $\mathrm{P}(n)$ is semidistributive, for every positive integer n. Thus it is also pseudocomplemented.

Semidistributivity means that
$x \vee z=y \vee z \Rightarrow x \vee z=(x \wedge y) \vee z$, and, dually, $x \wedge z=y \wedge z \Rightarrow x \wedge z=(x \vee y) \wedge z$.

Theorem (Caspard 2000)

The permutohedron $\mathrm{P}(n)$ is a bounded homomorphic image of a free lattice, for every positive integer n.

This means that there are a finitely generated free lattice F and a surjective lattice homomorphism $f: F \rightarrow \mathrm{P}(n)$ such that each $f^{-1}\{x\}$ has both a least and a largest element.

Regular closed sets

Lattices of regular closed sets

■ Closure space: pair (Ω, φ), where $\varphi: \mathfrak{P}(\Omega) \rightarrow \mathfrak{P}(\Omega)$, with $\varphi(\varnothing)=\varnothing, X \subseteq Y \Rightarrow \varphi(X) \subseteq \varphi(Y), X \subseteq \varphi(X)$, $\varphi \circ \varphi=\varphi$.

Regular closed
sets

Transitive
binary
relations
Convexity and hyperplane arrangements

Graphs

Join-
semilattices

Regular closed sets

Lattices of
regular closed sets

The precursor
Regular closed sets

Transitive
binary
relations
Convexity and
hyperplane
arrangements
Graphs
Join-
semilattices

■ Closure space: pair (Ω, φ), where $\varphi: \mathfrak{P}(\Omega) \rightarrow \mathfrak{P}(\Omega)$, with $\varphi(\varnothing)=\varnothing, X \subseteq Y \Rightarrow \varphi(X) \subseteq \varphi(Y), X \subseteq \varphi(X)$,

$$
\varphi \circ \varphi=\varphi .
$$

■ Associated interior operator: $\check{\varphi}(X)=\Omega \backslash \varphi(\Omega \backslash X)$.

Regular closed sets

Lattices of regular closed sets

The precursor
Regular closed sets

Transitive
binary
relations
Convexity and
hyperplane
arrangements
Graphs
Join
semilattices

■ Closure space: pair (Ω, φ), where $\varphi: \mathfrak{P}(\Omega) \rightarrow \mathfrak{P}(\Omega)$, with $\varphi(\varnothing)=\varnothing, X \subseteq Y \Rightarrow \varphi(X) \subseteq \varphi(Y), X \subseteq \varphi(X)$, $\varphi \circ \varphi=\varphi$.
■ Associated interior operator: $\check{\varphi}(X)=\Omega \backslash \varphi(\Omega \backslash X)$.
■ Closed sets: $\varphi(X)=X$. Open sets: $\check{\varphi}(X)=X$. Clopen sets: $\varphi(X)=\check{\varphi}(X)=X$. Regular closed sets: $X=\varphi \check{\varphi}(X)$.

Regular closed sets

Lattices of regular closed sets

The precursor
Regular closed sets

Transitive
binary
relations
Convexity and
hyperplane
arrangements
Graphs
Join-
semilattices

■ Closure space: pair (Ω, φ), where $\varphi: \mathfrak{P}(\Omega) \rightarrow \mathfrak{P}(\Omega)$, with $\varphi(\varnothing)=\varnothing, X \subseteq Y \Rightarrow \varphi(X) \subseteq \varphi(Y), X \subseteq \varphi(X)$, $\varphi \circ \varphi=\varphi$.
■ Associated interior operator: $\check{\varphi}(X)=\Omega \backslash \varphi(\Omega \backslash X)$.
■ Closed sets: $\varphi(X)=X$. Open sets: $\check{\varphi}(X)=X$. Clopen sets: $\varphi(X)=\breve{\varphi}(X)=X$. Regular closed sets: $X=\varphi \check{\varphi}(X)$.

- $\operatorname{Clop}(\Omega, \varphi)$ (the clopen sets) is contained in $\operatorname{Reg}(\Omega, \varphi)$ (the regular closed sets).

