λ -semidirect products and inductive categories

Rida-E Zenab

University of York

NSAC, 5-9 June 2013

Based on joint work with Victoria Gould

• Semidirect products, coverings and embeddings of monoids

э

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Semidirect products, coverings and embeddings of monoids
- \bullet Introduction to Billhardt's $\lambda\text{-semidirect}$ product

∃ ► < ∃ ►</p>

- Semidirect products, coverings and embeddings of monoids
- \bullet Introduction to Billhardt's $\lambda\text{-semidirect}$ product
- λ -semidirect product of left restriction monoids

- Semidirect products, coverings and embeddings of monoids
- Introduction to Billhardt's λ -semidirect product
- λ -semidirect product of left restriction monoids
- \bullet Inductive categories, $\lambda\text{-semidirect}$ products and restriction monoids

Rida-E Zenab λ -semidirect products and inductive categories

Suppose A and T are monoids. T is said to act on A by endomorphisms if for every $t \in T$, there is a map $a \to t \cdot a$ satisfying:

3 🖌 🖌 3

Suppose A and T are monoids. T is said to act on A by endomorphisms if for every $t \in T$, there is a map $a \to t \cdot a$ satisfying:

for all $t, t' \in T$ and for all $a, a' \in A$

Suppose A and T are monoids. T is said to act on A by endomorphisms if for every $t \in T$, there is a map $a \to t \cdot a$ satisfying:

for all $t, t' \in T$ and for all $a, a' \in A$

Suppose A and T are monoids. T is said to act on A by endomorphisms if for every $t \in T$, there is a map $a \to t \cdot a$ satisfying:

for all $t, t' \in T$ and for all $a, a' \in A$

t · (aa') = (t · a)(t · a');
tt' · a = t · (t' · a);

$$\mathbf{0} \quad \mathbf{1} \cdot \mathbf{a} = \mathbf{a}.$$

Suppose A and T are monoids. T is said to act on A by endomorphisms if for every $t \in T$, there is a map $a \to t \cdot a$ satisfying:

for all $t, t' \in T$ and for all $a, a' \in A$

- $\bullet t \cdot (aa') = (t \cdot a)(t \cdot a');$
- $2 tt' \cdot a = t \cdot (t' \cdot a);$

$$\mathbf{9} \quad \mathbf{1} \cdot \mathbf{a} = \mathbf{a}.$$

These three axioms are equivalent to the existence of a homomorphism from T to the monoid of endomorphisms of A.

Suppose A and T are monoids. T is said to act on A by endomorphisms if for every $t \in T$, there is a map $a \to t \cdot a$ satisfying:

for all $t, t' \in T$ and for all $a, a' \in A$

- $t \cdot (aa') = (t \cdot a)(t \cdot a');$
- $e tt' \cdot a = t \cdot (t' \cdot a);$

 $\mathbf{0} \mathbf{1} \cdot \mathbf{a} = \mathbf{a}.$

These three axioms are equivalent to the existence of a homomorphism from T to the monoid of endomorphisms of A.

 $A \rtimes T = \{(a, t) : a \in A, t \in T\}$

is the *semidirect product* with multiplication

Suppose A and T are monoids. T is said to act on A by endomorphisms if for every $t \in T$, there is a map $a \to t \cdot a$ satisfying:

for all $t, t' \in T$ and for all $a, a' \in A$

t · (aa') = (t · a)(t · a');
tt' · a = t · (t' · a);

These three axioms are equivalent to the existence of a homomorphism from T to the monoid of endomorphisms of A.

$$A \rtimes T = \{(a, t) : a \in A, t \in T\}$$

is the semidirect product with multiplication

$$(a,t)(a',t')=(a(t\cdot a'),tt').$$

Now if

$$A \rtimes T = \{(a, t) : a \in A, t \in T\}$$

Rida-E Zenab λ -semidirect products and inductive categories

Now if

$$A \rtimes T = \{(a, t) : a \in A, t \in T\}$$

then

 $A'=\{(a,1):a\in A\}$

Now if

$$A
times T = \{(a,t): a \in A, t \in T\}$$

then

$${\mathcal A}'=\{(a,1):a\in {\mathcal A}\}$$

and

$$T' = \{(t \cdot 1, t) : t \in T\}$$

are submonoids of $A \rtimes T$ with $A \cong A'$ and $T \cong T'$

Now if

$$A
times T=\{(a,t):a\in A,\ t\in T\}$$

then

$${\mathcal A}'=\{({\mathfrak a},1):{\mathfrak a}\in{\mathcal A}\}$$

and

$$T' = \{(t \cdot 1, t) : t \in T\}$$

are submonoids of $A \rtimes T$ with $A \cong A'$ and $T \cong T'$ and

$$A'T' = \{(a,t) \in A \times T : a(t \cdot 1) = a\}$$

Rida-E Zenab λ -semidirect products and inductive categories

æ

米部ト 米油ト 米油ト

Let S be a monoid such that S = AT where A, T are submonoids of S. Suppose T acts on A satisfying

 $ta = (t \cdot a)t.$

3 🖌 🖌 3

Let S be a monoid such that S = AT where A, T are submonoids of S. Suppose T acts on A satisfying

 $ta = (t \cdot a)t.$

Let

 $E = \{t \cdot 1 : t \in T\}$

-

3 b 4 3

Let S be a monoid such that S = AT where A, T are submonoids of S. Suppose T acts on A satisfying

 $ta = (t \cdot a)t.$

Let

 $E = \{t \cdot 1 : t \in T\}$

Suppose the idempotents in E commute.

