Olga Hadžić

A FIXED POINT THEOREM IN RANDOM NORMED SPACES

In his paper: Statistical Metrics, Proc. Acad. Sci. USA, 28, 1942, 535—537 K. Menger has generalized the notion of metric space attaching to each pair (p, q) in the cartesian product SxS a distribution function F_p , q. Thus was obtained the notion of probabilistic metric space (briefly PM-space). The notion of random normed space was introduced by A. N. Šerstnev [13] and in this paper we shall prove a fixed point theorem for mapping $\Phi z = (H(x, y), K(x, y))$, z = (x, y), where S_1 and S_2 are random normed space, $U \subset S_1$, $V \subset S_2$, $H: Ux V \to U$ and $K: Ux V \to V$.

Important contributions in the study of PM-spaces are due to Wald [5], B. Schweizer and A. Sklar [3], O. Onicescu [6] and in [1], [2], [7] and [8] are given some fixed point theorems for contraction mapping in PM-spaces. In [9] the notion of the Kuratowski function is introduced and based on it in [11] are defined the functions probabilistic densifying and α -contractive and some fixed point theorems for such functions are given.

First, we shall give some definitions and theorems to be used in the sequel.

Definition 1. The mapping $t: [0, 1] \times [0, 1] \rightarrow [0, 1]$ is a t-norm if the following conditions are satisfied:

- 1. t(a, 1)=a for every $a \in [0, 1]$ and t(0, 0)=0
- 2. t(a, b) = t(b, a) for every $a, b \in [0, 1]$
- 3. If $c \ge a$ and $d \ge b$ then $t(c, d) \ge t(a, b)$
- 4. t(t(a, b), c)=t(a, t(b, c)) for every $a, b, c \in [0, 1]$ Let Δ^+ be the family of all distribution functions F such that F(0)=0

Definition 2. Probabilistic metric space is an ordered pair (S, \mathcal{F}) where S is an abstract set of elements and \mathcal{F} is a mapping of $S \times S$ into a collection Δ^+ (the value of \mathcal{F} at $(u, v) \in S \times S$ will be denoted by F_u , v) where the functions F_u , v are assumed to satisfy the following conditions:

- (a) F_u , v(x)=1 for all x>0 if and only if u=v.
- (b) F_u , v(0)=0 for every $(u, v) \in SxS$
- (c) F_u , $v = F_v$, u for every $(u, v) \in SxS$
- (d) F_u , v(x)=1 and F_v , w(y)=1 imply F_u , w(x+y)=1

Definition 3. A Menger space is a triplet (S, \mathcal{F}, t) where (S, \mathcal{F}) is a PM-space and t-norm t is such that Menger's triangle inequality:

$$F_u$$
, $w(x+y) \geqslant t(F_u, v(x), F_v, w(y))$

is satisfied for all $u, v, w \in S$ and for all x>0, y>0.

The (ε, λ) -topology in (S, \mathcal{F}, t) is introduced by the family of (ε, λ) -neighborhood of $v \in S$:

$$U_v(\varepsilon, \lambda) = \{u \in S: F_u, v(\varepsilon) > 1 - \lambda\}, \varepsilon > 0, \lambda \in (0, 1)$$

Definition 4. A random normed space is a triplet (S, \mathcal{F}, t) with the following properties:

- 1. t-norm t is stronger than $T_m(a, b) = \max\{a+b-1, 0\}$
- 2. $F_u = H$ for u = 0 where $H(x) = \begin{cases} 0 & x \leq 0 \\ 1 & x > 0 \end{cases}$
- 3. For every $u \in S$, $x \in R$, $\lambda \in K$, $\lambda \neq 0$.

$$F_{\lambda u}(x) = F_u\left(\frac{x}{|\lambda|}\right)$$
 where S is vector space over the field K.

4. $F_{u+v}(x+y) \ge t(F_u(x), F_v(y))$ for every x>0 and y>0. It is easy to see that every random normed space is a Menger space if we take $F_u, v=F_{u-v}$.

