Free idempotent generated semigroups over bands

Dandan Yang

joint work with Vicky Gould

Novi Sad, June 2013

Let Σ be a finite alphabet and Σ^* the set of all words on Σ . A string-rewriting system R on Σ is a subset of $\Sigma^* \times \Sigma^*$. Let Σ be a finite alphabet and Σ^* the set of all words on Σ . A string-rewriting system R on Σ is a subset of $\Sigma^* \times \Sigma^*$. A single-step reduction relation on Σ^* is defined by

$$u \longrightarrow v \iff (\exists (I, r) \in R) \ (\exists x, y \in \Sigma^*) \ u = xly \text{ and } v = xry.$$

Let Σ be a finite alphabet and Σ^* the set of all words on Σ . A **string-rewriting system** R on Σ is a subset of $\Sigma^* \times \Sigma^*$. A **single-step reduction relation** on Σ^* is defined by

 $u \longrightarrow v \iff (\exists (I, r) \in R) \ (\exists x, y \in \Sigma^*) \ u = xly \text{ and } v = xry.$

The **reduction relation** on Σ^* induced by R is the reflexive, transitive closure of \longrightarrow and is denoted by $\stackrel{*}{\longrightarrow}$.

Let Σ be a finite alphabet and Σ^* the set of all words on Σ . A **string-rewriting system** R on Σ is a subset of $\Sigma^* \times \Sigma^*$. A **single-step reduction relation** on Σ^* is defined by

 $u \longrightarrow v \iff (\exists (I, r) \in R) \ (\exists x, y \in \Sigma^*) \ u = xly \text{ and } v = xry.$

The **reduction relation** on Σ^* induced by R is the reflexive, transitive closure of \longrightarrow and is denoted by $\stackrel{*}{\longrightarrow}$.

The structure $S = (\Sigma^*, R)$ is called a **reduction system**.

A word in Σ^* is in **normal form** if we cannot apply a relation in *R*.

A word in Σ^* is in **normal form** if we cannot apply a relation in *R*.

S is **noetherian** if $\not\exists w = w_0 \longrightarrow w_1 \longrightarrow w_2 \longrightarrow \cdots$

< □ > < ---->

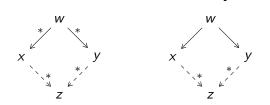
A word in Σ^* is in **normal form** if we cannot apply a relation in R. *S* is **noetherian** if $\not\exists w = w_0 \longrightarrow w_1 \longrightarrow w_2 \longrightarrow \cdots$

S is confluent

S is locally confluent

A word in Σ^* is in **normal form** if we cannot apply a relation in R. *S* is **noetherian** if $\not\exists w = w_0 \longrightarrow w_1 \longrightarrow w_2 \longrightarrow \cdots$

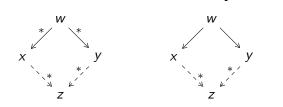
S is confluent



S is locally confluent

Facts:

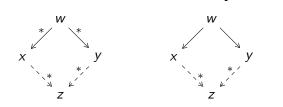
A word in Σ^* is in **normal form** if we cannot apply a relation in R. *S* is **noetherian** if $\not \exists w = w_0 \longrightarrow w_1 \longrightarrow w_2 \longrightarrow \cdots$ *S* is **confluent** *S* is **locally confluent**



Facts:

Ite ρ be the congruence generated by R. Then S is noetherian and confluent implies every ρ-class contains a unique normal form.

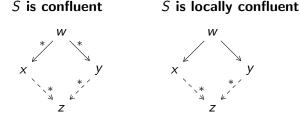
A word in Σ^* is in **normal form** if we cannot apply a relation in R. *S* is **noetherian** if $\not \exists w = w_0 \longrightarrow w_1 \longrightarrow w_2 \longrightarrow \cdots$ *S* is **confluent** *S* is **locally confluent**



Facts:

Ite ρ be the congruence generated by R. Then S is noetherian and confluent implies every ρ-class contains a unique normal form.