Regular closed sets

■ Closure space: pair (Ω, φ), where $\varphi: \mathfrak{P}(\Omega) \rightarrow \mathfrak{P}(\Omega)$, with $\varphi(\varnothing)=\varnothing, X \subseteq Y \Rightarrow \varphi(X) \subseteq \varphi(Y), X \subseteq \varphi(X)$, $\varphi \circ \varphi=\varphi$.

- Associated interior operator: $\check{\varphi}(X)=\Omega \backslash \varphi(\Omega \backslash X)$.

■ Closed sets: $\varphi(X)=X$. Open sets: $\check{\varphi}(X)=X$. Clopen sets: $\varphi(X)=\breve{\varphi}(X)=X$. Regular closed sets: $X=\varphi \check{\varphi}(X)$.

- $\operatorname{Clop}(\Omega, \varphi)$ (the clopen sets) is contained in $\operatorname{Reg}(\Omega, \varphi)$ (the regular closed sets).
- $\operatorname{Reg}(\Omega, \varphi)$ is always an ortholattice (with $\mathbf{x}^{\perp}=\varphi\left(\mathbf{x}^{\mathrm{c}}\right)$), but $\operatorname{Clop}(\Omega, \varphi)$ may not be a lattice.

Regular closed sets

■ Closure space: pair (Ω, φ), where $\varphi: \mathfrak{P}(\Omega) \rightarrow \mathfrak{P}(\Omega)$, with $\varphi(\varnothing)=\varnothing, X \subseteq Y \Rightarrow \varphi(X) \subseteq \varphi(Y), X \subseteq \varphi(X)$, $\varphi \circ \varphi=\varphi$.
■ Associated interior operator: $\check{\varphi}(X)=\Omega \backslash \varphi(\Omega \backslash X)$.
■ Closed sets: $\varphi(X)=X$. Open sets: $\check{\varphi}(X)=X$. Clopen sets: $\varphi(X)=\breve{\varphi}(X)=X$. Regular closed sets: $X=\varphi \check{\varphi}(X)$.

- $\operatorname{Clop}(\Omega, \varphi)$ (the clopen sets) is contained in $\operatorname{Reg}(\Omega, \varphi)$ (the regular closed sets).
$■ \operatorname{Reg}(\Omega, \varphi)$ is always an ortholattice (with $\mathbf{x}^{\perp}=\varphi\left(\mathbf{x}^{\mathrm{c}}\right)$), but $\operatorname{Clop}(\Omega, \varphi)$ may not be a lattice.
■ Every orthoposet appears as some $\operatorname{Clop}(\Omega, \varphi)$ (Mayet 1982, Katrnoška 1982)

What happens for convex geometries?

Lattices of
regular closed sets

The precursor
Regular closed sets

Transitive
binary
relations
Convexity and
hyperplane
arrangements
Graphs
Join-
semilattices

Convex geometry: closure space (Ω, φ) such that (\mathbf{x} closed, $p, q \in \Omega \backslash \mathbf{x}$, and $\varphi(\mathbf{x} \cup\{p\})=\varphi(\mathbf{x} \cup\{q\})) \Rightarrow p=q$.

What happens for convex geometries?

The precursor
Regular closed

```
sets
```

Transitive
binary
relations
Convexity and hyperplane arrangements

Graphs

Convex geometry: closure space (Ω, φ) such that (\mathbf{x} closed, $p, q \in \Omega \backslash \mathbf{x}$, and $\varphi(\mathbf{x} \cup\{p\})=\varphi(\mathbf{x} \cup\{q\})) \Rightarrow p=q$.

Theorem (Santocanale and W. 2012)
For (more general spaces than) finite convex geometries, the lattice $\operatorname{Reg}(\Omega, \varphi)$ is always pseudocomplemented.