Definition 5. A mapping T on PM-space (S, \mathcal{F}) will be called a generalized contraction iff there exists a constant q, 0 < q < 1, such that for every $u, v \in S$:

$$F_{Tu}, T_{V}(qx) \ge \min \{F_{u}, v(x), F_{u}, T_{u}(x), F_{v}, T_{V}(x), F_{u}, T_{V}(2x), F_{v}, T_{u}(2x)\}, x > 0$$

Probabilistic diameter of the set $A \subset S$ is defined in the following way:

$$D_A(x) = \sup \inf F_{u,v}(t)$$

$$t < x \ u, v \in A$$

The set A is probabilistic bounded if $\sup_{x} D_{A}(x)=1$. The Kuratowski function of a probabilistic set A is of the form:

$$\alpha_{A}(x) = \sup\{\varepsilon > 0, \exists A_{j} \subset S, j = 1, 2, \ldots, n, A \subset \bigcup_{j=1}^{n} A_{j}, D_{A_{j}}(x) \geqslant \varepsilon\}$$

The Kuratowski function has the following properties:

- 1. $\alpha_A \in \Delta$
- 2. $\alpha_A(x) \geqslant D_A(x)$
- 3. $\Phi \neq A \subset B \subset S \Rightarrow \alpha_A(x) \geqslant \alpha_B(x)$
- 4. $\alpha_{A \cup B}(x) = \min \{\alpha_A(x), \alpha_B(x)\}$
- 5. $\alpha_A(x) = \alpha_{\overline{A}}(x)$ where \overline{A} is adherence in (ε, λ) -topology

Definition 6. If T is a mapping of random normed space S into itself so that for every subset A of S such that $\alpha_A < H$ we have:

$$\alpha_{T(A)} > \alpha_A$$

T is called probabilistic densifying.

Theorem 1 [1]. Let (S,\mathcal{F},t) be a Menger space, $t=\min$ and $T:S\to S$ is a generalized contraction on S and S is T-orbitally complete. Then T has a unique fixed point $v\in S$ and $\lim_{n\to\infty} T^nu=v$ for every $u\in S$.

Theorem 2 [1]. Let $\{T_i\}$ $i \in N$ be a sequence of mappings on a Menger space (S,\mathcal{F},\min) and let $T:S\to S$ be a generalized contraction on S which is T-orbitally complete. If each T_i $(i=1,2,\ldots)$ has at least one fixed point v_i and the sequence $\{T_i\}_i$ $i\in N$ on the subset:

 $I=\{u|u\in S, \text{ there is some } T_i \text{ such that } u=T_i u\}$ converges uniformly to T then the sequence $\{u_i\}$ $i\in N$ converges to a unique fixed point v of T.

Theorem 3 [11]. Let (S,\mathcal{F},t) be a complete random normed space, A a probabilistic bounded, closed, convex subset of S and T a continuous probabilistic densifying selfmapping of S such that $TA \subset A$. If $t=\min$, then there exists at least one fixed point of the mapping T in the set A.

Theorem 4. Suppose that $(S_1, \mathcal{F}_1, \min)$ and $(S_2, \mathcal{F}_2, \min)^*$ are complete random normed spaces. Further, let U be a closed, convex subset of S_1 , V be a closed, convex and probabilistic bounded subset of S_2 and $H: UxV \rightarrow U$, $K: UxV \rightarrow V$ such that the following conditions are satisfied:

1. The mapping H is uniformly continuous and for every x>0 the following inequality holds:

$$F_{H(u, w)-H(v, w)}(qx) \geqslant \min\{F_{u-v}(x), F_{u-H(u, w)}(x), F_{v-H(v, w)}(x), F_{v-H(v, w)}(x), F_{v-H(v, w)}(2x), F_{v-H(v, w)}(2x)\}$$

for every $u, v \in U$ and every $w \in V$, o < q < 1.