A word in Σ^* is in **normal form** if we cannot apply a relation in R. *S* is **noetherian** if $\not \exists w = w_0 \longrightarrow w_1 \longrightarrow w_2 \longrightarrow \cdots$ *S* is confluent *S* is locally confluent



Facts:

- It ρ be the congruence generated by R. Then S is noetherian and confluent implies every ρ-class contains a unique normal form.
- If S is noetherian, then

 $\textbf{confluent} \iff \textbf{locally confluent}.$

(Dandan Yang)

$$e \leq_{\mathcal{R}} f \Leftrightarrow fe = e \text{ and } e \leq_{\mathcal{L}} f \Leftrightarrow ef = e.$$

$$e \leq_{\mathcal{R}} f \Leftrightarrow fe = e \text{ and } e \leq_{\mathcal{L}} f \Leftrightarrow ef = e.$$

Note $e \leq_{\mathcal{R}} f$ ($e \leq_{\mathcal{L}} f$) implies both *ef* and *fe* are idempotents.

$$e \leq_{\mathcal{R}} f \Leftrightarrow fe = e \text{ and } e \leq_{\mathcal{L}} f \Leftrightarrow ef = e.$$

Note $e \leq_{\mathcal{R}} f$ ($e \leq_{\mathcal{L}} f$) implies both *ef* and *fe* are idempotents. We say that (e, f) is a **basic pair** if

$$e \leq_{\mathcal{R}} f, f \leq_{\mathcal{R}} e, e \leq_{\mathcal{L}} f \text{ or } f \leq_{\mathcal{L}} e$$

i.e. $\{e, f\} \cap \{ef, fe\} \neq \emptyset$; then ef, fe are said to be **basic products.**

$$e \leq_{\mathcal{R}} f \Leftrightarrow fe = e \text{ and } e \leq_{\mathcal{L}} f \Leftrightarrow ef = e.$$

Note $e \leq_{\mathcal{R}} f$ ($e \leq_{\mathcal{L}} f$) implies both *ef* and *fe* are idempotents. We say that (e, f) is a **basic pair** if

$$e \leq_{\mathcal{R}} f, f \leq_{\mathcal{R}} e, e \leq_{\mathcal{L}} f \text{ or } f \leq_{\mathcal{L}} e$$

i.e. $\{e, f\} \cap \{ef, fe\} \neq \emptyset$; then *ef*, *fe* are said to be **basic products**. Under basic products, *E* satisfies a number of axioms.

$$e \leq_{\mathcal{R}} f \Leftrightarrow fe = e \text{ and } e \leq_{\mathcal{L}} f \Leftrightarrow ef = e.$$

Note $e \leq_{\mathcal{R}} f$ ($e \leq_{\mathcal{L}} f$) implies both *ef* and *fe* are idempotents. We say that (e, f) is a **basic pair** if

$$e \leq_{\mathcal{R}} f, f \leq_{\mathcal{R}} e, e \leq_{\mathcal{L}} f \text{ or } f \leq_{\mathcal{L}} e$$

i.e. $\{e, f\} \cap \{ef, fe\} \neq \emptyset$; then *ef*, *fe* are said to be **basic products**. Under basic products, *E* satisfies a number of axioms.

A **biordered set** is a partial algebra satisfying these axioms.

Free idempotent generated semigroups

Let S be a semigroup with biordered set E.

Free idempotent generated semigroups

Let S be a semigroup with biordered set E.

The free idempotent generated semigroup IG(E) is defined by

$$\mathsf{IG}(E) = \langle \overline{E} : \overline{e}\overline{f} = \overline{ef}, e, f \in E, \{e, f\} \cap \{ef, fe\} \neq \emptyset \rangle.$$

where $\overline{E} = \{\overline{e} : e \in E\}.$

Free idempotent generated semigroups

Let S be a semigroup with biordered set E.