Let S be a monoid such that S = AT where A, T are submonoids of S. Suppose T acts on A satisfying

 $ta = (t \cdot a)t.$

Let

$$E = \{t \cdot 1 : t \in T\}$$

Suppose the idempotents in *E* commute. From $ta = (t \cdot a)t$, we have

 $t = (t \cdot 1)t$

Let S be a monoid such that S = AT where A, T are submonoids of S. Suppose T acts on A satisfying

 $ta = (t \cdot a)t.$

Let

$$E = \{t \cdot 1 : t \in T\}$$

Suppose the idempotents in *E* commute. From $ta = (t \cdot a)t$, we have

 $t = (t \cdot 1)t$

so that

 $at = a(t \cdot 1)t.$

Let S be a monoid such that S = AT where A, T are submonoids of S. Suppose T acts on A satisfying

 $ta = (t \cdot a)t.$

Let

$$E = \{t \cdot 1 : t \in T\}$$

Suppose the idempotents in *E* commute. From $ta = (t \cdot a)t$, we have

 $t = (t \cdot 1)t$

so that

 $at = a(t \cdot 1)t.$

Now if $s \in S$, then

$$s = at$$
 where $a = a(t \cdot 1)$

Rida-E Zenab λ -semidirect products and inductive categories

æ

米部ト 米油ト 米油ト

 $t \sigma_A s \Leftrightarrow et = fs \text{ for some } e, f \in \langle E \rangle.$

э

伺 ト イヨト イヨト

$t \sigma_A s \Leftrightarrow et = fs \text{ for some } e, f \in \langle E \rangle.$

Then σ_A is a congruence.

A B > A B >

3

 $t \sigma_A s \Leftrightarrow et = fs$ for some $e, f \in \langle E \rangle$.

Then σ_A is a congruence. We say that S is (A, T)-proper if for $at, bs \in S$ where $a = a(t \cdot 1), b = b(s \cdot 1)$

4 3 6 4 3 6

$$t \sigma_A s \Leftrightarrow et = fs \text{ for some } e, f \in \langle E \rangle.$$

Then σ_A is a congruence. We say that S is (A, T)-proper if for $at, bs \in S$ where $a = a(t \cdot 1), b = b(s \cdot 1)$

at = bs

3 N 4 3 N

-

$$t \sigma_A s \Leftrightarrow et = fs \text{ for some } e, f \in \langle E \rangle.$$

Then σ_A is a congruence. We say that S is (A, T)-proper if for $at, bs \in S$ where $a = a(t \cdot 1), b = b(s \cdot 1)$

$$\begin{array}{rcl} at &=& bs\\ \Leftrightarrow & a &=& b \quad \text{and} \ t \, \sigma_A \, s \end{array}$$

• • = • • = •

$$t \sigma_A s \Leftrightarrow et = fs \text{ for some } e, f \in \langle E \rangle.$$

Then σ_A is a congruence. We say that S is (A, T)-proper if for $at, bs \in S$ where $a = a(t \cdot 1), b = b(s \cdot 1)$

at = bs $\Leftrightarrow a = b$ and $t\sigma_A s$

Consequently $t \sigma_A s$ implies that $(s \cdot 1)t = (t \cdot 1)s$.

Rida-E Zenab λ -semidirect products and inductive categories

æ

米部ト 米油ト 米油ト

Suppose S = AT where A, T are submonoids of S. Suppose T acts on A satisfying

 $ta = (t \cdot a)t.$

3 🖌 🖌 3

Suppose S = AT where A, T are submonoids of S. Suppose T acts on A satisfying

$$ta = (t \cdot a)t.$$

Then T' acts on A' by

$$(t \cdot 1, t) \bullet (a, 1) = (t \cdot a, 1).$$

Suppose S = AT where A, T are submonoids of S. Suppose T acts on A satisfying

$$ta = (t \cdot a)t.$$

Then T' acts on A' by

$$(t \cdot 1, t) \bullet (a, 1) = (t \cdot a, 1).$$

We have

$$(t\cdot 1,t)(a,1)=ig((t\cdot 1,t)ullet(a,1)ig)(t\cdot 1,t)$$

Suppose S = AT where A, T are submonoids of S. Suppose T acts on A satisfying

$$ta = (t \cdot a)t.$$

Then T' acts on A' by

$$(t \cdot 1, t) \bullet (a, 1) = (t \cdot a, 1).$$

We have

$$(t\cdot 1,t)(a,1) = \big((t\cdot 1,t)\bullet(a,1)\big)(t\cdot 1,t)$$

and

 $E' = \{(t \cdot 1, t) * (1, 1) : (t \cdot 1, t) \in T'\} = \{(t \cdot 1, 1) : t \in T\}$

is a set of commuting idempotents.
(A, T)-Proper monoids

Suppose S = AT where A, T are submonoids of S. Suppose T acts on A satisfying

$$ta = (t \cdot a)t.$$

Then T' acts on A' by

$$(t \cdot 1, t) \bullet (a, 1) = (t \cdot a, 1).$$

We have

$$(t\cdot 1,t)(a,1) = \big((t\cdot 1,t)\bullet(a,1)\big)(t\cdot 1,t)$$

and

$${\sf E}'=\{(t\cdot 1,t)*(1,1):(t\cdot 1,t)\in {\cal T}'\}=\{(t\cdot 1,1):t\in {\cal T}\}$$