Transitive binary relations

■ For a transitive binary relation $\mathbf{e} \subseteq P \times P$, set $\Omega=\mathbf{e}$, $\varphi(\mathbf{a})=\mathrm{cl}(\mathbf{a})=$ transitive closure of $\mathbf{a}(\forall \mathbf{a} \subseteq \mathbf{e})$.
Transitive binary
relations
Convexity and
hyperplane
arrangements
Graphs
Join
semilattices

Transitive binary relations

The precursor
Regular closed sets

Transitive binary
relations
Convexity and
hyperplane
arrangements
Graphs
Join-
semilattices

■ For a transitive binary relation $\mathbf{e} \subseteq P \times P$, set $\Omega=\mathbf{e}$, $\varphi(\mathbf{a})=\mathrm{cl}(\mathbf{a})=$ transitive closure of $\mathbf{a}(\forall \mathbf{a} \subseteq \mathbf{e})$.

- For $\mathbf{e}=\mathcal{J}_{n}=$ natural strict ordering on [n], $\operatorname{Reg}(\mathbf{e}, \mathrm{cl})=\operatorname{Clop}(\mathbf{e}, \mathrm{cl})=\mathrm{P}(n)$, the permutohedron.

Transitive binary relations

The precursor

Transitive
■ For a transitive binary relation $\mathbf{e} \subseteq P \times P$, set $\Omega=\mathbf{e}$, $\varphi(\mathbf{a})=\mathrm{cl}(\mathbf{a})=$ transitive closure of $\mathbf{a}(\forall \mathbf{a} \subseteq \mathbf{e})$.

- For $\mathbf{e}=\mathcal{J}_{n}=$ natural strict ordering on [n], $\operatorname{Reg}(\mathbf{e}, \mathrm{cl})=\operatorname{Clop}(\mathbf{e}, \mathrm{cl})=\mathrm{P}(n)$, the permutohedron.
■ For $\mathbf{e}=[n] \times[n], \operatorname{Reg}(\mathbf{e}, \mathrm{cl})=\operatorname{Clop}(\mathbf{e}, \mathrm{cl})=\operatorname{Bip}(n)$, the bipartition lattice on [n] (Foata and Zeilberger 1996, Han 1996, Hetyei and Krattenthaler 2011).

Transitive binary relations

The precursor

Transitive

■ For a transitive binary relation $\mathbf{e} \subseteq P \times P$, set $\Omega=\mathbf{e}$, $\varphi(\mathbf{a})=\mathrm{cl}(\mathbf{a})=$ transitive closure of $\mathbf{a}(\forall \mathbf{a} \subseteq \mathbf{e})$.

- For $\mathbf{e}=\mathcal{J}_{n}=$ natural strict ordering on [n], $\operatorname{Reg}(\mathbf{e}, \mathrm{cl})=\operatorname{Clop}(\mathbf{e}, \mathrm{cl})=\mathrm{P}(n)$, the permutohedron.
■ For $\mathbf{e}=[n] \times[n], \operatorname{Reg}(\mathbf{e}, \mathrm{cl})=\operatorname{Clop}(\mathbf{e}, \mathrm{cl})=\operatorname{Bip}(n)$, the bipartition lattice on [n] (Foata and Zeilberger 1996, Han 1996, Hetyei and Krattenthaler 2011).
- $\operatorname{Bip}(n)$ contains an M_{3} whenever $n \geq 3$.

A few things about $\operatorname{Reg}(\mathbf{e}, \mathrm{cl})$

Lattices of
regular closed sets

Theorem (Santocanale and W. 2012)

Regular closed sets

Transitive binary
relations

Convexity and hyperplane arrangements

Graphs
Join-
semilattices

A few things about $\operatorname{Reg}(\mathbf{e}, \mathrm{cl})$

Theorem (Santocanale and W. 2012)

The precursor
Regular closed sets

Transitive binary relations

Convexity and hyperplane arrangements

Graphs
Joinsemilattices
$1 \operatorname{Reg}(\mathbf{e}, \mathrm{cl})$ is always the Dedekind-MacNeille completion of Clop($\mathbf{e}, \mathrm{cl})$. Both are equal iff \mathbf{e} is square-free.

A few things about $\operatorname{Reg}(\mathbf{e}, \mathrm{cl})$

Lattices of
regular closed sets

Theorem (Santocanale and W. 2012)

$1 \operatorname{Reg}(\mathbf{e}, \mathrm{cl})$ is always the Dedekind-MacNeille completion of Clop($\mathbf{e}, \mathrm{cl})$. Both are equal iff \mathbf{e} is square-free.
2 The lattice $\operatorname{Reg}(\mathbf{e}, \mathrm{cl})$ is spatial (i.e., every element is a join of completely join-irreducible elements).