The free idempotent generated semigroup IG(E) is defined by

$$\mathsf{IG}(E) = \langle \overline{E} : \overline{e}\overline{f} = \overline{ef}, \ e, f \in E, \{e, f\} \cap \{ef, fe\} \neq \emptyset \rangle.$$

where $\overline{E} = \{\overline{e} : e \in E\}.$

Facts:

The free idempotent generated semigroup IG(E) is defined by

$$\mathsf{IG}(E) = \langle \overline{E} : \overline{e}\overline{f} = \overline{ef}, \ e, f \in E, \{e, f\} \cap \{ef, fe\} \neq \emptyset \rangle.$$

where $\overline{E} = \{\overline{e} : e \in E\}.$

Facts:

• $\phi : IG(E) \to \langle E \rangle$, given by $\bar{e}\phi = e$ is an epimorphism.

The free idempotent generated semigroup IG(E) is defined by

$$\mathsf{IG}(E) = \langle \overline{E} : \overline{e}\overline{f} = \overline{ef}, \ e, f \in E, \{e, f\} \cap \{ef, fe\} \neq \emptyset \rangle.$$

where $\overline{E} = \{\overline{e} : e \in E\}.$

Facts:

φ : IG(E) → (E), given by ēφ = e is an epimorphism.
E ≅ E(IG(E))

The free idempotent generated semigroup IG(E) is defined by

$$\mathsf{IG}(E) = \langle \overline{E} : \overline{e}\overline{f} = \overline{ef}, \ e, f \in E, \{e, f\} \cap \{ef, fe\} \neq \emptyset \rangle.$$

where $\overline{E} = \{\overline{e} : e \in E\}.$

Facts:

Note IG(E) naturally gives us a reduction system (\overline{E}^*, R), where

$$R = \{(\overline{e}\overline{f}, \overline{ef}) : (e, f) \text{ is a basic pair}\}.$$

The free idempotent generated semigroup IG(E) is defined by

$$\mathsf{IG}(E) = \langle \overline{E} : \overline{e}\overline{f} = \overline{ef}, \ e, f \in E, \{e, f\} \cap \{ef, fe\} \neq \emptyset \rangle.$$

where $\overline{E} = \{\overline{e} : e \in E\}.$

Facts:

Note IG(E) naturally gives us a reduction system (\overline{E}^*, R), where

$$R = \{(\overline{e}\overline{f}, \overline{ef}) : (e, f) \text{ is a basic pair}\}.$$

Aim Today: To study the general structure of IG(E), for some bands.

IG(E) is not necessarily regular.

IG(E) is not necessarily regular. Consider a semilattice

e f ____g

Then $\overline{e} \ \overline{f} \in IG(E)$ is not regular.

IG(E) is not necessarily regular. Consider a semilattice

e f

Then $\overline{e} \ \overline{f} \in IG(E)$ is not regular.

What other structures does IG(E) might have?

For any $a, b \in S$,

$$a \mathcal{L}^* b \iff (\forall x, y \in S^1) (ax = ay \Leftrightarrow bx = by).$$

For any $a, b \in S$,

$$a \mathcal{L}^* b \iff (\forall x, y \in S^1) (ax = ay \Leftrightarrow bx = by).$$

Dually, the relation \mathcal{R}^* is defined on S.

For any $a, b \in S$,

$$a \mathcal{L}^* b \iff (\forall x, y \in S^1) (ax = ay \Leftrightarrow bx = by).$$

Dually, the relation \mathcal{R}^* is defined on *S*.

Note $\mathcal{L} \subseteq \mathcal{L}^*$, $\mathcal{R} \subseteq \mathcal{R}^*$.

For any $a, b \in S$,

$$a \mathcal{L}^* b \iff (\forall x, y \in S^1) (ax = ay \Leftrightarrow bx = by).$$

Dually, the relation \mathcal{R}^* is defined on S.