is a set of commuting idempotents. Then

$$U'=\{(a,t)\in U: a(t\cdot 1)=a\}$$

(A, T)-Proper monoids

Suppose S = AT where A, T are submonoids of S. Suppose T acts on A satisfying

$$ta = (t \cdot a)t.$$

Then T' acts on A' by

$$(t \cdot 1, t) \bullet (a, 1) = (t \cdot a, 1).$$

We have

$$(t\cdot 1,t)(a,1) = \big((t\cdot 1,t)\bullet(a,1)\big)(t\cdot 1,t)$$

and

$${\sf E}'=\{(t\cdot 1,t)*(1,1):(t\cdot 1,t)\in {\cal T}'\}=\{(t\cdot 1,1):t\in {\cal T}\}$$

is a set of commuting idempotents. Then

$$U'=\{(a,t)\in U: a(t\cdot 1)=a\}$$

is (A', T')-proper.

Covering Theorem for monoids

Rida-E Zenab λ -semidirect products and inductive categories

э

Theorem Let S = AT where T acts on A such that $ta = (t \cdot a)t$ and $E = \{t \cdot 1 : t \in T\}$ is a commuting set of idempotents. **Theorem** Let S = AT where T acts on A such that $ta = (t \cdot a)t$ and $E = \{t \cdot 1 : t \in T\}$ is a commuting set of idempotents. Then

 $\theta: U' \to S$

is an onto morphism such that

Theorem Let S = AT where T acts on A such that $ta = (t \cdot a)t$ and $E = \{t \cdot 1 : t \in T\}$ is a commuting set of idempotents. Then

 $\theta: U' \to S$

is an onto morphism such that

 $\theta|_{\mathcal{A}'}:\mathcal{A}'\to\mathcal{A}$

is an isomorphism.

Embedding Theorem for monoids

Rida-E Zenab λ -semidirect products and inductive categories

э

-

Theorem Let S = AT where T acts on A such that $ta = (t \cdot a)t$ and $E = \{t \cdot 1 : t \in T\}$ is a commuting set of idempotents. Suppose that S is (A, T)-proper.

3 N 4 3 N

Theorem Let S = AT where T acts on A such that $ta = (t \cdot a)t$ and $E = \{t \cdot 1 : t \in T\}$ is a commuting set of idempotents. Suppose that S is (A, T)-proper.

There exists a semidirect product

 $U = \mathcal{A} \rtimes T \neq \sigma_{\mathcal{A}}$

where \mathcal{A} contains a submonoid $\mathcal{A}' \approx \mathcal{A}$ and an embedding

 $\theta: S \to U$

Theorem Let S = AT where T acts on A such that $ta = (t \cdot a)t$ and $E = \{t \cdot 1 : t \in T\}$ is a commuting set of idempotents. Suppose that S is (A, T)-proper.

There exists a semidirect product

 $U = \mathcal{A} \rtimes T \neq \sigma_{\mathcal{A}}$

where \mathcal{A} contains a submonoid $\mathcal{A}' \approx \mathcal{A}$ and an embedding

 $\theta: S \to U$

such that

$$\theta|_{\mathcal{A}}: \mathcal{A} \to \mathcal{A}' \times \{1\}$$

is an isomorphism.

э

Embedding Theorem for monoids

Idea of construction

Let $I = \{HE : H \subseteq A\}$.

э

Let $I = \{HE : H \subseteq A\}$. Then I is subsemigroup of subsets of A where multiplication is just product of sets

Let $I = \{HE : H \subseteq A\}$. Then I is subsemigroup of subsets of A where multiplication is just product of sets and

 $\mathcal{A} = I^{T \nearrow \sigma_{\mathcal{A}}} = \{f : T \nearrow \sigma_{\mathcal{A}} \to I\}$

Let $I = \{HE : H \subseteq A\}$. Then I is subsemigroup of subsets of A where multiplication is just product of sets and

 $\mathcal{A} = I^{T \nearrow \sigma_{\mathcal{A}}} = \{f : T \nearrow \sigma_{\mathcal{A}} \to I\}$

 $T \not / \sigma_A$ acts on \mathcal{A} by

 $[t] \star f : [u]([t] \star f) = [ut]f$

which is a monoid action by homomorphism.

Let $I = \{HE : H \subseteq A\}$. Then I is subsemigroup of subsets of A where multiplication is just product of sets and

 $\mathcal{A} = I^{T \nearrow \sigma_{\mathcal{A}}} = \{f : T \nearrow \sigma_{\mathcal{A}} \to I\}$

 $T \not / \sigma_A$ acts on \mathcal{A} by

 $[t] \star f : [u]([t] \star f) = [ut]f$

which is a monoid action by homomorphism. Let

 $f_{a}: [u]f_{a} = \{u' \cdot a : u' \sigma_{A} u\}E$

Let $I = \{HE : H \subseteq A\}$. Then I is subsemigroup of subsets of A where multiplication is just product of sets and

 $\mathcal{A} = I^{T \nearrow \sigma_A} = \{f : T \nearrow \sigma_A \to I\}$

 $T \not / \sigma_A$ acts on $\mathcal A$ by

 $[t] \star f : [u]([t] \star f) = [ut]f$

which is a monoid action by homomorphism. Let

$$f_a: [u]f_a = \{u' \cdot a : u' \sigma_A u\}E$$

Then

•
$$f_a \in \mathcal{A}$$
 and $\{f_a : a \in A\} \approx A$

Let $I = \{HE : H \subseteq A\}$. Then I is subsemigroup of subsets of A where multiplication is just product of sets and

 $\mathcal{A} = I^{T \nearrow \sigma_A} = \{f : T \nearrow \sigma_A \to I\}$

 $T \not / \sigma_A$ acts on $\mathcal A$ by

 $[t] \star f : [u]([t] \star f) = [ut]f$

which is a monoid action by homomorphism. Let

$$f_a: [u]f_a = \{u' \cdot a : u' \sigma_A u\}E$$

Then

•
$$f_a \in \mathcal{A}$$
 and $\{f_a : a \in A\} \approx A$

• $\theta: S \to \mathcal{A} \rtimes T \diagup \sigma_A$ is defined by

 $(at)\theta = (f_a, [t])$ where $a = a(t \cdot 1)$.

