Zbornik radova Prirodno-matematickog fakulteta — Univerzitet 4 Novom Sadu,
knjiga 8 (1978)
Review of Research Faculty of Science — University of Novi Sad, Volume 8 (1978)

Dragan M. Acketa

ON THE ENUMERATION OF MATROIDS OF RANK 2
(Communicated November 16, 1978.)

Abstract. A formula for the enumeration of the matroids of rank 2 is given (Theorem
2.). This formula is based on the bijection between the class of the matroids of rank 2 and a spe-
cial class of graphs.

A matroid M on a finite set S is a pair (S, “8), where 73 is a non-empty col-
lection of subsets of S, which satisfies the following condition (zhe axiom of bases)
(1]:

(B1, B2€ BAx € Bi\Bz)=>>(3y) (y e Ba"B1 A\ (Bi1\x)uy €B)

The set S is the carrier and the subsets from ‘B are the bases of the matroid
M. We can restate the given axiom in the following way:

Each element from any base can be replaced by some element from any
other base so that a base is again obtained.

An n-ser (base) is a set (base), which has » elements.

It can be verified that all bases of a matroid have the same cardinality, which
is called the rank of matroid. The ranks of the matroids, whose carrier is an n-set,
are between 0 and ».

Two matroids are isomorphic if there is a bijection between their carriers
which ,,preserves” the bases (i.e., which maps the bases of one matroid onto the
bases of the other).

Let my(n) denote the number of non-isomorphic matroids of rank % on an
n-set.

We see that mo(n)=1 (if the rank is zero, then the empty set is the only base)
and mi(n)=n (all collections of 1-sets satisfy the axiom of bases).

This paper gives a formula, whicli enables a relatively quick evaluation
of ma(n).

By a ,graph” we shall always mean a non-oriented graph without loops
and parallel edges.

When adjoining a graph to the collection of bases of a matroid, it is usual
(as, for example, in [3]) to map the bases of the matroid onto the vertices of a
graph, which are adjacent if and only if the corresponding bases differ in just
one element.
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In the case of the matroids of rank 2, however, we choose to map the ele-
ments of the carrier and the 2-bases of a matroid onto the vertices and the edges
of a graph respectively.

For example, if $={1, 2, 3,4} and

B={{1, 3}, {1, 4} {2,3}, {2, 4}}, then we adjoin the following graph to the
matroid (S,

1 2

3 4

We shall define several concepts which we shall use later.

A graph is marroidic if the set of its vertices and the collection of adjacent
pairs of vertices are, respectively, the carrier and the collection of 2-bases of a
matroid.

Note. The term ,,matroidic” is used in order to avoid confusion with the
matroidal graphs, defined in [4].

A 3-point is a set of three vertices of a graph. We differentiate 3-points on
the basis of the number of adjacent pairs of vertices. So we have 3-points with
zero, one, two and three vertices.

An #solated vertex of a graph is a vertex, which is not an endpoint of an edge.

A complete graph is a graph in which an edge joins each pair of vertices.
The complete graph on n vertices is denoted by K.

An empry graph is a graph, which has no vertices.

Two graphs are disjoint if they have no common vertex.

A path in a graph is a finite sequence of edges of the form {[vo, 21}, [v1,
2], .. . > [Um-17m]}, where from 7#j follows v; Fv;.

A connected component of a graph is a part of the graph in which each pair
of vertices belongs to a common path.

A 2-set of vertices of a graph determunes an edge if the vertices of that set
are adjacent.

The deletion of the edge [xy] from a graph G is the operation which trans-
forms the graph G into a graph G, which differs from G solely by the fact that
the vertices x and y in G are not adjacent.

We similarly define the deletion of an isolated vertex.

An M-3-point in a graph is a 3-point with exactly one edge, the opposite
vertex of which is non-isolated.

We adjoin two subgraphs to a graph G. The first one is G’, which remains
after the deletion of all isolated vertices from G, and the second is G”’, which has
no isolated vertices and the edges of which exactly complement the graph G’ up
to a complete graph. We give an example for the graphs G, G’ and G”:
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We shall prove the following theorem, which is the main result of this paper:

Theorem 1. A graph G is matroidic if and only if the graph G’ is comp-
lete or @ can be obtained from a complete graph by deleting all edges of some
disjoint complete proper subgraphs.

Note. We use the word “proper” in order to avoid the case when the set
of edges of the graph G’ and the family of bases of the corresponding matroid
are empty.

The proof of Theorem 1. is based on three lemmas.

Lemma 1. A graph G is matroidic if and only if the graph G’ contains
at least one edge and G’ does not contain an M-3-point.

Note. The designation “AT—3-point” is motivated by the fact that the appea-
rance of such a 3-point in a graph “cancels Matroidicity™.

Proof. If a graph G is matroidic, then the graph G’ contains at least one
edge, because the matroid, which corresponds to the graph G, contains at least
one 2-base.

Suppose that 3-point xyz of G’ is such that [xy] is the only edge in xyz and
the opposite vertex 2 is non-isolated (i.e., 2 is adjacent to another vertex ¢). The
sets {x,y} and {z, t} are bases of the above mentioned matroid. However, if the
element ¢ is replaced in {2, ¢}, either by x, or by v, then an adjacent pair of vertices
is not obtained. This means that the axiom of bases is not satisfied. A contradiction.

Conversely, if a graph G is not matroidic, then either G is edgeless or the
collection of non-ordered pairs of adjacent vertices of G does not satisfy the axiom
of bases.