2. The mapping K is continuous and for every set Q such that $\alpha_Q < H$ we have: $\alpha_{K(U,Q)} > \alpha_Q$

Then there exists at least one element $z_0 \in UxV$ such that:

$$\Phi z_0 = z_0 \ (\Phi z = (H(x, y), K(x, y)), z = (x, y))$$

Proof: For every $w \in V$ we shall define the mapping H_w of the set U into itself such that:

$$H_w(u)=H(u, w)$$
 for every $u \in V, w \in V$

From the condition 1, it follows that the mapping H_w satisfies the following inequality:

$$F_{H_{w}(u)-H_{w}(v)}(qx) \geqslant \min \left\{ F_{u-v}(x), F_{u-H_{w}(u)}(x), F_{v-H_{w}(u)}(x), F_{u-H_{w}(v)}(2x) \right\}$$

$$F_{v-H_{w}(v)}(2x) \}$$

for every $u, v \in U$ and $w \in V$.

^{*} If K(U, V) is compact and (S_2, F_2, t) is admissible [14] in (ε, λ) topology from [14] it follows the existence of element $z_0 \in U \times V$ such that $\Phi z_0 = z_0$.

From Theorem 1 it follows that for every $w \in V$ there exists one and only one element $Rw \in U$ such that: $H_w(Rw) = Rw$. We shall prove that the mapping $R: V \to U$ is a continuous mapping. Since (ε, λ) topology is a metrizable topology we shall prove that from $\lim_{n \to \infty} w_n = w_0$, where $\{w_n\}_{n \in N}$ is a sequence from U it follows:

$$\lim_{n\to\infty} Rw_n = Rw_o$$

Let \tilde{H}_n be the mapping H_{w_n} for every $n \in N$ and $\tilde{H_0} = H_{w_0}$. Since the mapping H is uniformly continuous we have:

$$\lim_{n\to\infty} H(u, w_n) = H(u, w_0) \text{ for every } u \in U,$$

namely that:

$$\lim_{n\to\infty}H_n\left(u\right)=H_0\left(u\right)$$

uniformly in respect to $u \in U$. From Theorem 2 it follows that $\lim_{n \to \infty} Rw_n = Rw_0$ and so the mapping R is continuous.

Now, we shall define the mapping T of the set V into itself in the following way:

$$Tw = K(Rw, w)$$
 for every $w \in V$

It is obvious that the mapping T is continuous. We shall show that the mapping T is densifying.

From the definition of the mapping T it follows:

 $TQ = \{Tw; w \in Q\} = \{K(Rw, w); w \in Q\} \subset \{K(u, v); u \in U, v \in V\} = K(U, Q)$ Suppose now that $\alpha_A < H$, $A \subset V$. From the property 3. of the Kuratowski function and the condition 2. of the Theorem we have:

$$\alpha_{T(Q)}(x) \geqslant \alpha_{K(U,Q)}(x)$$
 for every $x > 0$

and so:

$$\alpha_{TQ} \geqslant \alpha_{K(U,Q)} > \alpha_Q$$

which means that the mapping T is probabilistic densifying. From the Theorem 3 it follows that there exists $w_0 \in V$ such that $Tw_0 = w_0$. If we take for element z_0 the element $(Rw_0, w_0) \in UxV$ we have:

$$\Phi z_o = z_o$$

which completes the proof.

Remark: Every Banach space is complete random normed space if $F_u(x) = H(x-||u||)$ for every $u \in S$. If we take $t=\min$ and $\mathcal{F} \colon S \to \Delta^+$ is defined by $\mathcal{F}(u) = F_u$ for every $u \in S$ then (S, \mathcal{F}, \min) is a random normed space. It is easy to see that (ε, λ) topology induced on S the norm topology and that every bounded subset is probabilistic bounded. If K(U, V) is a compact set it is obvious that:

$$\alpha_Q < H$$
 implies $\alpha_{K(U,Q)} > \alpha_Q$

and so the Theoremi of Avramescu from [12] follows from our theorem.