The semidirect product of two inverse semigroups is not inverse in general.

The semidirect product of two inverse semigroups is not inverse in general.

Bernd Billhardt 1992

Let A and T be inverse semigroups such that T acts on A by endomorphisms on the left.

The semidirect product of two inverse semigroups is not inverse in general.

Bernd Billhardt 1992

Let A and T be inverse semigroups such that T acts on A by endomorphisms on the left. On

$$S = A
times^{\lambda} T = \{(a, t) : tt^{-1} \cdot a = a\}$$

a multiplication is defined by

$$(a,t)(b,u) = \left(((tu)(tu)^{-1} \cdot a)(t \cdot b), tu\right)$$

The semidirect product of two inverse semigroups is not inverse in general.

Bernd Billhardt 1992

Let A and T be inverse semigroups such that T acts on A by endomorphisms on the left. On

$$S = A
times^{\lambda} T = \{(a, t) : tt^{-1} \cdot a = a\}$$

a multiplication is defined by

$$(a,t)(b,u) = (((tu)(tu)^{-1} \cdot a)(t \cdot b), tu)$$

Then S is an inverse semigroup with

$$(a, t)^{-1} = (t^{-1}a^{-1}, t^{-1}).$$

The semidirect product of two inverse semigroups is not inverse in general.

Bernd Billhardt 1992

Let A and T be inverse semigroups such that T acts on A by endomorphisms on the left. On

$$S = A
times^\lambda T = \{(a,t) : tt^{-1} \cdot a = a\}$$

a multiplication is defined by

$$(a,t)(b,u) = \left(((tu)(tu)^{-1} \cdot a)(t \cdot b), tu\right)$$

Then S is an inverse semigroup with

$$(a, t)^{-1} = (t^{-1}a^{-1}, t^{-1}).$$

S is called a λ -semidirect product of A and T.

Rida-E Zenab λ -semidirect products and inductive categories

æ

Billhardt generalized this result to left ample semigroups in 1995 where the first component was a semilattice.

Billhardt generalized this result to left ample semigroups in 1995 where the first component was a semilattice.

He proved that given a left ample semigroup S and a left ample congruence ρ on S, satisfying $\rho \cap \mathcal{R}^* = i$, S is isomorphic to a subsemigroup T of $A \rtimes^{\lambda} S / \rho$, with A as a semilattice.

Billhardt generalized this result to left ample semigroups in 1995 where the first component was a semilattice.

He proved that given a left ample semigroup S and a left ample congruence ρ on S, satisfying $\rho \cap \mathcal{R}^* = i$, S is isomorphic to a subsemigroup T of $A \rtimes^{\lambda} S / \rho$, with A as a semilattice.

M. Branco, G. Gomes and V. Gould (2010) extended this result to the λ -semidirect product of a semilattice and a left restriction semigroup.

Restriction semigroups

Rida-E Zenab λ -semidirect products and inductive categories

Left restriction semigroups form a variety of unary semigroups, that is, semigroups equipped with an additional unary operation, denoted by $^+.\,$

Left restriction semigroups form a variety of unary semigroups, that is, semigroups equipped with an additional unary operation, denoted by $^+$. The identities that define a left restriction semigroup S are:

 $a^+a = a, a^+b^+ = b^+a^+, (a^+b)^+ = a^+b^+, ab^+ = (ab)^+a.$

Left restriction semigroups form a variety of unary semigroups, that is, semigroups equipped with an additional unary operation, denoted by $^+$. The identities that define a left restriction semigroup S are:

$$a^+a = a, a^+b^+ = b^+a^+, (a^+b)^+ = a^+b^+, ab^+ = (ab)^+a.$$

We put

$$E=\{a^+:a\in S\},$$

then E is a semilattice known as the semilattice of projections of S.

Left restriction semigroups form a variety of unary semigroups, that is, semigroups equipped with an additional unary operation, denoted by $^+$. The identities that define a left restriction semigroup S are:

$$a^+a = a, a^+b^+ = b^+a^+, (a^+b)^+ = a^+b^+, ab^+ = (ab)^+a.$$

We put

$$E=\{a^+:a\in S\},$$

then E is a semilattice known as the semilattice of projections of S. Dually right restriction semigroups form a variety of unary

semigroups. In this case the unary operation is denoted by *.

λ -semidirect product of left restriction semigroups

Rida-E Zenab λ -semidirect products and inductive categories

Theorem Let A and T be left restriction semigroups and suppose that T acts on A by endomorphisms (as a left restriction semigroup).