Note $\mathcal{L} \subseteq \mathcal{L}^*$, $\mathcal{R} \subseteq \mathcal{R}^*$.

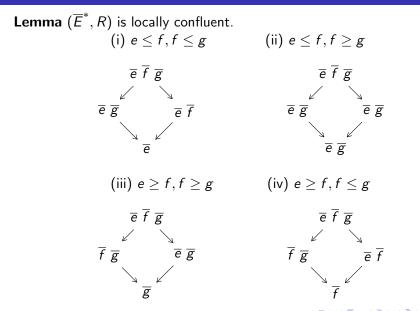
Definition A semigroup S is called **abundant** if each \mathcal{L}^* -class and each \mathcal{R}^* -class contains an idempotent of S.

IG(E) over semilattices

Lemma (\overline{E}^*, R) is locally confluent.

< ∃ >

IG(E) over semilattices



Lemma (\overline{E}^*, R) is noetherian.

- < A

< ∃ >

Lemma (\overline{E}^*, R) is noetherian.

Corollary Every element $\overline{x_1} \cdots \overline{x_n} \in IG(E)$ has a unique normal form.

- **Lemma** (\overline{E}^*, R) is noetherian.
- **Corollary** Every element $\overline{x_1} \cdots \overline{x_n} \in IG(E)$ has a unique normal form.
- **Theorem** IG(E) is abundant, and so adequate.

Lemma (\overline{E}^*, R) is noetherian.

Corollary Every element $\overline{x_1} \cdots \overline{x_n} \in IG(E)$ has a unique normal form.

Theorem IG(E) is abundant, and so adequate.

Note Adequate semigroups belong to a quasivariety of algebras introduced in **York** by **Fountain** over 30 years ago, for which the free objects have recently been described.

Recall that a band *E* is a semilattice *Y* of rectangular bands E_{α} , where $\alpha \in Y$.

Recall that a band *E* is a semilattice *Y* of rectangular bands E_{α} , where $\alpha \in Y$.

Definition A band *E* is called a **simple band** if each E_{α} is either a left zero band or a right zero band, for all $\alpha \in Y$.

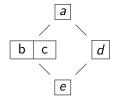
Recall that a band *E* is a semilattice *Y* of rectangular bands E_{α} , where $\alpha \in Y$.

Definition A band *E* is called a **simple band** if each E_{α} is either a left zero band or a right zero band, for all $\alpha \in Y$. **Note** We lose the uniqueness of normal form here!

Recall that a band *E* is a semilattice *Y* of rectangular bands E_{α} , where $\alpha \in Y$.

Definition A band *E* is called a **simple band** if each E_{α} is either a left zero band or a right zero band, for all $\alpha \in Y$.

Note We lose the uniqueness of normal form here! Consider the following simple band

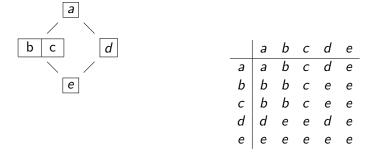


	a b b d e	b	С	d	е	
а	а	b	С	d	е	-
b	b	b	С	е	е	
с	b	b	с	е	е	
d	d	е	е	d	е	
е	е	е	е	е	е	

Recall that a band *E* is a semilattice *Y* of rectangular bands E_{α} , where $\alpha \in Y$.

Definition A band *E* is called a **simple band** if each E_{α} is either a left zero band or a right zero band, for all $\alpha \in Y$.

Note We lose the uniqueness of normal form here! Consider the following simple band

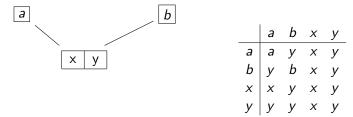


Clearly,
$$\overline{c} \ \overline{d} = \overline{c} \ \overline{ad} = \overline{c} \ \overline{a} \ \overline{d} = \overline{ca} \ \overline{d} = \overline{b} \ \overline{d}$$

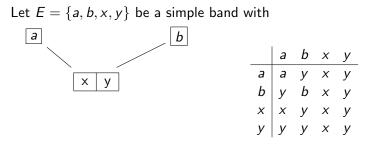
Note IG(E) does not have to be abundant.