REFERENCES

- [1] Ljubomir B. Ćirić, On fixed points of generalized contractions on probabilistic metric spaces, Publ. Inst. Math., tome 18 (32), 1975, 71-78.
- [2] V. Sehgal and A. Bharucha-Reid, Fixed points of contractions mappings on probabilistic metric spaces, Math. System theory, 6 (1972), 97-102.
- [3] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10, 1960, 313-334.
- [4] B. Schweizer, A. Sklar and E. Thorp, The metrization of statistical metric spaces, Pacific J. Math., 10 (1960), 673-675.
- [5] A. Wald, On a Statistical Generalization of Metric Spaces, Proc. Nat. Acad. Sci. USA, 29 (1943), 196-197.
- [6] O. Onicescu, Nombres et systèmes aléatoires, Editions de l'Academie de la R. P. Roumaine, Bucarest, 1968.
- [7] V. Istratescu and I. Sacuiu, Fixed Points Theorems for Contraction Mappings on Probabilistic Metric Spaces, Rev. Roum. Math. Pures et Appl., XVIII, 9, 1973, 1375-1381.
- [8] H. Sherwood, Complete Probabilistic Metric Space, Z. Wahrscheinlichkeitstheorie verw. Geb. 20, 1971.
- [9] Gh. Bocsan and Gh. Constantin, The Kuratowski function and some applications to the probabilistic metric spaces, Universitatea din Timisoara, Facultatea de mathematica-mecanica, Seminarul de teoria functiilor si matematici aplicate, A. Spatii metrice probabiliste, № 1.
- [10] Gh. Bocsan and Gh. Constantin, The Kuratowski function and some applications to the probabilistic metric spaces, Atti Acad. Naz. Lincei, LV, 1973, Fasc. 3-4, 236-240.
- [11] Gh. Bocsan, On some fixed point theorem in random normed spaces, A. Spatii metrice probabiliste, № 13, 1974.
- [12] C. Avramescu, Asupra unei teoreme de punct fix. Studii si Cercetari mat. Acad. R. S. R. 1970, 22 No., 215-221.
- [13] A. N. Šerstnev, The notion of Random Normed Space, DAN USSR, 149 (2), 1963, 280-283.
- [14] Siegfried Hahn und Karl-Friedrich Pötter, Über Fixpunkte kompakter Abbildungen in to pologischen Vektorräumen, Studia Math. T. L. 1974, 1-16.

Olga Hadžić

TEOREMA O NEPOKRETNOJ TAČKI U SLUČAJNIM NORMIRANIM PROSTORIMA

Rezime

U ovom radu je dokazana sledeća teorema:

Teorema: Pretpostavimo da su $(S_1, \mathcal{F}_1, \min)$ i $(S_2, \mathcal{F}_2, \min)$ kompletni slučajni normirani prostori. Neka je dalje U zatvoren i konveksan podskup od S_1, V zatvoren, konveksan i probabilistički ograničen podskup od S_2, H preslikavanie proizvoda $U \times V$ u U i K preslikavanie proizvoda $U \times V$ u V tako da su zadovoljeni sledeći uslovi:

1. Preslikavanie H je neprekidno i za svako x>0 je:

$$F_{H(u, w)-H(v, w)}(qx) \ge \min\{F_{u-v}(x), F_{u-H(u, w)}(x), F_{v-H(v, w)}(x), F_{v-H$$

$$F_{u-H(v, w)}(2x), F_{v-H(u, w)}(2x)$$

za svako u, $v \in U$ i svako $w \in V$ gde ie 0 < q < 1.

2. Preslikavanje K je neprekidno i za svaki skup Q takav da ie $\alpha_Q < H$ važi: $\alpha_{(KU,Q)} > \alpha_Q$. Tada postoji bar jedan elemenat $z_0 \in U \times V$ takav da je $\Phi z_0 = z_0$ gde je $\Phi z = (H(x, y), K(x, y))$ z = (x, y).