Theorem Let A and T be left restriction semigroups and suppose that T acts on A by endomorphisms (as a left restriction semigroup). Put

$$A \rtimes^{\lambda} T = \{(a, t) \in A \times T : t^{+} \cdot a = a\}.$$

Theorem Let A and T be left restriction semigroups and suppose that T acts on A by endomorphisms (as a left restriction semigroup). Put

$$A \rtimes^{\lambda} T = \{(a, t) \in A \times T : t^{+} \cdot a = a\}.$$

Then $A \rtimes^{\lambda} T$ is left restriction with semilattice of projections
Theorem Let A and T be left restriction semigroups and suppose that T acts on A by endomorphisms (as a left restriction semigroup). Put

$$A \rtimes^{\lambda} T = \{(a, t) \in A \times T : t^{+} \cdot a = a\}.$$

Then $A \rtimes^{\lambda} T$ is left restriction with semilattice of projections

$$F = \{(a^+, t^+) : t^+ \cdot a = a\}.$$

Theorem Let A and T be left restriction semigroups and suppose that T acts on A by endomorphisms (as a left restriction semigroup). Put

$$A \rtimes^{\lambda} T = \{(a, t) \in A \times T : t^{+} \cdot a = a\}.$$

Then $A \rtimes^{\lambda} T$ is left restriction with semilattice of projections

$$F = \{(a^+, t^+) : t^+ \cdot a = a\}.$$

Multiplication in $A \rtimes^{\lambda} T$ is defined by the rule:

$$(a,t)(b,u) = \left(((tu)^+ \cdot a)(t \cdot b), tu \right)$$

Coverings

Coverings

• We define S is (A, T)-proper similar to the monoid case.

Coverings

- We define S is (A, T)-proper similar to the monoid case.
- E_A is central in A.

Coverings

- We define S is (A, T)-proper similar to the monoid case.
- E_A is central in A.
- Covering Theorem similar to the monoid case

Coverings

- We define S is (A, T)-proper similar to the monoid case.
- E_A is central in A.
- Covering Theorem similar to the monoid case

Embeddings

Coverings

- We define S is (A, T)-proper similar to the monoid case.
- E_A is central in A.
- Covering Theorem similar to the monoid case

Embeddings

In left restriction case

$$I = \{U \subseteq A : E_A U = U, a^+ b = b^+ a \ \forall a, b \in U\}$$

is left restriction

Coverings

- We define S is (A, T)-proper similar to the monoid case.
- E_A is central in A.
- Covering Theorem similar to the monoid case

Embeddings

In left restriction case

$$I = \{U \subseteq A : E_A U = U, a^+ b = b^+ a \ \forall a, b \in U\}$$

is left restriction and

$$\mathcal{A} = I^{T \neq \sigma_{\mathcal{A}}}$$

Coverings

- We define S is (A, T)-proper similar to the monoid case.
- E_A is central in A.
- Covering Theorem similar to the monoid case

Embeddings

In left restriction case

$$I = \{U \subseteq A : E_A U = U, a^+ b = b^+ a \ \forall a, b \in U\}$$

is left restriction and

$$\mathcal{A} = I^{T \neq \sigma_{\mathcal{A}}}$$

Then $\theta: S \to \mathcal{A} \rtimes^{\lambda} T \nearrow \sigma_A$ is an embedding.

Two sided case

Rida-E Zenab λ -semidirect products and inductive categories

æ

< ∃ >

Let A and T be restriction semigroups. Suppose T acts on A on the left and right by morphisms preserving $(\cdot, +, *)$ such that for all $t \in T$ and for all $a \in A$, the following compatibility conditions holds:

Let A and T be restriction semigroups. Suppose T acts on A on the left and right by morphisms preserving $(\cdot, +, *)$ such that for all $t \in T$ and for all $a \in A$, the following compatibility conditions holds:

 $(t \cdot a) \circ t = a \circ t^* = t^* \cdot a$ $t \cdot (a \circ t) = a \circ t^+ = t^+ \cdot a.$

Let A and T be restriction semigroups. Suppose T acts on A on the left and right by morphisms preserving $(\cdot, +, *)$ such that for all $t \in T$ and for all $a \in A$, the following compatibility conditions holds:

$$egin{array}{rcl} (t\cdot a)\circ t&=&a\circ t^*&=&t^*\cdot a\ t\cdot (a\circ t)&=&a\circ t^+&=&t^+\cdot a. \end{array}$$

Then

$$A \rtimes^{\lambda} T = \{(a, t) \in S \times T : t^+ \cdot a = a\}.$$

is a restriction semigroup

Let A and T be restriction semigroups. Suppose T acts on A on the left and right by morphisms preserving $(\cdot, +, *)$ such that for all $t \in T$ and for all $a \in A$, the following compatibility conditions holds:

$$(t \cdot a) \circ t = a \circ t^* = t^* \cdot a$$

 $t \cdot (a \circ t) = a \circ t^+ = t^+ \cdot a.$

Then

$$A \rtimes^{\lambda} T = \{(a, t) \in S \times T : t^+ \cdot a = a\}.$$

is a restriction semigroup with semilattice of projections

$$F = \{(a^+, t^+) : t^+ \cdot a^+ = a^+\}.$$

The + and * are defined by

$$(a,t)^+ = (a^+,t^+)$$
 and $(a,t)^* = (a^* \circ t,t^*)$

э

The + and * are defined by

$$(a,t)^+ = (a^+,t^+)$$
 and $(a,t)^* = (a^* \circ t,t^*)$

and multiplication is defined by:

$$(a,t)(b,u) = \left(((tu)^+ \cdot a)(t \cdot b), tu \right)$$

Rida-E Zenab λ -semidirect products and inductive categories

・ロト ・回ト ・ヨト ・ヨ

æ

Let $C = (C, \cdot, d, r)$, where \cdot is a partial binary operation on C and $d, r : C \to C$ such that