A few things about $\operatorname{Reg}(\mathbf{e}, \mathrm{cl})$

Theorem (Santocanale and W. 2012)

The precursor
Regular closed sets

Transitive
binary
relations
Convexity and hyperplane arrangements

Graphs

Join-

$1 \operatorname{Reg}(\mathbf{e}, \mathrm{cl})$ is always the Dedekind-MacNeille completion of Clop($\mathbf{e}, \mathrm{cl})$. Both are equal iff \mathbf{e} is square-free.
2 The lattice $\operatorname{Reg}(\mathbf{e}, \mathrm{cl})$ is spatial (i.e., every element is a join of completely join-irreducible elements).
3 For \mathbf{e} finite, $\operatorname{Reg}(\mathbf{e}, \mathrm{cl})$ is semidistributive iff it is a bounded homomorphic image of a free lattice, iff every connected component of \mathbf{e} is either antisymmetric or $E \times E$ with $\operatorname{card} E=2$.

The lattice Bip(3)

Lattices of
regular closed sets

The precursor
Regular closed sets

Transitive binary
relations
Convexity and hyperplane arrangements Graphs

Join-

semilattices

The lattice Bip(4)

Lattices of regular closed sets

The precursor
Regular closed sets

Transitive binary
relations
Convexity and hyperplane arrangements

Graphs

Join-

semilattices

Relatively convex sets

Lattices of
regular closed sets

The precursor
Regular closed sets

Transitive
binary
relations
Convexity and hyperplane arrangements

Graphs
Join-
semilattices
$■$ We are given a real affine space Δ, and a subset $E \subseteq \Delta$.

Relatively convex sets

■ We are given a real affine space Δ, and a subset $E \subseteq \Delta$.

- Setting $\operatorname{conv}_{E}(X)=\operatorname{conv}(X) \cap E$, it is well-known that $\left(E, \operatorname{conv}_{E}\right)$ is a convex geometry.

Relatively convex sets

The precursor

■ We are given a real affine space Δ, and a subset $E \subseteq \Delta$.
■ Setting $\operatorname{conv}_{E}(X)=\operatorname{conv}(X) \cap E$, it is well-known that $\left(E, \operatorname{conv}_{E}\right)$ is a convex geometry.

- A subset $X \subseteq E$ is relatively convex if $X=\operatorname{conv}_{E}(X)$; bi-convex if X and $E \backslash X$ are both relatively convex; strongly bi-convex if $\operatorname{conv}(X) \cap \operatorname{conv}(E \backslash X)=\varnothing$.

Relatively convex sets

■ We are given a real affine space Δ, and a subset $E \subseteq \Delta$.
■ Setting $\operatorname{conv}_{E}(X)=\operatorname{conv}(X) \cap E$, it is well-known that $\left(E, \operatorname{conv}_{E}\right)$ is a convex geometry.

- A subset $X \subseteq E$ is relatively convex if $X=\operatorname{conv}_{E}(X)$; bi-convex if X and $E \backslash X$ are both relatively convex; strongly bi-convex if $\operatorname{conv}(X) \cap \operatorname{conv}(E \backslash X)=\varnothing$.
■ Strongly bi-convex \Rightarrow bi-convex \Rightarrow relatively convex.

Relatively convex sets

$■$ We are given a real affine space Δ, and a subset $E \subseteq \Delta$.
■ Setting $\operatorname{conv}_{E}(X)=\operatorname{conv}(X) \cap E$, it is well-known that $\left(E, \operatorname{conv}_{E}\right)$ is a convex geometry.

- A subset $X \subseteq E$ is relatively convex if $X=\operatorname{conv}_{E}(X)$; bi-convex if X and $E \backslash X$ are both relatively convex; strongly bi-convex if $\operatorname{conv}(X) \cap \operatorname{conv}(E \backslash X)=\varnothing$.
■ Strongly bi-convex \Rightarrow bi-convex \Rightarrow relatively convex.
■ $\operatorname{Clop}^{*}\left(E, \operatorname{conv}_{E}\right)=\{X \subseteq E \mid X$ is strongly bi-convex $\}$.

