λ-semidirect products and inductive categories

Rida-E Zenab
University of York
NSAC, 5-9 June 2013

Based on joint work with Victoria Gould

Contents

- Semidirect products, coverings and embeddings of monoids

Contents

- Semidirect products, coverings and embeddings of monoids
- Introduction to Billhardt's λ-semidirect product

Contents

- Semidirect products, coverings and embeddings of monoids
- Introduction to Billhardt's λ-semidirect product
- λ-semidirect product of left restriction monoids

Contents

- Semidirect products, coverings and embeddings of monoids
- Introduction to Billhardt's λ-semidirect product
- λ-semidirect product of left restriction monoids
- Inductive categories, λ-semidirect products and restriction monoids

Semidirect products

Semidirect products

Suppose A and T are monoids. T is said to act on A by endomorphisms if for every $t \in T$, there is a map $a \rightarrow t \cdot a$ satisfying:

Semidirect products

Suppose A and T are monoids. T is said to act on A by endomorphisms if for every $t \in T$, there is a map $a \rightarrow t \cdot a$ satisfying: for all $t, t^{\prime} \in T$ and for all $a, a^{\prime} \in A$
(1) $t \cdot\left(a a^{\prime}\right)=(t \cdot a)\left(t \cdot a^{\prime}\right)$;

Semidirect products

Suppose A and T are monoids. T is said to act on A by endomorphisms if for every $t \in T$, there is a map $a \rightarrow t \cdot a$ satisfying: for all $t, t^{\prime} \in T$ and for all $a, a^{\prime} \in A$
(1) $t \cdot\left(a a^{\prime}\right)=(t \cdot a)\left(t \cdot a^{\prime}\right)$;
(2) $t t^{\prime} \cdot a=t \cdot\left(t^{\prime} \cdot a\right)$;

Semidirect products

Suppose A and T are monoids. T is said to act on A by endomorphisms if for every $t \in T$, there is a map $a \rightarrow t \cdot a$ satisfying: for all $t, t^{\prime} \in T$ and for all $a, a^{\prime} \in A$
(1) $t \cdot\left(a a^{\prime}\right)=(t \cdot a)\left(t \cdot a^{\prime}\right)$;
(2) $t t^{\prime} \cdot a=t \cdot\left(t^{\prime} \cdot a\right)$;
(3) $1 \cdot a=a$.

Semidirect products

Suppose A and T are monoids. T is said to act on A by endomorphisms if for every $t \in T$, there is a map $a \rightarrow t \cdot a$ satisfying: for all $t, t^{\prime} \in T$ and for all $a, a^{\prime} \in A$
(1) $t \cdot\left(a a^{\prime}\right)=(t \cdot a)\left(t \cdot a^{\prime}\right)$;
(2) $t t^{\prime} \cdot a=t \cdot\left(t^{\prime} \cdot a\right)$;
(3) $1 \cdot a=a$.

These three axioms are equivalent to the existence of a homomorphism from T to the monoid of endomorphisms of A.

Semidirect products

Suppose A and T are monoids. T is said to act on A by endomorphisms if for every $t \in T$, there is a map $a \rightarrow t \cdot a$ satisfying: for all $t, t^{\prime} \in T$ and for all $a, a^{\prime} \in A$
(1) $t \cdot\left(a a^{\prime}\right)=(t \cdot a)\left(t \cdot a^{\prime}\right)$;
(2) $t t^{\prime} \cdot a=t \cdot\left(t^{\prime} \cdot a\right)$;
(3) $1 \cdot a=a$.

These three axioms are equivalent to the existence of a homomorphism from T to the monoid of endomorphisms of A.

$$
A \rtimes T=\{(a, t): a \in A, t \in T\}
$$

is the semidirect product with multiplication

Semidirect products

Suppose A and T are monoids. T is said to act on A by endomorphisms if for every $t \in T$, there is a map $a \rightarrow t \cdot a$ satisfying: for all $t, t^{\prime} \in T$ and for all $a, a^{\prime} \in A$
(1) $t \cdot\left(a a^{\prime}\right)=(t \cdot a)\left(t \cdot a^{\prime}\right)$;
(2) $t t^{\prime} \cdot a=t \cdot\left(t^{\prime} \cdot a\right)$;
(3) $1 \cdot a=a$.

These three axioms are equivalent to the existence of a homomorphism from T to the monoid of endomorphisms of A.

$$
A \rtimes T=\{(a, t): a \in A, t \in T\}
$$

is the semidirect product with multiplication

$$
(a, t)\left(a^{\prime}, t^{\prime}\right)=\left(a\left(t \cdot a^{\prime}\right), t t^{\prime}\right) .
$$

Semidirect products

Now if

$$
A \rtimes T=\{(a, t): a \in A, t \in T\}
$$

Semidirect products

Now if

$$
A \rtimes T=\{(a, t): a \in A, t \in T\}
$$

then

$$
A^{\prime}=\{(a, 1): a \in A\}
$$

Semidirect products

Now if

$$
A \rtimes T=\{(a, t): a \in A, t \in T\}
$$

then

$$
A^{\prime}=\{(a, 1): a \in A\}
$$

and

$$
T^{\prime}=\{(t \cdot 1, t): t \in T\}
$$

are submonoids of $A \rtimes T$ with $A \cong A^{\prime}$ and $T \cong T^{\prime}$

Semidirect products

Now if

$$
A \rtimes T=\{(a, t): a \in A, t \in T\}
$$

then

$$
A^{\prime}=\{(a, 1): a \in A\}
$$

and

$$
T^{\prime}=\{(t \cdot 1, t): t \in T\}
$$

are submonoids of $A \rtimes T$ with $A \cong A^{\prime}$ and $T \cong T^{\prime}$ and

$$
A^{\prime} T^{\prime}=\{(a, t) \in A \times T: a(t \cdot 1)=a\}
$$

(A, T)-Proper monoids

(A, T)-Proper monoids

Let S be a monoid such that $S=A T$ where A, T are submonoids of S. Suppose T acts on A satisfying

$$
t a=(t \cdot a) t
$$

(A, T)-Proper monoids

Let S be a monoid such that $S=A T$ where A, T are submonoids of S. Suppose T acts on A satisfying

$$
t a=(t \cdot a) t
$$

Let

$$
E=\{t \cdot 1: t \in T\}
$$

(A, T)-Proper monoids

Let S be a monoid such that $S=A T$ where A, T are submonoids of S. Suppose T acts on A satisfying

$$
t a=(t \cdot a) t
$$

Let

$$
E=\{t \cdot 1: t \in T\}
$$

Suppose the idempotents in E commute.