∃ ► < ∃ ►</p>

Let $C = (C, \cdot, d, r)$, where \cdot is a partial binary operation on C and $d, r : C \rightarrow C$ such that

C1 $\exists x \cdot y \text{ if and only if } \mathbf{r}(x) = \mathbf{d}(y)$

• • = • • = •

Let $C = (C, \cdot, d, r)$, where \cdot is a partial binary operation on C and $d, r : C \rightarrow C$ such that

C1 $\exists x \cdot y \text{ if and only if } \mathbf{r}(x) = \mathbf{d}(y) \text{ and then}$

 $\mathbf{d}(x \cdot y) = \mathbf{d}(x)$ and $\mathbf{r}(x \cdot y) = \mathbf{r}(y)$;

• • = • • = •

Let $C = (C, \cdot, d, r)$, where \cdot is a partial binary operation on C and $d, r : C \rightarrow C$ such that

C1 $\exists x \cdot y \text{ if and only if } \mathbf{r}(x) = \mathbf{d}(y) \text{ and then}$

$$\mathbf{d}(x \cdot y) = \mathbf{d}(x)$$
 and $\mathbf{r}(x \cdot y) = \mathbf{r}(y)$;

C2 $\exists x \cdot (y \cdot z)$ if and only if $\exists (x \cdot y) \cdot z$ and if $\exists x \cdot (y \cdot z)$,

A B A A B A

Let $C = (C, \cdot, d, r)$, where \cdot is a partial binary operation on C and $d, r : C \rightarrow C$ such that

C1 $\exists x \cdot y \text{ if and only if } \mathbf{r}(x) = \mathbf{d}(y) \text{ and then}$

$$\mathbf{d}(x \cdot y) = \mathbf{d}(x)$$
 and $\mathbf{r}(x \cdot y) = \mathbf{r}(y)$;

C2 $\exists x \cdot (y \cdot z)$ if and only if $\exists (x \cdot y) \cdot z$ and if $\exists x \cdot (y \cdot z)$, then $x \cdot (y \cdot z) = (x \cdot y) \cdot z$;

• • = • • = •

Let $C = (C, \cdot, d, r)$, where \cdot is a partial binary operation on C and $d, r : C \rightarrow C$ such that

C1 $\exists x \cdot y \text{ if and only if } \mathbf{r}(x) = \mathbf{d}(y) \text{ and then}$

$$\mathbf{d}(x \cdot y) = \mathbf{d}(x)$$
 and $\mathbf{r}(x \cdot y) = \mathbf{r}(y)$;

C2 $\exists x \cdot (y \cdot z)$ if and only if $\exists (x \cdot y) \cdot z$ and if $\exists x \cdot (y \cdot z)$, then $x \cdot (y \cdot z) = (x \cdot y) \cdot z$;

C3 \exists **d**(x) · x and **d**(x) · x = x

- 4 E b - 4 E b

-

Let $C = (C, \cdot, d, r)$, where \cdot is a partial binary operation on C and $d, r : C \rightarrow C$ such that

C1 $\exists x \cdot y \text{ if and only if } \mathbf{r}(x) = \mathbf{d}(y) \text{ and then}$

$$\mathbf{d}(x \cdot y) = \mathbf{d}(x)$$
 and $\mathbf{r}(x \cdot y) = \mathbf{r}(y)$;

C2 $\exists x \cdot (y \cdot z)$ if and only if $\exists (x \cdot y) \cdot z$ and if $\exists x \cdot (y \cdot z)$, then $x \cdot (y \cdot z) = (x \cdot y) \cdot z$;

C3 \exists $\mathbf{d}(x) \cdot x$ and $\mathbf{d}(x) \cdot x = x$ and $\exists x \cdot \mathbf{r}(x)$ and $x \cdot \mathbf{r}(x) = x$. Let $E = \{\mathbf{d}(x) : x \in C\}.$

医尿道氏 化菌素

-

Let $C = (C, \cdot, d, r)$, where \cdot is a partial binary operation on C and $d, r : C \rightarrow C$ such that

C1 $\exists x \cdot y \text{ if and only if } \mathbf{r}(x) = \mathbf{d}(y) \text{ and then}$

$$\mathbf{d}(x \cdot y) = \mathbf{d}(x)$$
 and $\mathbf{r}(x \cdot y) = \mathbf{r}(y)$;

C2 $\exists x \cdot (y \cdot z)$ if and only if $\exists (x \cdot y) \cdot z$ and if $\exists x \cdot (y \cdot z)$, then $x \cdot (y \cdot z) = (x \cdot y) \cdot z$;

C3 \exists **d**(x) · x and **d**(x) · x = x and \exists x · **r**(x) and x · **r**(x) = x.

Let $E = \{\mathbf{d}(x) : x \in C\}$. It follows from the axioms that $E = \{\mathbf{r}(x) : x \in C\}$ and **C** is a small category in standard sense with set of identities *E* and set of objects identified with *E*.

