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Danica Nikolié-Despotovié

ON THE CONVERGENCE OF THE SERIES OF RATIONAL
OPERATORS

Abstract. Our topic is the convergence of one class of the series of rational operators in the
field M of Mikusiniski operators. Using Ditkin’s result [2] which connects the operators with Laplace
transformations and following the ideas of Erdélyi, [3] we will give the representation in the field M
of the following convergent series of rational operators
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where p is an arbitrary complex number and k>0.

Series of rational operators constitute an important class of the operators
in the field M of Mikusinski's operators.

Proposition 1. Suppose that the following conditions are satisfied.

@D an=0@")  (n>o00)
for some positive integer k.

(ii) Let the real functions by (x) and the positive continuous function b (x) be
such that

by ()=bpn1b(x) (n=1,2,...a<x<B)

for some positive sequence by.
Then the series

annlbiba...by
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s operationally convergent in the interval [o, B] and defines the continuous opera-
tional function in this tnterval.
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Proof. Multiplying series (1) by l=ie C, we get
s
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If (¢) holds the last series converges uniformly in ¢ <t <7, « <x <[ since we have

o<1—exp[— t ]<q(T)<1, Vx € [«, ] and
b(x)
nk nt+k
r<k+1>[ )(" )

namely, there exists n, € N such that
(n>n ):[]anl(l—exp[———]) Kn"(l—exp[——— ]]n
’ b (x) b (x)
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and the series <M(n:k) (q(T))n]
2 [ ) D=

n=0
converges.
This means that the series (2) converges almost uniformly in o<i< 00,
a<x <fB, and the series (1) defines the continuous operational function in
o <x <B.

Proposition 2. If a sequence of positive number by, b, ... satisfies con-
ditions
® L oo
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©) bani—ba>3>0 (n=1,2,...)
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and an (x) is a sequence of real, continuous and positive functions in the interval =
=[a, B] then the series

o
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n=1

is operationally comvergent in the interval I and defines the continuous operational
Sfunction in I,

Proof. Multiplying series (5) by l=i we obtain
s
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Since

{fn (03} ={ b,;ﬂ (1 I ( N a::x) t]]}

is a parametric function for xe I, 0 <<t<<oo and

1
[ fa (%, 2)] <ﬁ
it follows the statement of Proposition 2.
Remark. Condition (4) is a stronger one than

(e

1
4.1) Z pt <oco (k>0)

n=1

obviously (4) implies (4.1), but not conversely.
The consequence of the Proposition 2 are
(A) If (3) and (4) hold, the series

SR
(5-2) Z; B (s1-bn)

converges operationally for every positive k.
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(B) If (3) and (4) hold, the series

(5) Z !
s +bn
n=1
diverges operationally.
Namely,
1 1 s

s+bn by bu(s+ba)
and the statement (B) follows from (3) and (A).
Proposition 3. If (3) and (4) hold, the series

1
©® Dl

n=1

is not convergent in the field M.

Proof. Indeed, if (6) was convergent, there would exist a function fe C
(f40) such that the series

- 00 4
f Z b _ D b, € f (t—u) du}
0
w1

s—bn n=1

would be uniformly convergent in every interval 0<r<T.
Then the sequence

(]; eb"uf(T—u) du

would be bounded for all n=1, 2, ... Hence it would follow by the theorem on
moment [4] (see ch. VII §7) that f(T—u)=0 for 0<u<T i.e. that f(£)=0
for 0 <t <T. Since T can be fixed arbitrarily f (£)=0 for all' ¢ 20, which contra-
dicts 0.

Similarly, if (3) and (4) hold and coefficients a, are arbitrary real numbers
such that a,— oo, n— co, then the series

00
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S—bn

n=1

is not convergent operationally.
Following the ideas of Erdelyi [3] we know that the operator

(ssi—:)a _ { It‘b;) 1F1 (a, b; xt)} (Re b>0)
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where 1Fi (a, b; z) denotes the confluent hypergeometric function. As usual
1F1(a, b; 2) i defined by the series

(@)n = _TI(a+n)
e b Z@nn' @
n=g

Using the following known relation [1] (see. p. 272)
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where yp— ot
n! T (c+n)
we obtain
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Since the convergence radius R of series

is a positive, R=1, then the series (7) regarded as a series of two variables x and
t is uniformly convergent in every domain

O<x <o, Ot <T

namely, the series (7) is operationally convergent.

By means of the operator transformation 1-? where p may be an arbitrary
complex number, we can easily deduce from (7) that is
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since

I SO Z (V)a 2
nls» nl(s+p)»
n=-0 n=0

Applying the oberator transformation Uy (k>0) [4] to formula (8) we ob-
tain more general formula
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O KONVERGENCIJT REDOVA RACIONALNIH OPERATORA

Rezime

Ispitana je konvergencija u polju operatora Mikusifiskog jedne klase redova &iji su opiti
&lanovi racionalni operatori po operatoru diferenciranja s. Koeficijenti b, tih redova zadovoljavaju
sledece uslove

) > bi”=oo
n=1

@ bas1—ba >8>0 (n=1, 2,...).
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Dokazano je da u polju operatora M redovi

R n
Z 5-+bn ! Z s—by
n=1 n=1

divergiraju. .

Sem toga, koristeéi se rezultatima Ditkina [2], koji povezuje operatore sa Laplasovim trans-
formacijama, a prema Erdelyiu {3], data je u polju operatora M reprezentacija sledeéeg konver-
gentnog reda racionalnih operatora

X v s (V)ux"
(1 +__—_ks+p—x ) = Zo: TTe—p) (Rev>0)
=

gde je p proizvoljan kompleksan broj i £>0.