(A, T)-Proper monoids

Let S be a monoid such that $S=A T$ where A, T are submonoids of S. Suppose T acts on A satisfying

$$
t a=(t \cdot a) t
$$

Let

$$
E=\{t \cdot 1: t \in T\}
$$

Suppose the idempotents in E commute. From $t a=(t \cdot a) t$, we have

$$
t=(t \cdot 1) t
$$

(A, T)-Proper monoids

Let S be a monoid such that $S=A T$ where A, T are submonoids of S. Suppose T acts on A satisfying

$$
t a=(t \cdot a) t
$$

Let

$$
E=\{t \cdot 1: t \in T\}
$$

Suppose the idempotents in E commute. From $t a=(t \cdot a) t$, we have

$$
t=(t \cdot 1) t
$$

so that

$$
a t=a(t \cdot 1) t
$$

(A, T)-Proper monoids

Let S be a monoid such that $S=A T$ where A, T are submonoids of S. Suppose T acts on A satisfying

$$
t a=(t \cdot a) t
$$

Let

$$
E=\{t \cdot 1: t \in T\}
$$

Suppose the idempotents in E commute. From $t a=(t \cdot a) t$, we have

$$
t=(t \cdot 1) t
$$

so that

$$
a t=a(t \cdot 1) t
$$

Now if $s \in S$, then

$$
s=a t \quad \text { where } a=a(t \cdot 1)
$$

(A, T)-Proper monoids

(A, T)-Proper monoids

Define σ_{A} on T by
$t \sigma_{A} s \Leftrightarrow e t=f s$ for some $e, f \in\langle E\rangle$.

(A, T)-Proper monoids

Define σ_{A} on T by

$$
t \sigma_{A} s \Leftrightarrow e t=f s \text { for some } e, f \in\langle E\rangle \text {. }
$$

Then σ_{A} is a congruence.

(A, T)-Proper monoids

Define σ_{A} on T by

$$
t \sigma_{A} s \Leftrightarrow e t=f s \text { for some } e, f \in\langle E\rangle \text {. }
$$

Then σ_{A} is a congruence. We say that S is (A, T)-proper if for $a t, b s \in S$ where $a=a(t \cdot 1), b=b(s \cdot 1)$

(A, T)-Proper monoids

Define σ_{A} on T by

$$
t \sigma_{A} s \Leftrightarrow e t=f s \text { for some } e, f \in\langle E\rangle \text {. }
$$

Then σ_{A} is a congruence. We say that S is (A, T)-proper if for $a t, b s \in S$ where $a=a(t \cdot 1), b=b(s \cdot 1)$

$$
a t=b s
$$

(A, T)-Proper monoids

Define σ_{A} on T by

$$
t \sigma_{A} s \Leftrightarrow e t=f s \text { for some } e, f \in\langle E\rangle \text {. }
$$

Then σ_{A} is a congruence. We say that S is (A, T)-proper if for $a t, b s \in S$ where $a=a(t \cdot 1), b=b(s \cdot 1)$

$$
\begin{aligned}
a t & =b s \\
\Leftrightarrow \quad a & =b \text { and } t \sigma_{A} S
\end{aligned}
$$

(A, T)-Proper monoids

Define σ_{A} on T by

$$
t \sigma_{A} s \Leftrightarrow e t=f s \text { for some } e, f \in\langle E\rangle \text {. }
$$

Then σ_{A} is a congruence. We say that S is (A, T)-proper if for $a t, b s \in S$ where $a=a(t \cdot 1), b=b(s \cdot 1)$

$$
\begin{aligned}
a t & =b s \\
\Leftrightarrow \quad a & =b \text { and } t \sigma_{A} S
\end{aligned}
$$

Consequently $t \sigma_{A} s$ implies that $(s \cdot 1) t=(t \cdot 1) s$.

(A, T)-Proper monoids

(A, T)-Proper monoids

Suppose $S=A T$ where A, T are submonoids of S. Suppose T acts on A satisfying

$$
t a=(t \cdot a) t
$$

(A, T)-Proper monoids

Suppose $S=A T$ where A, T are submonoids of S. Suppose T acts on A satisfying

$$
t a=(t \cdot a) t
$$

Then T^{\prime} acts on A^{\prime} by

$$
(t \cdot 1, t) \bullet(a, 1)=(t \cdot a, 1)
$$

(A, T)-Proper monoids

Suppose $S=A T$ where A, T are submonoids of S. Suppose T acts on A satisfying

$$
t a=(t \cdot a) t
$$

Then T^{\prime} acts on A^{\prime} by

$$
(t \cdot 1, t) \bullet(a, 1)=(t \cdot a, 1)
$$

We have

$$
(t \cdot 1, t)(a, 1)=((t \cdot 1, t) \bullet(a, 1))(t \cdot 1, t)
$$

(A, T)-Proper monoids

Suppose $S=A T$ where A, T are submonoids of S. Suppose T acts on A satisfying

$$
t a=(t \cdot a) t
$$

Then T^{\prime} acts on A^{\prime} by

$$
(t \cdot 1, t) \bullet(a, 1)=(t \cdot a, 1)
$$

We have

$$
(t \cdot 1, t)(a, 1)=((t \cdot 1, t) \bullet(a, 1))(t \cdot 1, t)
$$

and

$$
E^{\prime}=\left\{(t \cdot 1, t) *(1,1):(t \cdot 1, t) \in T^{\prime}\right\}=\{(t \cdot 1,1): t \in T\}
$$

is a set of commuting idempotents.