Let $C = (C, \cdot, d, r)$, where \cdot is a partial binary operation on C and $d, r : C \rightarrow C$ such that

C1 $\exists x \cdot y$ if and only if $\mathbf{r}(x) = \mathbf{d}(y)$ and then

$$\mathbf{d}(x \cdot y) = \mathbf{d}(x)$$
 and $\mathbf{r}(x \cdot y) = \mathbf{r}(y)$;

C2 $\exists x \cdot (y \cdot z)$ if and only if $\exists (x \cdot y) \cdot z$ and if $\exists x \cdot (y \cdot z)$, then $x \cdot (y \cdot z) = (x \cdot y) \cdot z$;

C3 \exists **d**(x) · x and **d**(x) · x = x and \exists x · **r**(x) and x · **r**(x) = x.

Let $E = \{\mathbf{d}(x) : x \in C\}$. It follows from the axioms that $E = \{\mathbf{r}(x) : x \in C\}$ and **C** is a small category in standard sense with set of identities E and set of objects identified with E. Thus $\mathbf{d}(x)$ is domain of x and $\mathbf{r}(x)$ is range of x.

Rida-E Zenab λ -semidirect products and inductive categories

æ

Let C be a category with set of identities E.

Let **C** be a category with set of identities *E*. Let \leq be a partial order on *C* such that for all $e \in E$, $x, y \in C$

э

Let **C** be a category with set of identities *E*. Let \leq be a partial order on *C* such that for all $e \in E$, $x, y \in C$

(IC1) if $x \leq y$ then $\mathbf{r}(x) \leq \mathbf{r}(y)$ and $\mathbf{d}(x) \leq \mathbf{d}(y)$;

э

3 b 4 3 b

Let **C** be a category with set of identities *E*. Let \leq be a partial order on *C* such that for all $e \in E$, $x, y \in C$ (IC1) if $x \leq y$ then $\mathbf{r}(x) \leq \mathbf{r}(y)$ and $\mathbf{d}(x) \leq \mathbf{d}(y)$;

(IC2) if $x \leq y$ and $x' \leq y'$, $\exists x \cdot x'$ and $\exists y \cdot y'$, then $x \cdot x' \leq y \cdot y'$;

• • = • • = • = •

Let **C** be a category with set of identities *E*. Let \leq be a partial order on *C* such that for all $e \in E$, $x, y \in C$ (IC1) if $x \leq y$ then $\mathbf{r}(x) \leq \mathbf{r}(y)$ and $\mathbf{d}(x) \leq \mathbf{d}(y)$; (IC2) if $x \leq y$ and $x' \leq y'$, $\exists x \cdot x'$ and $\exists y \cdot y'$, then $x \cdot x' \leq y \cdot y'$; (IC3) if $e \leq \mathbf{d}(x)$ then \exists unique $(e|x) \in \mathbf{C}$ such that

 $(e|x) \leq x$ and d(e|x) = e;

同 ト イヨ ト イヨ ト ヨ うくつ

Let **C** be a category with set of identities *E*. Let \leq be a partial order on *C* such that for all $e \in E$, $x, y \in C$ (IC1) if $x \leq y$ then $\mathbf{r}(x) \leq \mathbf{r}(y)$ and $\mathbf{d}(x) \leq \mathbf{d}(y)$; (IC2) if $x \leq y$ and $x' \leq y'$, $\exists x \cdot x'$ and $\exists y \cdot y'$, then $x \cdot x' \leq y \cdot y'$; (IC3) if $e \leq \mathbf{d}(x)$ then \exists unique $(e|x) \in \mathbf{C}$ such that $(e|x) \leq x$ and $\mathbf{d}(e|x) = e$;

(IC4) if $e \leq \mathbf{r}(x)$ then \exists unique $(x|e) \in \mathbf{C}$ such that

 $(x|e) \leq x$ and $\mathbf{r}(x|e) = e;$

Let **C** be a category with set of identities *E*. Let \leq be a partial order on *C* such that for all $e \in E$, $x, y \in C$ (IC1) if $x \leq y$ then $\mathbf{r}(x) \leq \mathbf{r}(y)$ and $\mathbf{d}(x) \leq \mathbf{d}(y)$; (IC2) if $x \leq y$ and $x' \leq y'$, $\exists x \cdot x'$ and $\exists y \cdot y'$, then $x \cdot x' \leq y \cdot y'$; (IC3) if $e \leq \mathbf{d}(x)$ then \exists unique $(e|x) \in \mathbf{C}$ such that $(e|x) \leq x$ and $\mathbf{d}(e|x) = e$;

(IC4) if $e \leq \mathbf{r}(x)$ then \exists unique $(x|e) \in \mathbf{C}$ such that

 $(x|e) \leq x$ and $\mathbf{r}(x|e) = e;$

(IC5) (E, \leq) is a meet semilattice.

Let **C** be a category with set of identities *E*. Let \leq be a partial order on *C* such that for all $e \in E$, $x, y \in C$ (IC1) if $x \leq y$ then $\mathbf{r}(x) \leq \mathbf{r}(y)$ and $\mathbf{d}(x) \leq \mathbf{d}(y)$; (IC2) if $x \leq y$ and $x' \leq y'$, $\exists x \cdot x'$ and $\exists y \cdot y'$, then $x \cdot x' \leq y \cdot y'$; (IC3) if $e \leq \mathbf{d}(x)$ then \exists unique $(e|x) \in \mathbf{C}$ such that $(e|x) \leq x$ and $\mathbf{d}(e|x) = e$;

(IC4) if $e \leq \mathbf{r}(x)$ then \exists unique $(x|e) \in \mathbf{C}$ such that

 $(x|e) \leq x$ and $\mathbf{r}(x|e) = e;$

(IC5) (E, \leq) is a meet semilattice. We then say that $(C, \cdot, \mathbf{d}, \mathbf{r}, \leq)$ is an *inductive category*.
Rida-E Zenab λ -semidirect products and inductive categories