Convex sets and Dedekind-MacNeille completion

Theorem (Santocanale and W. 2013)

Let E be a subset in a real affine space Δ. Then $\operatorname{Reg}\left(E, \operatorname{conv}_{E}\right)$ is the Dedekind-MacNeille completion of $\operatorname{Clop}^{*}\left(E, \operatorname{conv}_{E}\right)\left(\right.$ thus of $\left.\operatorname{Clop}\left(E, \operatorname{conv}_{E}\right)\right)$.

Poset of regions of a central hyperplane arrangement

Lattices of
regular closed sets

The precursor
Regular closed sets

Transitive
binary
relations
Convexity and hyperplane arrangements

Graphs
Join-
semilattices

■ Central hyperplane arrangement in \mathbb{R}^{d} : finite set \mathcal{H} of hyperplanes through 0 . Regions (set \mathcal{R}): connected components of $\mathbb{R}^{d} \backslash \bigcup \mathcal{H}$ (necessarily open). Base region $B \in \mathcal{R}$.

Poset of regions of a central hyperplane arrangement

■ Central hyperplane arrangement in \mathbb{R}^{d} : finite set \mathcal{H} of hyperplanes through 0 . Regions (set \mathcal{R}): connected components of $\mathbb{R}^{d} \backslash \bigcup \mathcal{H}$ (necessarily open). Base region $B \in \mathcal{R}$.

- $\operatorname{sep}(X, Y) \underset{\text { def. }}{=}\{H \in \mathcal{H} \mid H$ separates X and $Y\}$, for $X, Y \in \mathcal{R}$.

Poset of regions of a central hyperplane arrangement

■ Central hyperplane arrangement in \mathbb{R}^{d} : finite set \mathcal{H} of hyperplanes through 0 . Regions (set \mathcal{R}): connected components of $\mathbb{R}^{d} \backslash \bigcup \mathcal{H}$ (necessarily open). Base region $B \in \mathcal{R}$.
$\square \operatorname{sep}(X, Y) \underset{\text { def. }}{=}\{H \in \mathcal{H} \mid H$ separates X and $Y\}$, for $X, Y \in \mathcal{R}$.
■ Poset of regions: $\operatorname{Pos}(\mathcal{H}, B) \underset{\text { def. }}{=}\left(\mathcal{R}, \leq_{B}\right)$, where $X \leq_{B} Y$ if $\operatorname{sep}(B, X) \subseteq \operatorname{sep}(B, Y)$.

Poset of regions of a central hyperplane arrangement

- Central hyperplane arrangement in \mathbb{R}^{d} : finite set \mathcal{H} of hyperplanes through 0 . Regions (set \mathcal{R}): connected components of $\mathbb{R}^{d} \backslash \bigcup \mathcal{H}$ (necessarily open). Base region $B \in \mathcal{R}$.
- $\operatorname{sep}(X, Y) \underset{\text { def. }}{=}\{H \in \mathcal{H} \mid H$ separates X and $Y\}$, for $X, Y \in \mathcal{R}$.
■ Poset of regions: $\operatorname{Pos}(\mathcal{H}, B) \underset{\text { def. }}{=}\left(\mathcal{R}, \leq_{B}\right)$, where $X \leq_{B} Y$ if $\operatorname{sep}(B, X) \subseteq \operatorname{sep}(B, Y)$.

Theorem (Santocanale and W. 2013)

$\operatorname{Pos}(\mathcal{H}, B) \cong \operatorname{Clop}^{*}\left(E, \operatorname{conv}_{E}\right)$, for a suitably defined finite $E \subseteq \mathbb{R}^{d}$.

Partitions in graphs

■ Graph: (G, \sim), where \sim is an irreflexive, symmetric binary relation on G.

Partitions in graphs

■ Graph: (G, \sim), where \sim is an irreflexive, symmetric binary relation on G.
■ $\boldsymbol{\delta}_{G}=\{X \subseteq G$ nonempty $\mid X$ is connected $\}$.