(A, T)-Proper monoids

Suppose $S=A T$ where A, T are submonoids of S. Suppose T acts on A satisfying

$$
t a=(t \cdot a) t
$$

Then T^{\prime} acts on A^{\prime} by

$$
(t \cdot 1, t) \bullet(a, 1)=(t \cdot a, 1)
$$

We have

$$
(t \cdot 1, t)(a, 1)=((t \cdot 1, t) \bullet(a, 1))(t \cdot 1, t)
$$

and

$$
E^{\prime}=\left\{(t \cdot 1, t) *(1,1):(t \cdot 1, t) \in T^{\prime}\right\}=\{(t \cdot 1,1): t \in T\}
$$

is a set of commuting idempotents.
Then

$$
U^{\prime}=\{(a, t) \in U: a(t \cdot 1)=a\}
$$

(A, T)-Proper monoids

Suppose $S=A T$ where A, T are submonoids of S. Suppose T acts on A satisfying

$$
t a=(t \cdot a) t
$$

Then T^{\prime} acts on A^{\prime} by

$$
(t \cdot 1, t) \bullet(a, 1)=(t \cdot a, 1)
$$

We have

$$
(t \cdot 1, t)(a, 1)=((t \cdot 1, t) \bullet(a, 1))(t \cdot 1, t)
$$

and

$$
E^{\prime}=\left\{(t \cdot 1, t) *(1,1):(t \cdot 1, t) \in T^{\prime}\right\}=\{(t \cdot 1,1): t \in T\}
$$

is a set of commuting idempotents.
Then

$$
U^{\prime}=\{(a, t) \in U: a(t \cdot 1)=a\}
$$

is $\left(A^{\prime}, T^{\prime}\right)$-proper.

Covering Theorem for monoids

Covering Theorem for monoids

Theorem Let $S=A T$ where T acts on A such that $t a=(t \cdot a) t$ and $E=\{t \cdot 1: t \in T\}$ is a commuting set of idempotents.

Covering Theorem for monoids

Theorem Let $S=A T$ where T acts on A such that $t a=(t \cdot a) t$ and $E=\{t \cdot 1: t \in T\}$ is a commuting set of idempotents. Then

$$
\theta: U^{\prime} \rightarrow S
$$

is an onto morphism such that

Covering Theorem for monoids

Theorem Let $S=A T$ where T acts on A such that $t a=(t \cdot a) t$ and $E=\{t \cdot 1: t \in T\}$ is a commuting set of idempotents. Then

$$
\theta: U^{\prime} \rightarrow S
$$

is an onto morphism such that

$$
\left.\theta\right|_{A^{\prime}}: A^{\prime} \rightarrow A
$$

is an isomorphism.

Embedding Theorem for monoids

Embedding Theorem for monoids

Theorem Let $S=A T$ where T acts on A such that $t a=(t \cdot a) t$ and $E=\{t \cdot 1: t \in T\}$ is a commuting set of idempotents. Suppose that S is (A, T)-proper.

Theorem Let $S=A T$ where T acts on A such that $t a=(t \cdot a) t$ and $E=\{t \cdot 1: t \in T\}$ is a commuting set of idempotents. Suppose that S is (A, T)-proper.

There exists a semidirect product

$$
U=\mathcal{A} \rtimes T / \sigma_{A}
$$

where \mathcal{A} contains a submonoid $A^{\prime} \approx A$ and an embedding

$$
\theta: S \rightarrow U
$$

Theorem Let $S=A T$ where T acts on A such that $t a=(t \cdot a) t$ and $E=\{t \cdot 1: t \in T\}$ is a commuting set of idempotents. Suppose that S is (A, T)-proper.

There exists a semidirect product

$$
U=\mathcal{A} \rtimes T / \sigma_{A}
$$

where \mathcal{A} contains a submonoid $A^{\prime} \approx A$ and an embedding

$$
\theta: S \rightarrow U
$$

such that

$$
\left.\theta\right|_{A}: A \rightarrow A^{\prime} \times\{1\}
$$

is an isomorphism.

Embedding Theorem for monoids

Idea of construction

Embedding Theorem for monoids

Idea of construction
Let $I=\{H E: H \subseteq A\}$.

Embedding Theorem for monoids

Idea of construction
Let $I=\{H E: H \subseteq A\}$. Then I is subsemigroup of subsets of A where multiplication is just product of sets

Embedding Theorem for monoids

Idea of construction
Let $I=\{H E: H \subseteq A\}$. Then I is subsemigroup of subsets of A where multiplication is just product of sets and

$$
\mathcal{A}=I^{T / \sigma_{A}}=\left\{f: T / \sigma_{A} \rightarrow I\right\}
$$

Idea of construction
Let $I=\{H E: H \subseteq A\}$. Then I is subsemigroup of subsets of A where multiplication is just product of sets and

$$
\mathcal{A}=I^{T / \sigma_{A}}=\left\{f: T / \sigma_{A} \rightarrow I\right\}
$$

T / σ_{A} acts on \mathcal{A} by

$$
[t] \star f:[u]([t] \star f)=[u t] f
$$

which is a monoid action by homomorphism.

Idea of construction
Let $I=\{H E: H \subseteq A\}$. Then I is subsemigroup of subsets of A where multiplication is just product of sets and

$$
\mathcal{A}=I^{T / \sigma_{A}}=\left\{f: T / \sigma_{A} \rightarrow I\right\}
$$

$T / \sigma_{\mathcal{A}}$ acts on \mathcal{A} by

$$
[t] \star f:[u]([t] \star f)=[u t] f
$$

which is a monoid action by homomorphism. Let

$$
f_{a}:[u] f_{a}=\left\{u^{\prime} \cdot a: u^{\prime} \sigma_{A} u\right\} E
$$

Idea of construction
Let $I=\{H E: H \subseteq A\}$. Then I is subsemigroup of subsets of A where multiplication is just product of sets and

$$
\mathcal{A}=I^{T / \sigma_{A}}=\left\{f: T / \sigma_{A} \rightarrow I\right\}
$$

$T / \sigma_{\mathcal{A}}$ acts on \mathcal{A} by

$$
[t] \star f:[u]([t] \star f)=[u t] f
$$

which is a monoid action by homomorphism. Let

$$
f_{a}:[u] f_{a}=\left\{u^{\prime} \cdot a: u^{\prime} \sigma_{A} u\right\} E
$$

Then

- $f_{a} \in \mathcal{A}$ and $\left\{f_{a}: a \in A\right\} \approx A$

Idea of construction
Let $I=\{H E: H \subseteq A\}$. Then I is subsemigroup of subsets of A where multiplication is just product of sets and

$$
\mathcal{A}=I^{T / \sigma_{A}}=\left\{f: T / \sigma_{A} \rightarrow I\right\}
$$

$T / \sigma_{\mathcal{A}}$ acts on \mathcal{A} by

$$
[t] \star f:[u]([t] \star f)=[u t] f
$$

which is a monoid action by homomorphism. Let

$$
f_{a}:[u] f_{a}=\left\{u^{\prime} \cdot a: u^{\prime} \sigma_{A} u\right\} E
$$

Then

- $f_{a} \in \mathcal{A}$ and $\left\{f_{a}: a \in A\right\} \approx A$
- $\theta: S \rightarrow \mathcal{A} \rtimes T / \sigma_{A}$ is defined by

$$
(a t) \theta=\left(f_{a},[t]\right) \text { where } a=a(t \cdot 1)
$$

λ-semidirect product

The semidirect product of two inverse semigroups is not inverse in general.