Theorem Let A and T be restriction semigroups and suppose that T acts on A on the left and right by morphisms preserving $(\cdot, +, *)$ such that for all $t \in T$ and for all $a \in S$, the following compatibility conditions hold:

Theorem Let A and T be restriction semigroups and suppose that T acts on A on the left and right by morphisms preserving $(\cdot, +, *)$ such that for all $t \in T$ and for all $a \in S$, the following compatibility conditions hold:

$$(t \cdot a) \circ t = a \circ t^* = t^* \cdot a$$

 $t \cdot (a \circ t) = a \circ t^+ = t^+ \cdot a.$

Theorem Let A and T be restriction semigroups and suppose that T acts on A on the left and right by morphisms preserving $(\cdot, +, *)$ such that for all $t \in T$ and for all $a \in S$, the following compatibility conditions hold:

$$(t \cdot a) \circ t = a \circ t^* = t^* \cdot a$$

 $t \cdot (a \circ t) = a \circ t^+ = t^+ \cdot a.$

Let

$$V = A \rtimes^{\lambda} T = \{(a, t) \in A \times T : t^{+} \cdot a = a\}.$$

Theorem Let A and T be restriction semigroups and suppose that T acts on A on the left and right by morphisms preserving $(\cdot, +, *)$ such that for all $t \in T$ and for all $a \in S$, the following compatibility conditions hold:

$$(t \cdot a) \circ t = a \circ t^* = t^* \cdot a$$

 $t \cdot (a \circ t) = a \circ t^+ = t^+ \cdot a.$

Let

$$V = A \rtimes^{\lambda} T = \{(a, t) \in A \times T : t^{+} \cdot a = a\}.$$

Then V is an inductive category with set of local identities

$$F = \{(a^+, t^+) : t^+ \cdot a^+ = a^+\}.$$

Theorem Let A and T be restriction semigroups and suppose that T acts on A on the left and right by morphisms preserving $(\cdot, +, *)$ such that for all $t \in T$ and for all $a \in S$, the following compatibility conditions hold:

$$(t \cdot a) \circ t = a \circ t^* = t^* \cdot a$$

 $t \cdot (a \circ t) = a \circ t^+ = t^+ \cdot a.$

Let

$$V = A \rtimes^{\lambda} T = \{(a, t) \in A \times T : t^{+} \cdot a = a\}.$$

Then V is an inductive category with set of local identities

$$F = \{(a^+, t^+) : t^+ \cdot a^+ = a^+\}.$$

where

$$d(a,t) = (a^+,t^+), \quad r(a,t) = (a^* \circ t,t^*)$$

The partial binary operation on V is defined by the rule

$$(a, t) \cdot (b, u) = \begin{cases} (a(t \cdot b), tu) & \text{if } \mathbf{r}(a, t) = \mathbf{d}(b, u) \\ \text{undefined otherwise} \end{cases}$$

where $(a, t), (b, u) \in V$.

∃ ► < ∃ ►</p>

The partial binary operation on V is defined by the rule

$$(a,t) \cdot (b,u) = \begin{cases} (a(t \cdot b), tu) & \text{if } \mathbf{r}(a,t) = \mathbf{d}(b,u) \\ \text{undefined otherwise} \end{cases}$$

where $(a, t), (b, u) \in V$. The partial order \leq on V is defined by

 $(a,t) \leq (b,u)$ if and only if $a \leq t^+ \cdot b$, $t \leq u$.

The partial binary operation on V is defined by the rule

$$(a,t) \cdot (b,u) = \begin{cases} (a(t \cdot b), tu) & \text{if } \mathbf{r}(a,t) = \mathbf{d}(b,u) \\ \text{undefined otherwise} \end{cases}$$

where $(a, t), (b, u) \in V$. The partial order \leq on V is defined by

 $(a,t) \leq (b,u)$ if and only if $a \leq t^+ \cdot b$, $t \leq u$.

Also for $(a, t) \in V$ and $(x \cdot e, x) \in E$, the restriction and co-restriction are defined as:

Theorem

Rida-E Zenab λ -semidirect products and inductive categories

Theorem Let $(V, \cdot, \mathbf{d}, \mathbf{r}, \leq)$ be the inductive category as defined in above Theorem. Let $(a, t), (b, u) \in V$ and define \otimes by the rule

Theorem Let $(V, \cdot, \mathbf{d}, \mathbf{r}, \leq)$ be the inductive category as defined in above Theorem. Let $(a, t), (b, u) \in V$ and define \otimes by the rule

 $(a,t)\otimes(b,u)=ig((a,t)|\mathbf{r}(a,t)\wedge\mathbf{d}(b,u)ig)ig(\mathbf{r}(a,t)\wedge\mathbf{d}(b,u)|(b,u)ig).$

Theorem Let $(V, \cdot, \mathbf{d}, \mathbf{r}, \leq)$ be the inductive category as defined in above Theorem. Let $(a, t), (b, u) \in V$ and define \otimes by the rule

 $(a,t)\otimes(b,u)=ig((a,t)|\mathbf{r}(a,t)\wedge\mathbf{d}(b,u)ig)ig(\mathbf{r}(a,t)\wedge\mathbf{d}(b,u)|(b,u)ig).$

Then \otimes coincides with $\lambda\text{-semidirect}$ product

$$(a,t)(b,u) = \left(((tu)^+ \cdot a)(t \cdot b), tu \right)$$