Note IG(E) does not have to be abundant.

Let $E = \{a, b, x, y\}$ be a simple band with



Note IG(E) does not have to be abundant.



Note \overline{a} \overline{b} does not \mathcal{R}^* -related to any element in E.

Let $U \subseteq E(S)$. For any $a, b \in S$,

$$a \ \widetilde{\mathcal{L}}_U \ b \iff (\forall e \in U) \ (ae = a \Leftrightarrow be = b).$$
$$a \ \widetilde{\mathcal{R}}_U \ b \iff (\forall e \in U) \ (ea = a \Leftrightarrow eb = b).$$

Let $U \subseteq E(S)$. For any $a, b \in S$,

$$a \ \widetilde{\mathcal{L}}_U \ b \iff (\forall e \in U) \ (ae = a \Leftrightarrow be = b).$$
$$a \ \widetilde{\mathcal{R}}_U \ b \iff (\forall e \in U) \ (ea = a \Leftrightarrow eb = b).$$
Note $\mathcal{L} \subseteq \mathcal{L}^* \subseteq \widetilde{\mathcal{L}}_U, \ \mathcal{R} \subseteq \mathcal{R}^* \subseteq \widetilde{\mathcal{R}}_U.$

Let $U \subseteq E(S)$. For any $a, b \in S$,

$$a \ \widetilde{\mathcal{L}}_U \ b \iff (\forall e \in U) \ (ae = a \Leftrightarrow be = b).$$
$$a \ \widetilde{\mathcal{R}}_U \ b \iff (\forall e \in U) \ (ea = a \Leftrightarrow eb = b).$$
Note $\mathcal{L} \subseteq \mathcal{L}^* \subseteq \widetilde{\mathcal{L}}_U, \ \mathcal{R} \subseteq \mathcal{R}^* \subseteq \widetilde{\mathcal{R}}_U.$

Definition A semigroup S with $U \subseteq E(S)$ is called **weakly** U-abundant if each $\widetilde{\mathcal{L}}_U$ -class and each $\widetilde{\mathcal{R}}_U$ -class contains an idempotent in U, and U is called the **distinguished set** of S.

Let $U \subseteq E(S)$. For any $a, b \in S$,

$$a \ \widetilde{\mathcal{L}}_U \ b \iff (\forall e \in U) \ (ae = a \Leftrightarrow be = b).$$
$$a \ \widetilde{\mathcal{R}}_U \ b \iff (\forall e \in U) \ (ea = a \Leftrightarrow eb = b).$$
$$\mathcal{L} \subseteq \mathcal{L}^* \subseteq \widetilde{\mathcal{L}}_U, \ \mathcal{R} \subseteq \mathcal{R}^* \subseteq \widetilde{\mathcal{R}}_U.$$

Definition A semigroup S with $U \subseteq E(S)$ is called **weakly** U-abundant if each $\widetilde{\mathcal{L}}_U$ -class and each $\widetilde{\mathcal{R}}_U$ -class contains an idempotent in U, and U is called the **distinguished set** of S.

Definition A weakly *U*-abundant semigroup semigroup *S* satisfies the **congruence condition** if $\tilde{\mathcal{L}}_U$ is a right congruence and $\tilde{\mathcal{R}}_U$ is a left congruence.

Note

Lemma For any $e \in E_{\alpha}$, $f \in E_{\beta}$, (e, f) is basic pair in E if and only if (α, β) is a basic pair in Y.

Lemma For any $e \in E_{\alpha}$, $f \in E_{\beta}$, (e, f) is basic pair in E if and only if (α, β) is a basic pair in Y.