λ-semidirect product

The semidirect product of two inverse semigroups is not inverse in general.

Bernd Billhardt 1992
Let A and T be inverse semigroups such that T acts on A by endomorphisms on the left.

λ-semidirect product

The semidirect product of two inverse semigroups is not inverse in general.

Bernd Billhardt 1992
Let A and T be inverse semigroups such that T acts on A by endomorphisms on the left. On

$$
S=A \rtimes^{\lambda} T=\left\{(a, t): t t^{-1} \cdot a=a\right\}
$$

a multiplication is defined by

$$
(a, t)(b, u)=\left(\left((t u)(t u)^{-1} \cdot a\right)(t \cdot b), t u\right)
$$

λ-semidirect product

The semidirect product of two inverse semigroups is not inverse in general.

Bernd Billhardt 1992
Let A and T be inverse semigroups such that T acts on A by endomorphisms on the left. On

$$
S=A \rtimes^{\lambda} T=\left\{(a, t): t t^{-1} \cdot a=a\right\}
$$

a multiplication is defined by

$$
(a, t)(b, u)=\left(\left((t u)(t u)^{-1} \cdot a\right)(t \cdot b), t u\right)
$$

Then S is an inverse semigroup with

$$
(a, t)^{-1}=\left(t^{-1} a^{-1}, t^{-1}\right)
$$

λ-semidirect product

The semidirect product of two inverse semigroups is not inverse in general.

Bernd Billhardt 1992
Let A and T be inverse semigroups such that T acts on A by endomorphisms on the left. On

$$
S=A \rtimes^{\lambda} T=\left\{(a, t): t t^{-1} \cdot a=a\right\}
$$

a multiplication is defined by

$$
(a, t)(b, u)=\left(\left((t u)(t u)^{-1} \cdot a\right)(t \cdot b), t u\right)
$$

Then S is an inverse semigroup with

$$
(a, t)^{-1}=\left(t^{-1} a^{-1}, t^{-1}\right) .
$$

S is called a λ-semidirect product of A and T.

λ-semidirect product

λ-semidirect product

Billhardt generalized this result to left ample semigroups in 1995 where the first component was a semilattice.

λ-semidirect product

Billhardt generalized this result to left ample semigroups in 1995 where the first component was a semilattice.

He proved that given a left ample semigroup S and a left ample congruence ρ on S, satisfying $\rho \cap \mathcal{R}^{*}=\imath, S$ is isomorphic to a subsemigroup T of $A \rtimes^{\lambda} S / \rho$, with A as a semilattice.

λ-semidirect product

Billhardt generalized this result to left ample semigroups in 1995 where the first component was a semilattice.

He proved that given a left ample semigroup S and a left ample congruence ρ on S, satisfying $\rho \cap \mathcal{R}^{*}=\imath, S$ is isomorphic to a subsemigroup T of $A \rtimes^{\lambda} S / \rho$, with A as a semilattice.
M. Branco, G. Gomes and V. Gould (2010) extended this result to the λ-semidirect product of a semilattice and a left restriction semigroup.

Restriction semigroups

Restriction semigroups

Left restriction semigroups form a variety of unary semigroups, that is, semigroups equipped with an additional unary operation, denoted by ${ }^{+}$.

Restriction semigroups

Left restriction semigroups form a variety of unary semigroups, that is, semigroups equipped with an additional unary operation, denoted by ${ }^{+}$. The identities that define a left restriction semigroup S are:

$$
a^{+} a=a, a^{+} b^{+}=b^{+} a^{+},\left(a^{+} b\right)^{+}=a^{+} b^{+}, a b^{+}=(a b)^{+} a .
$$

Restriction semigroups

Left restriction semigroups form a variety of unary semigroups, that is, semigroups equipped with an additional unary operation, denoted by ${ }^{+}$. The identities that define a left restriction semigroup S are:

$$
a^{+} a=a, a^{+} b^{+}=b^{+} a^{+},\left(a^{+} b\right)^{+}=a^{+} b^{+}, a b^{+}=(a b)^{+} a .
$$

We put

$$
E=\left\{a^{+}: a \in S\right\},
$$

then E is a semilattice known as the semilattice of projections of S.

Restriction semigroups

Left restriction semigroups form a variety of unary semigroups, that is, semigroups equipped with an additional unary operation, denoted by ${ }^{+}$. The identities that define a left restriction semigroup S are:

$$
a^{+} a=a, a^{+} b^{+}=b^{+} a^{+},\left(a^{+} b\right)^{+}=a^{+} b^{+}, a b^{+}=(a b)^{+} a .
$$

We put

$$
E=\left\{a^{+}: a \in S\right\},
$$

then E is a semilattice known as the semilattice of projections of S.
Dually right restriction semigroups form a variety of unary semigroups. In this case the unary operation is denoted by *.

λ-semidirect product of left restriction semigroups

λ-semidirect product of left restriction semigroups

Theorem Let A and T be left restriction semigroups and suppose that T acts on A by endomorphisms (as a left restriction semigroup).