Partitions in graphs

■ Graph: (G, \sim), where \sim is an irreflexive, symmetric binary relation on G.

- $\boldsymbol{\delta}_{G}=\{X \subseteq G$ nonempty $\mid X$ is connected $\}$.

■ $X=X_{1} \sqcup \cdots \sqcup X_{n}$ if $X=X_{1} \cup \cdots \cup X_{n}$ (disjoint union) and X and all the X_{i} are connected.

Partitions in graphs

■ Graph: (G, \sim), where \sim is an irreflexive, symmetric binary relation on G.
■ $\boldsymbol{\delta}_{G}=\{X \subseteq G$ nonempty $\mid X$ is connected $\}$.
■ $X=X_{1} \sqcup \cdots \sqcup X_{n}$ if $X=X_{1} \cup \cdots \cup X_{n}$ (disjoint union) and X and all the X_{i} are connected.

- $\mathrm{cl}(\mathbf{x})=$ closure of \mathbf{x} under $\sqcup, \forall \mathbf{x} \subseteq \boldsymbol{\delta}_{G}$.

Partitions in graphs

■ Graph: (G, \sim), where \sim is an irreflexive, symmetric binary relation on G.
■ $\boldsymbol{\delta}_{G}=\{X \subseteq G$ nonempty $\mid X$ is connected $\}$.
■ $X=X_{1} \sqcup \cdots \sqcup X_{n}$ if $X=X_{1} \cup \cdots \cup X_{n}$ (disjoint union) and X and all the X_{i} are connected.

- $\mathrm{cl}(\mathbf{x})=$ closure of \mathbf{x} under $\sqcup, \forall \mathbf{x} \subseteq \boldsymbol{\delta}_{G}$.
- $\left(\delta_{G}, \mathrm{cl}\right)$ is a convex geometry.

Semidistributivity and Dedekind-MacNeille

Lattices of

The precursor
Regular closed sets

Transitive
binary
relations
Convexity and
hyperplane
arrangements
Graphs
Join
semilattices

Theorem (Santocanale and W. 2013)
If G is finite, then $\operatorname{Reg}\left(\boldsymbol{\delta}_{G}, \mathrm{cl}\right)$ is a bounded homomorphic image of a free lattice.

Semidistributivity and Dedekind-MacNeille

Lattices of regular closed sets

The precursor
Regular closed sets

Transitive
binary relations

Convexity and hyperplane arrangements

Graphs

Theorem (Santocanale and W. 2013)
If G is finite, then $\operatorname{Reg}\left(\boldsymbol{\delta}_{G}, \mathrm{cl}\right)$ is a bounded homomorphic image of a free lattice.

Theorem (Santocanale and W. 2013)

If G is either a finite block graph or a cycle, then the "extended permutohedron" $\operatorname{Reg}\left(\delta_{G}, \mathrm{cl}\right)$ on G is the Dedekind-MacNeille completion of $\operatorname{Clop}\left(\delta_{G}, \mathrm{cl}\right)$.

Semidistributivity and Dedekind-MacNeille

Theorem (Santocanale and W. 2013)
If G is finite, then $\operatorname{Reg}\left(\boldsymbol{\delta}_{G}, \mathrm{cl}\right)$ is a bounded homomorphic image of a free lattice.

Theorem (Santocanale and W. 2013)

If G is either a finite block graph or a cycle, then the "extended permutohedron" $\operatorname{Reg}\left(\delta_{G}, \mathrm{cl}\right)$ on G is the Dedekind-MacNeille completion of $\operatorname{Clop}\left(\delta_{G}, \mathrm{cl}\right)$.

■ Does not extend to all finite graphs (e.g., $\mathcal{K}_{3,3}$ - edge).

Semidistributivity and Dedekind-MacNeille

Theorem (Santocanale and W. 2013)
If G is finite, then $\operatorname{Reg}\left(\boldsymbol{\delta}_{G}, \mathrm{cl}\right)$ is a bounded homomorphic image of a free lattice.