Lemma Let $\theta: S \longrightarrow T$ be an onto homomorphism of semigroups S and T. Then a map

$$\overline{\theta}: \mathsf{IG}(U) \longrightarrow \mathsf{IG}(V)$$

defined by $\overline{e} \ \overline{\theta} = \overline{e\theta}$ for all $e \in U$, is a well defined homomorphism, where U and V are the biordered sets of S and T, respectively.

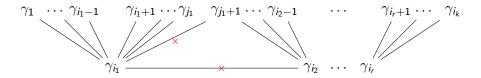
Let $\alpha = \overline{w_1} \cdots \overline{w_k}$ with $w_i \in E_{\gamma_i}$, for $1 \le i \le k$. Then $(\overline{w_1} \cdots \overline{w_k}) \overline{\theta} = \overline{\gamma_1} \cdots \overline{\gamma_k}$.

Let $\alpha = \overline{w_1} \cdots \overline{w_k}$ with $w_i \in E_{\gamma_i}$, for $1 \le i \le k$. Then $(\overline{w_1} \cdots \overline{w_k}) \overline{\theta} = \overline{\gamma_1} \cdots \overline{\gamma_k}$.

We choose $i_1, j_1, i_2, j_2, \cdots, i_r \in \{1, \cdots, k\}$ in the following way:

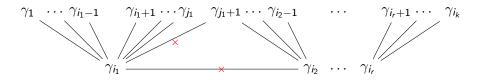
Let $\alpha = \overline{w_1} \cdots \overline{w_k}$ with $w_i \in E_{\gamma_i}$, for $1 \le i \le k$. Then $(\overline{w_1} \cdots \overline{w_k}) \overline{\theta} = \overline{\gamma_1} \cdots \overline{\gamma_k}$.

We choose $i_1, j_1, i_2, j_2, \cdots, i_r \in \{1, \cdots, k\}$ in the following way:



Let $\alpha = \overline{w_1} \cdots \overline{w_k}$ with $w_i \in E_{\gamma_i}$, for $1 \le i \le k$. Then $(\overline{w_1} \cdots \overline{w_k}) \overline{\theta} = \overline{\gamma_1} \cdots \overline{\gamma_k}$.

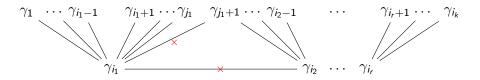
We choose $i_1, j_1, i_2, j_2, \cdots, i_r \in \{1, \cdots, k\}$ in the following way:



We call i_1, \dots, i_r are the **significant indices** of α .

Let $\alpha = \overline{w_1} \cdots \overline{w_k}$ with $w_i \in E_{\gamma_i}$, for $1 \le i \le k$. Then $(\overline{w_1} \cdots \overline{w_k}) \overline{\theta} = \overline{\gamma_1} \cdots \overline{\gamma_k}$.

We choose $i_1, j_1, i_2, j_2, \cdots, i_r \in \{1, \cdots, k\}$ in the following way:



We call i_1, \dots, i_r are the **significant indices** of α .

Lemma *r* and $\gamma_{i_1}, \dots, \gamma_{i_r}$ are fixed for the equivalence class of α .

Lemma Let *E* be a simple band and $\overline{x_1} \cdots \overline{x_n} \in IG(E)$ with normal forms

$$\overline{u_1} \cdots \overline{u_m} = \overline{v_1} \cdots \overline{v_s}.$$

Then s = m and $u_i \mathcal{D} v_i$, for all $i \in [1, m]$.

Lemma Let *E* be a simple band and $\overline{x_1} \cdots \overline{x_n} \in IG(E)$ with normal forms

$$\overline{u_1} \cdots \overline{u_m} = \overline{v_1} \cdots \overline{v_s}.$$

Then s = m and $u_i \mathcal{D} v_i$, for all $i \in [1, m]$. In particular, we have

 $u_1 \mathcal{R} v_1$ and $u_m \mathcal{L} v_m$.