λ-semidirect product of left restriction semigroups

Theorem Let A and T be left restriction semigroups and suppose that T acts on A by endomorphisms (as a left restriction semigroup). Put

$$
A \rtimes^{\lambda} T=\left\{(a, t) \in A \times T: t^{+} \cdot a=a\right\} .
$$

λ-semidirect product of left restriction semigroups

Theorem Let A and T be left restriction semigroups and suppose that T acts on A by endomorphisms (as a left restriction semigroup). Put

$$
A \rtimes^{\lambda} T=\left\{(a, t) \in A \times T: t^{+} \cdot a=a\right\}
$$

Then $A \rtimes^{\lambda} T$ is left restriction with semilattice of projections

λ-semidirect product of left restriction semigroups

Theorem Let A and T be left restriction semigroups and suppose that T acts on A by endomorphisms (as a left restriction semigroup). Put

$$
A \rtimes^{\lambda} T=\left\{(a, t) \in A \times T: t^{+} \cdot a=a\right\}
$$

Then $A \rtimes^{\lambda} T$ is left restriction with semilattice of projections

$$
F=\left\{\left(a^{+}, t^{+}\right): t^{+} \cdot a=a\right\} .
$$

λ-semidirect product of left restriction semigroups

Theorem Let A and T be left restriction semigroups and suppose that T acts on A by endomorphisms (as a left restriction semigroup). Put

$$
A \rtimes^{\lambda} T=\left\{(a, t) \in A \times T: t^{+} \cdot a=a\right\}
$$

Then $A \rtimes^{\lambda} T$ is left restriction with semilattice of projections

$$
F=\left\{\left(a^{+}, t^{+}\right): t^{+} \cdot a=a\right\} .
$$

Multiplication in $A \rtimes^{\lambda} T$ is defined by the rule:

$$
(a, t)(b, u)=\left(\left((t u)^{+} \cdot a\right)(t \cdot b), t u\right)
$$

Coverings and embeddings in the λ-semidirect product of left restriction monoids

Coverings

Coverings and embeddings in the λ-semidirect product of left restriction monoids

Coverings

- We define S is (A, T)-proper similar to the monoid case.

Coverings and embeddings in the λ-semidirect product of left restriction monoids

Coverings

- We define S is (A, T)-proper similar to the monoid case.
- E_{A} is central in A.

Coverings and embeddings in the λ-semidirect product of left restriction monoids

Coverings

- We define S is (A, T)-proper similar to the monoid case.
- E_{A} is central in A.
- Covering Theorem similar to the monoid case

Coverings and embeddings in the λ-semidirect product of left restriction monoids

Coverings

- We define S is (A, T)-proper similar to the monoid case.
- E_{A} is central in A.
- Covering Theorem similar to the monoid case

Embeddings

Coverings and embeddings in the λ-semidirect product of left restriction monoids

Coverings

- We define S is (A, T)-proper similar to the monoid case.
- E_{A} is central in A.
- Covering Theorem similar to the monoid case

Embeddings
In left restriction case

$$
I=\left\{U \subseteq A: E_{A} U=U, a^{+} b=b^{+} a \quad \forall a, b \in U\right\}
$$

is left restriction

Coverings and embeddings in the λ-semidirect product of left restriction monoids

Coverings

- We define S is (A, T)-proper similar to the monoid case.
- E_{A} is central in A.
- Covering Theorem similar to the monoid case

Embeddings
In left restriction case

$$
I=\left\{U \subseteq A: E_{A} U=U, a^{+} b=b^{+} a \quad \forall a, b \in U\right\}
$$

is left restriction and

$$
\mathcal{A}=I^{T / \sigma_{A}}
$$

Coverings and embeddings in the λ-semidirect product of left restriction monoids

Coverings

- We define S is (A, T)-proper similar to the monoid case.
- E_{A} is central in A.
- Covering Theorem similar to the monoid case

Embeddings
In left restriction case

$$
I=\left\{U \subseteq A: E_{A} U=U, a^{+} b=b^{+} a \quad \forall a, b \in U\right\}
$$

is left restriction and

$$
\mathcal{A}=I^{T / \sigma_{A}}
$$

Then $\theta: S \rightarrow \mathcal{A} \rtimes^{\lambda} T / \sigma_{A}$ is an embedding.

Theorem
Let A and T be restriction semigroups. Suppose T acts on A on the left and right by morphisms preserving $(\cdot,+, *)$ such that for all $t \in T$ and for all $a \in A$, the following compatibility conditions holds:

Theorem
Let A and T be restriction semigroups. Suppose T acts on A on the left and right by morphisms preserving $(\cdot,+, *)$ such that for all $t \in T$ and for all $a \in A$, the following compatibility conditions holds:

$$
\begin{aligned}
& (t \cdot a) \circ t=a \circ t^{*}=t^{*} \cdot a \\
& t \cdot(a \circ t)=a \circ t^{+}=t^{+} \cdot a
\end{aligned}
$$

Theorem
Let A and T be restriction semigroups. Suppose T acts on A on the left and right by morphisms preserving $(\cdot,+, *)$ such that for all $t \in T$ and for all $a \in A$, the following compatibility conditions holds:

$$
\begin{aligned}
& (t \cdot a) \circ t=a \circ t^{*}=t^{*} \cdot a \\
& t \cdot(a \circ t)=a \circ t^{+}=t^{+} \cdot a
\end{aligned}
$$

Then

$$
A \rtimes^{\lambda} T=\left\{(a, t) \in S \times T: t^{+} \cdot a=a\right\}
$$

is a restriction semigroup

Theorem
Let A and T be restriction semigroups. Suppose T acts on A on the left and right by morphisms preserving $(\cdot,+, *)$ such that for all $t \in T$ and for all $a \in A$, the following compatibility conditions holds:

$$
\begin{aligned}
& (t \cdot a) \circ t=a \circ t^{*}=t^{*} \cdot a \\
& t \cdot(a \circ t)=a \circ t^{+}=t^{+} \cdot a
\end{aligned}
$$

Then

$$
A \rtimes^{\lambda} T=\left\{(a, t) \in S \times T: t^{+} \cdot a=a\right\}
$$

is a restriction semigroup with semilattice of projections

$$
F=\left\{\left(a^{+}, t^{+}\right): t^{+} \cdot a^{+}=a^{+}\right\} .
$$

The + and $*$ are defined by

$$
(a, t)^{+}=\left(a^{+}, t^{+}\right) \quad \text { and } \quad(a, t)^{*}=\left(a^{*} \circ t, t^{*}\right)
$$

The + and $*$ are defined by

$$
(a, t)^{+}=\left(a^{+}, t^{+}\right) \text {and }(a, t)^{*}=\left(a^{*} \circ t, t^{*}\right)
$$

and multiplication is defined by:

$$
(a, t)(b, u)=\left(\left((t u)^{+} \cdot a\right)(t \cdot b), t u\right)
$$

Categories

Rida-E Zenab

Categories

Let $\mathbf{C}=(C, \cdot, \mathbf{d}, \mathbf{r})$, where \cdot is a partial binary operation on C and $d, r: C \rightarrow C$ such that