Theorem (Santocanale and W. 2013)

If G is either a finite block graph or a cycle, then the "extended permutohedron" $\operatorname{Reg}\left(\boldsymbol{\delta}_{G}, \mathrm{cl}\right)$ on G is the Dedekind-MacNeille completion of $\operatorname{Clop}\left(\boldsymbol{\delta}_{G}, \mathrm{cl}\right)$.

■ Does not extend to all finite graphs (e.g., $\mathcal{K}_{3,3}$ - edge).

- For G the underlying graph of a Dynkin diagram \mathcal{G}, $\operatorname{Clop}\left(\boldsymbol{\delta}_{G}, \mathrm{cl}\right)=\operatorname{Reg}\left(\boldsymbol{\delta}_{G}, \mathrm{cl}\right)$ and this lattice bears mysterious connections with the Coxeter lattice of type \mathcal{G} (thus with hyperplane arrangements).

The extended permutohedron on \mathcal{D}_{4}, and the corresponding Coxeter lattice

Lattices of regular closed sets

The precursor Regular closed sets

Transitive binary relations

Convexity and hyperplane arrangements

Graphs

Join-

semilattices

The extended permutohedron on \mathcal{K}_{3}

Lattices of
regular closed sets

The precursor
Regular closed sets

Transitive

binary

relations
Convexity and
hyperplane arrangements

Graphs

Join-

semilattices

\mathcal{K}_{3}

The extended permutohedron on \mathcal{K}_{4}

Lattices of regular closed sets

The precursor Regular closed sets

Transitive binary
relations
Convexity and hyperplane arrangements

Graphs

Join-

semilattices

Join-semilattices

■ For a join-semilattice S, set $\mathrm{cl}(\mathbf{x})=$ join-closure of \mathbf{x}.
The precursor

Transitive
binary
relations
Convexity and hyperplane arrangements

Graphs
Join-
semilattices

Join-semilattices

- For a join-semilattice S, set $\mathrm{cl}(\mathbf{x})=$ join-closure of \mathbf{x}.
- (S, cl) is a convex geometry.

Join-semilattices

Lattices of regular closed sets

■ For a join-semilattice S, set $\mathrm{cl}(\mathbf{x})=$ join-closure of \mathbf{x}.

- (S, cl) is a convex geometry.

Theorem (Santocanale and W. 2013)

The following hold, for any join-semilattice S.

Join-semilattices

Lattices of regular closed sets

■ For a join-semilattice S, set $\mathrm{cl}(\mathbf{x})=$ join-closure of \mathbf{x}.
■ (S, cl) is a convex geometry.

Theorem (Santocanale and W. 2013)

The following hold, for any join-semilattice S.
■ $\operatorname{Reg}(S, \mathrm{cl})$ is always the Dedekind-MacNeille completion of $\operatorname{Clop}(S, \mathrm{cl})$.

Join-semilattices

- For a join-semilattice S, set $\mathrm{cl}(\mathbf{x})=$ join-closure of \mathbf{x}.

■ (S, cl) is a convex geometry.

Theorem (Santocanale and W. 2013)

The following hold, for any join-semilattice S.

- $\operatorname{Reg}(S, \mathrm{cl})$ is always the Dedekind-MacNeille completion of $\operatorname{Clop}(S, \mathrm{cl})$.
- If S is finite, then $\operatorname{Reg}(S, \mathrm{cl})$ is a bounded homomorphic image of a free lattice.

Join-semilattices

■ For a join-semilattice S, set $\mathrm{cl}(\mathbf{x})=$ join-closure of \mathbf{x}.
■ (S, cl) is a convex geometry.

Theorem (Santocanale and W. 2013)

The following hold, for any join-semilattice S.

- $\operatorname{Reg}(S, \mathrm{cl})$ is always the Dedekind-MacNeille completion of $\operatorname{Clop}(S, \mathrm{cl})$.
- If S is finite, then $\operatorname{Reg}(S, \mathrm{cl})$ is a bounded homomorphic image of a free lattice.

However, $\operatorname{Reg}(S, \mathrm{cl})$ may not be spatial.

The extended permutohedron on S_{3}

Lattices of
regular closed sets

The precursor
Regular closed sets

Transitive

binary

relations
Convexity and hyperplane arrangements

Graphs
Join-
semilattices

S_{3}