Lemma Let *E* be a simple band and $\overline{x_1} \cdots \overline{x_n} \in IG(E)$ with normal forms

$$\overline{u_1} \cdots \overline{u_m} = \overline{v_1} \cdots \overline{v_s}.$$

Then s = m and $u_i \mathcal{D} v_i$, for all $i \in [1, m]$. In particular, we have

 $u_1 \mathcal{R} v_1$ and $u_m \mathcal{L} v_m$.

Theorem IG(E) over a simple band is a weakly abundant semigroup with the congruence condition.

Lemma Let *E* be a simple band and $\overline{x_1} \cdots \overline{x_n} \in IG(E)$ with normal forms

$$\overline{u_1} \cdots \overline{u_m} = \overline{v_1} \cdots \overline{v_s}.$$

Then s = m and $u_i \mathcal{D} v_i$, for all $i \in [1, m]$. In particular, we have

 $u_1 \mathcal{R} v_1$ and $u_m \mathcal{L} v_m$.

Theorem IG(E) over a simple band is a weakly abundant semigroup with the congruence condition.

Lemma Let $\alpha = \overline{w_1} \cdots \overline{w_k}$ and $\beta = \overline{x_1} \cdots \overline{x_l}$ such that $\alpha \sim \beta$ via single reduction. Suppose that the significant indices of α and β are i_1, \cdots, i_r and z_1, \cdots, z_r , respectively. Then

$$\overline{x_1} \cdots \overline{x_{z_l}} = \overline{w_1} \cdots \overline{w_{i_l} u}$$

where $l \in [1, r]$ and $u \in E$.

Lemma Let $\alpha = \overline{w_1} \cdots \overline{w_k}$ and $\beta = \overline{x_1} \cdots \overline{x_l}$ such that $\alpha \sim \beta$ via single reduction. Suppose that the significant indices of α and β are i_1, \cdots, i_r and z_1, \cdots, z_r , respectively. Then

$$\overline{x_1} \cdots \overline{x_{z_l}} = \overline{w_1} \cdots \overline{w_{i_l} u}$$

where $l \in [1, r]$ and $u \in E$.

Lemma Let $\overline{u_1} \cdots \overline{u_m} = \overline{v_1} \cdots \overline{v_m} \in IG(E)$ be in normal form. Then (i) $u_i \mathcal{L} v_i$ implies $\overline{u_1} \cdots \overline{u_i} = \overline{v_1} \cdots \overline{v_i}$; (ii) $u_i \mathcal{R} v_i$ implies $\overline{u_i} \cdots \overline{u_m} = \overline{v_i} \cdots \overline{v_m}$.

Lemma Let $\alpha = \overline{w_1} \cdots \overline{w_k}$ and $\beta = \overline{x_1} \cdots \overline{x_l}$ such that $\alpha \sim \beta$ via single reduction. Suppose that the significant indices of α and β are i_1, \cdots, i_r and z_1, \cdots, z_r , respectively. Then

$$\overline{x_1} \cdots \overline{x_{z_l}} = \overline{w_1} \cdots \overline{w_{i_l} u}$$

where $l \in [1, r]$ and $u \in E$.

Lemma Let $\overline{u_1} \cdots \overline{u_m} = \overline{v_1} \cdots \overline{v_m} \in IG(E)$ be in normal form. Then (i) $u_i \mathcal{L} v_i$ implies $\overline{u_1} \cdots \overline{u_i} = \overline{v_1} \cdots \overline{v_i}$; (ii) $u_i \mathcal{R} v_i$ implies $\overline{u_i} \cdots \overline{u_m} = \overline{v_i} \cdots \overline{v_m}$.

Theorem IG(E) over a strong simple band is abundant.

Thank you!

(Dandan Yang)

Image: A math and A