Categories

Let $\mathbf{C}=(C, \cdot, \mathbf{d}, \mathbf{r})$, where \cdot is a partial binary operation on C and $\mathrm{d}, \mathrm{r}: C \rightarrow C$ such that

$$
\text { C1 } \exists x \cdot y \text { if and only if } \mathbf{r}(x)=\mathbf{d}(y)
$$

Categories

Let $\mathbf{C}=(C, \cdot, \mathbf{d}, \mathbf{r})$, where \cdot is a partial binary operation on C and $d, r: C \rightarrow C$ such that

C1 $\exists x \cdot y$ if and only if $\mathbf{r}(x)=\mathbf{d}(y)$ and then

$$
\mathbf{d}(x \cdot y)=\mathbf{d}(x) \text { and } \mathbf{r}(x \cdot y)=\mathbf{r}(y)
$$

Categories

Let $\mathbf{C}=(C, \cdot, \mathbf{d}, \mathbf{r})$, where \cdot is a partial binary operation on C and $\mathbf{d}, \mathrm{r}: C \rightarrow C$ such that
C1 $\exists x \cdot y$ if and only if $\mathbf{r}(x)=\mathbf{d}(y)$ and then

$$
\mathbf{d}(x \cdot y)=\mathbf{d}(x) \text { and } \mathbf{r}(x \cdot y)=\mathbf{r}(y)
$$

C2 $\exists x \cdot(y \cdot z)$ if and only if $\exists(x \cdot y) \cdot z$ and if $\exists x \cdot(y \cdot z)$,

Categories

Let $\mathbf{C}=(C, \cdot, \mathbf{d}, \mathbf{r})$, where \cdot is a partial binary operation on C and $\mathrm{d}, \mathrm{r}: C \rightarrow C$ such that

C1 $\exists x \cdot y$ if and only if $\mathbf{r}(x)=\mathbf{d}(y)$ and then

$$
\mathbf{d}(x \cdot y)=\mathbf{d}(x) \text { and } \mathbf{r}(x \cdot y)=\mathbf{r}(y)
$$

C2 $\exists x \cdot(y \cdot z)$ if and only if $\exists(x \cdot y) \cdot z$ and if $\exists x \cdot(y \cdot z)$, then

$$
x \cdot(y \cdot z)=(x \cdot y) \cdot z
$$

Categories

Let $\mathbf{C}=(C, \cdot, \mathbf{d}, \mathbf{r})$, where \cdot is a partial binary operation on C and $\mathrm{d}, \mathrm{r}: C \rightarrow C$ such that
C1 $\exists x \cdot y$ if and only if $\mathbf{r}(x)=\mathbf{d}(y)$ and then

$$
\mathbf{d}(x \cdot y)=\mathbf{d}(x) \text { and } \mathbf{r}(x \cdot y)=\mathbf{r}(y)
$$

C2 $\exists x \cdot(y \cdot z)$ if and only if $\exists(x \cdot y) \cdot z$ and if $\exists x \cdot(y \cdot z)$, then

$$
x \cdot(y \cdot z)=(x \cdot y) \cdot z
$$

C3 $\exists \mathbf{d}(x) \cdot x$ and $\mathbf{d}(x) \cdot x=x$

Categories

Let $\mathbf{C}=(C, \cdot, \mathbf{d}, \mathbf{r})$, where \cdot is a partial binary operation on C and $d, r: C \rightarrow C$ such that

C1 $\exists x \cdot y$ if and only if $\mathbf{r}(x)=\mathbf{d}(y)$ and then

$$
\mathbf{d}(x \cdot y)=\mathbf{d}(x) \text { and } \mathbf{r}(x \cdot y)=\mathbf{r}(y)
$$

C2 $\exists x \cdot(y \cdot z)$ if and only if $\exists(x \cdot y) \cdot z$ and if $\exists x \cdot(y \cdot z)$, then

$$
x \cdot(y \cdot z)=(x \cdot y) \cdot z
$$

C3 $\exists \mathbf{d}(x) \cdot x$ and $\mathbf{d}(x) \cdot x=x$ and $\exists x \cdot \mathbf{r}(x)$ and $x \cdot \mathbf{r}(x)=x$.
Let $E=\{\mathbf{d}(x): x \in C\}$.

Categories

Let $\mathbf{C}=(C, \cdot, \mathbf{d}, \mathbf{r})$, where \cdot is a partial binary operation on C and $d, r: C \rightarrow C$ such that

C1 $\exists x \cdot y$ if and only if $\mathbf{r}(x)=\mathbf{d}(y)$ and then

$$
\mathbf{d}(x \cdot y)=\mathbf{d}(x) \text { and } \mathbf{r}(x \cdot y)=\mathbf{r}(y)
$$

C2 $\exists x \cdot(y \cdot z)$ if and only if $\exists(x \cdot y) \cdot z$ and if $\exists x \cdot(y \cdot z)$, then

$$
x \cdot(y \cdot z)=(x \cdot y) \cdot z
$$

C3 $\exists \mathbf{d}(x) \cdot x$ and $\mathbf{d}(x) \cdot x=x$ and $\exists x \cdot \mathbf{r}(x)$ and $x \cdot \mathbf{r}(x)=x$.
Let $E=\{\mathbf{d}(x): x \in C\}$. It follows from the axioms that $E=\{\mathbf{r}(x): x \in C\}$ and \mathbf{C} is a small category in standard sense with set of identities E and set of objects identified with E.

Categories

Let $\mathbf{C}=(C, \cdot, \mathbf{d}, \mathbf{r})$, where \cdot is a partial binary operation on C and $d, r: C \rightarrow C$ such that

C1 $\exists x \cdot y$ if and only if $\mathbf{r}(x)=\mathbf{d}(y)$ and then

$$
\mathbf{d}(x \cdot y)=\mathbf{d}(x) \text { and } \mathbf{r}(x \cdot y)=\mathbf{r}(y)
$$

C2 $\exists x \cdot(y \cdot z)$ if and only if $\exists(x \cdot y) \cdot z$ and if $\exists x \cdot(y \cdot z)$, then

$$
x \cdot(y \cdot z)=(x \cdot y) \cdot z
$$

C3 $\exists \mathbf{d}(x) \cdot x$ and $\mathbf{d}(x) \cdot x=x$ and $\exists x \cdot \mathbf{r}(x)$ and $x \cdot \mathbf{r}(x)=x$.
Let $E=\{\mathbf{d}(x): x \in C\}$. It follows from the axioms that $E=\{\mathbf{r}(x): x \in C\}$ and \mathbf{C} is a small category in standard sense with set of identities E and set of objects identified with E. Thus $\mathbf{d}(x)$ is domain of x and $\mathbf{r}(x)$ is range of x.

Inductive categories

Inductive categories

Let C be a category with set of identities E.

Inductive categories

Let C be a category with set of identities E. Let \leq be a partial order on C such that for all $e \in E, x, y \in C$

Inductive categories

Let C be a category with set of identities E. Let \leq be a partial order on C such that for all $e \in E, x, y \in C$
(IC1) if $x \leq y$ then $\mathbf{r}(x) \leq \mathbf{r}(y)$ and $\mathbf{d}(x) \leq \mathbf{d}(y)$;

Inductive categories

Let C be a category with set of identities E. Let \leq be a partial order on C such that for all $e \in E, x, y \in C$
(IC1) if $x \leq y$ then $\mathbf{r}(x) \leq \mathbf{r}(y)$ and $\mathbf{d}(x) \leq \mathbf{d}(y)$;
(IC2) if $x \leq y$ and $x^{\prime} \leq y^{\prime}, \exists x \cdot x^{\prime}$ and $\exists y \cdot y^{\prime}$, then $x \cdot x^{\prime} \leq y \cdot y^{\prime}$;

Inductive categories

Let C be a category with set of identities E. Let \leq be a partial order on C such that for all $e \in E, x, y \in C$
(IC1) if $x \leq y$ then $\mathbf{r}(x) \leq \mathbf{r}(y)$ and $\mathbf{d}(x) \leq \mathbf{d}(y)$;
(IC2) if $x \leq y$ and $x^{\prime} \leq y^{\prime}, \exists x \cdot x^{\prime}$ and $\exists y \cdot y^{\prime}$, then $x \cdot x^{\prime} \leq y \cdot y^{\prime}$;
(IC3) if $e \leq \mathbf{d}(x)$ then \exists unique $(e \mid x) \in \mathbf{C}$ such that

$$
(e \mid x) \leq x \quad \text { and } \quad \mathbf{d}(e \mid x)=e ;
$$

Inductive categories

Let C be a category with set of identities E. Let \leq be a partial order on C such that for all $e \in E, x, y \in C$
(IC1) if $x \leq y$ then $\mathbf{r}(x) \leq \mathbf{r}(y)$ and $\mathbf{d}(x) \leq \mathbf{d}(y)$;
(IC2) if $x \leq y$ and $x^{\prime} \leq y^{\prime}, \exists x \cdot x^{\prime}$ and $\exists y \cdot y^{\prime}$, then $x \cdot x^{\prime} \leq y \cdot y^{\prime}$;
(IC3) if $e \leq \mathbf{d}(x)$ then \exists unique $(e \mid x) \in \mathbf{C}$ such that

$$
(e \mid x) \leq x \quad \text { and } \quad \mathbf{d}(e \mid x)=e ;
$$

(IC4) if $e \leq \mathbf{r}(x)$ then \exists unique $(x \mid e) \in \mathbf{C}$ such that

$$
(x \mid e) \leq x \quad \text { and } \quad \mathbf{r}(x \mid e)=e ;
$$

Inductive categories

Let C be a category with set of identities E. Let \leq be a partial order on C such that for all $e \in E, x, y \in C$
(IC1) if $x \leq y$ then $\mathbf{r}(x) \leq \mathbf{r}(y)$ and $\mathbf{d}(x) \leq \mathbf{d}(y)$;
(IC2) if $x \leq y$ and $x^{\prime} \leq y^{\prime}, \exists x \cdot x^{\prime}$ and $\exists y \cdot y^{\prime}$, then $x \cdot x^{\prime} \leq y \cdot y^{\prime}$;
(IC3) if $e \leq \mathbf{d}(x)$ then \exists unique $(e \mid x) \in \mathbf{C}$ such that

$$
(e \mid x) \leq x \quad \text { and } \quad \mathbf{d}(e \mid x)=e ;
$$

(IC4) if $e \leq \mathbf{r}(x)$ then \exists unique $(x \mid e) \in \mathbf{C}$ such that

$$
(x \mid e) \leq x \quad \text { and } \quad \mathbf{r}(x \mid e)=e ;
$$

(IC5) (E, \leq) is a meet semilattice.

Inductive categories

Let C be a category with set of identities E. Let \leq be a partial order on C such that for all $e \in E, x, y \in C$
(IC1) if $x \leq y$ then $\mathbf{r}(x) \leq \mathbf{r}(y)$ and $\mathbf{d}(x) \leq \mathbf{d}(y)$;
(IC2) if $x \leq y$ and $x^{\prime} \leq y^{\prime}, \exists x \cdot x^{\prime}$ and $\exists y \cdot y^{\prime}$, then $x \cdot x^{\prime} \leq y \cdot y^{\prime}$;
(IC3) if $e \leq \mathbf{d}(x)$ then \exists unique $(e \mid x) \in \mathbf{C}$ such that

$$
(e \mid x) \leq x \quad \text { and } \quad \mathbf{d}(e \mid x)=e ;
$$

(IC4) if $e \leq \mathbf{r}(x)$ then \exists unique $(x \mid e) \in \mathbf{C}$ such that

$$
(x \mid e) \leq x \quad \text { and } \quad \mathbf{r}(x \mid e)=e ;
$$

(IC5) (E, \leq) is a meet semilattice.
We then say that $(C, \cdot, \mathbf{d}, \mathbf{r}, \leq)$ is an inductive category.

Inductive categories and λ-semidirect products

Inductive categories and λ-semidirect products

Theorem Let A and T be restriction semigroups and suppose that T acts on A on the left and right by morphisms preserving $(\cdot,+, *)$ such that for all $t \in T$ and for all $a \in S$, the following compatibility conditions hold:

Inductive categories and λ-semidirect products

Theorem Let A and T be restriction semigroups and suppose that T acts on A on the left and right by morphisms preserving $(\cdot,+, *)$ such that for all $t \in T$ and for all $a \in S$, the following compatibility conditions hold:

$$
\begin{aligned}
& (t \cdot a) \circ t=a \circ t^{*}=t^{*} \cdot a \\
& t \cdot(a \circ t)=a \circ t^{+}=t^{+} \cdot a
\end{aligned}
$$

Inductive categories and λ-semidirect products

Theorem Let A and T be restriction semigroups and suppose that T acts on A on the left and right by morphisms preserving $(\cdot,+, *)$ such that for all $t \in T$ and for all $a \in S$, the following compatibility conditions hold:

$$
\begin{aligned}
& (t \cdot a) \circ t=a \circ t^{*}=t^{*} \cdot a \\
& t \cdot(a \circ t)=a \circ t^{+}=t^{+} \cdot a
\end{aligned}
$$

Let

$$
V=A \rtimes^{\lambda} T=\left\{(a, t) \in A \times T: t^{+} \cdot a=a\right\} .
$$

Inductive categories and λ-semidirect products

Theorem Let A and T be restriction semigroups and suppose that T acts on A on the left and right by morphisms preserving $(\cdot,+, *)$ such that for all $t \in T$ and for all $a \in S$, the following compatibility conditions hold:

$$
\begin{aligned}
& (t \cdot a) \circ t=a \circ t^{*}=t^{*} \cdot a \\
& t \cdot(a \circ t)=a \circ t^{+}=t^{+} \cdot a
\end{aligned}
$$

Let

$$
V=A \rtimes^{\lambda} T=\left\{(a, t) \in A \times T: t^{+} \cdot a=a\right\} .
$$

Then V is an inductive category with set of local identities

$$
F=\left\{\left(a^{+}, t^{+}\right): t^{+} \cdot a^{+}=a^{+}\right\} .
$$

Inductive categories and λ-semidirect products

Theorem Let A and T be restriction semigroups and suppose that T acts on A on the left and right by morphisms preserving $(\cdot,+, *)$ such that for all $t \in T$ and for all $a \in S$, the following compatibility conditions hold:

$$
\begin{aligned}
& (t \cdot a) \circ t=a \circ t^{*}=t^{*} \cdot a \\
& t \cdot(a \circ t)=a \circ t^{+}=t^{+} \cdot a
\end{aligned}
$$

Let

$$
V=A \rtimes^{\lambda} T=\left\{(a, t) \in A \times T: t^{+} \cdot a=a\right\} .
$$

Then V is an inductive category with set of local identities

$$
F=\left\{\left(a^{+}, t^{+}\right): t^{+} \cdot a^{+}=a^{+}\right\} .
$$

where

$$
\mathbf{d}(a, t)=\left(a^{+}, t^{+}\right), \quad \mathbf{r}(a, t)=\left(a^{*} \circ t, t^{*}\right)
$$

Inductive categories and λ-semidirect products

The partial binary operation on V is defined by the rule

$$
(a, t) \cdot(b, u)=\left\{\begin{array}{l}
(a(t \cdot b), t u) \text { if } \mathbf{r}(a, t)=\mathbf{d}(b, u) \\
\text { undefined otherwise }
\end{array}\right.
$$

where $(a, t),(b, u) \in V$.

Inductive categories and λ-semidirect products

The partial binary operation on V is defined by the rule

$$
(a, t) \cdot(b, u)=\left\{\begin{array}{l}
(a(t \cdot b), t u) \quad \text { if } \mathbf{r}(a, t)=\mathbf{d}(b, u) \\
\text { undefined otherwise }
\end{array}\right.
$$

where $(a, t),(b, u) \in V$. The partial order \leq on V is defined by

$$
(a, t) \leq(b, u) \quad \text { if and only if } \quad a \leq t^{+} \cdot b, t \leq u
$$

Inductive categories and λ-semidirect products

The partial binary operation on V is defined by the rule

$$
(a, t) \cdot(b, u)=\left\{\begin{array}{l}
(a(t \cdot b), t u) \text { if } \mathbf{r}(a, t)=\mathbf{d}(b, u) \\
\text { undefined otherwise }
\end{array}\right.
$$

where $(a, t),(b, u) \in V$. The partial order \leq on V is defined by

$$
(a, t) \leq(b, u) \quad \text { if and only if } \quad a \leq t^{+} \cdot b, t \leq u
$$

Also for $(a, t) \in V$ and $(x \cdot e, x) \in E$, the restriction and co-restriction are defined as:

$$
\begin{aligned}
((x \cdot e, x) \mid(a, t)) & =(x \cdot e a, x t) \\
((a, t) \mid(x \cdot e, x)) & =\left(\left((t x)^{+} \cdot a\right)(t \cdot(x \cdot e)), t x\right) .
\end{aligned}
$$

Inductive categories and λ-semidirect products

Theorem

Inductive categories and λ-semidirect products

Theorem Let $(V, \cdot, \mathbf{d}, \mathbf{r}, \leq)$ be the inductive category as defined in above Theorem. Let $(a, t),(b, u) \in V$ and define \otimes by the rule

Inductive categories and λ-semidirect products

Theorem Let ($V, \cdot, \mathbf{d}, \mathbf{r}, \leq$) be the inductive category as defined in above Theorem. Let $(a, t),(b, u) \in V$ and define \otimes by the rule

$$
(a, t) \otimes(b, u)=((a, t) \mid \mathbf{r}(a, t) \wedge \mathbf{d}(b, u))(\mathbf{r}(a, t) \wedge \mathbf{d}(b, u) \mid(b, u)) .
$$

Inductive categories and λ-semidirect products

Theorem Let ($V, \cdot, \mathbf{d}, \mathbf{r}, \leq$) be the inductive category as defined in above Theorem. Let $(a, t),(b, u) \in V$ and define \otimes by the rule

$$
(a, t) \otimes(b, u)=((a, t) \mid \mathbf{r}(a, t) \wedge \mathbf{d}(b, u))(\mathbf{r}(a, t) \wedge \mathbf{d}(b, u) \mid(b, u)) .
$$

Then \otimes coincides with λ-semidirect product

$$
(a, t)(b, u)=\left(\left((t u)^{+} \cdot a\right)(t \cdot b), t u\right)
$$