In the second case there exist two sets {x,y} and {z,¢} in that collection
such that, for example, neither {x, 2}, nor {y, 2} are in the : same collection. Then
xyz is an M-3-point of the graph G. As all vertices of an M-3-point are non-iso-
lated, the M-3-point xyz occurs just in the graph G’.

Lemma 2. If a graph G’ is complete or can be obtained from a complete
graph by deleting all the edges of some disjoint complete proper subgraphs, then
G’ contains at least one edge and G’ does not contain a 3-point with exactly one
edge. v
_ Note. As there are no isolated vertices in G’, the 3-point is just an M-3-
-point.
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Proof. The proof of the first statement is straightforward, so we shall prove
just the second one.

If G is complete, then each 3-point of G’ has three edges.

If, after deleting all the edges of a subgraph K, two edges are left in a 3-
-point, then these two edges also have to be left in the graph G’ (otherwise the
complete graphs, the edges of which are deleted, would not be disjoint).

If, when deleting all edges of a subgraph K,, two edges are deleted from
a 3-point xyz (for example, [xy] and [yz]), then the third edge [xz] is also de-
leted (because the complete graph K, contains the edge, which joins the vertices
x and z). ’

We, conclude that 3-points of the graph G’ may have three, two or zero
edges, but by no means just one, which completes the proof.

It seems convenient to use the graph G”” when proving the converse of Lem-
ma 2. Therefore we state the following facts:

G’ is complete A G” is empty -

G’ can be obtained from a complete G’ is an union of disjoint complete
graph by deleting all the edges of <« graphs, which is different from the
some disjoint complete proper sub- complete graph over all the non-
graphs. -isolated vertices of G.

G’ is a graph which contains at least G” is a graph, which is different
one edge and which does not con- < from the complete graph over all
tain a 3-point with exactly one edge. non-isolated vertices of G, and which

does not contain a 3-point with
exactly two edges.

The converse of Lemma 2. can be restated as follows:

If G” is a graph, which is different from the complete graph over all non-
-isolated vertices of G, and which does not contain a 3-point with exactly two
edges, then either G’ is empty or G” is a union of disjoint complete graphs, which
is different from the complete graph over all non-isolated vertices of G.

If G” is empty, then there is nothing to prove.

If G” is non-empty, then there is at least one connected component of G”.

As connected components of the graph G” are disjoint graphs, which are
different from the complete graph over all non-isolated vertices of G, so it su-
ffices to prove the following lemma:

Lemma 3. If there is not a 3-point with exactly two edges in a graph G”,
then each connected component of G” is a complete graph.

Proof. Suppose that there exists a connected component in G”, such that
two vertices of that component, say xp nd y, are not adjacent. By the definition
of connected component, then there exists a path {[xox1], [x1x2], . . ., [¥a1¥]},
which joins xp and y.

Let us examine the sets {a;,y} (0<i<n—1)
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The set {xn-1, ¥} determines an edge, but {xo, y} does not. We immediately
obtain that there exists an i (1 <i<n—1), such that {x;, y} determines an edge,
but {x;-1,y} does not. The 3-point x;-1x;y has exactly two edges. A contradiction.

This completes the proof of Theorem 1.

Xn.l

Y

By the use of the Theorem 1, we shall give a formula which considerably
simplifies the evaluation of ma().

Let h (k,t) denote the number of parritions of a natural number 2 (=the
number of separations of the number & into a sum of natural addends, without
regard to order), such that all addends exceed the non-negative integer z.

The number of unrestricted partitions of k-is 4 (k, 0).
We denote h(k, 1) by g (k). Then we have: '

Theorem 2.
n P
ma ()= 2, D.g (k)
p=2 k=2

Proof. The graph obtained from Ks by deleting all the edges of disjoint
proper subgraphs K3 and Kz, for example, will be denoted by “K;~(K3+Kz)”.

As non-isomorphic matroids of rank 2 correspond exactly to the non-iso-
morphic matroidic graphs, the number of non-isomorphic matroidic graphs (cha-
racterized by Theorem 1.) with »n vertices is just mg (n).

Let p denote the number of non-isolated vertices in a matroidic graph with
n vertices. As a matroid of rank 2 has at least one 2-base, we have that p =2 (the
graphs of the form K;—K, are “forbidden” in Theorem 1. for the same reason).

It is easy to check that the number of non-isolated vertices cannot be re-
duced by deleting the edges of disjoint proper complete subgraphs from a comp-
lete graph. There are two consequences of this fact:

1. A matroidic graph with p non-isolated vertices is either K or is obtained
by deleting edges from K.

2. We cannot obtain isomorphic matroidic graphs by deleting edges from

different complete graphs (if the graphs of the form K,— K, were matroidic, then
this would not be true).

We establish two more important facts:
3. We do not delete edges from a graph Ki, because K; has no edges.
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4. The sum of numbers of vertices of the complete proper subgraphs, the
edges of which are deleted from K, cannot exceed p (because these subgraphs
are disjoint).

From these facts we conclude that all matroidic graphs with n vertices appear
in one of the following two forms:

a) Kp @Q<p<n)
8 8
b) Ky~ 2 Ky2<p<n, 2<is<p, 2, iy=k<p)
i= =1
We adjoin the following partitions to these classes of graphs for fixed p:
a) p=p
8
b) k= 22 <k <p, 2<<p)
=1

The order of addends in the sum is of no importance, because the order
of deleting edges of complete subgraphs is of no importance, too.

If we also fix &, then case b) gives g (k)—1 partitions of the natural number
k. The only excluded partition is p=p, for the condition #y<<p. This partition is,
however, provided by case a).

Hence the number of matroidic graphs with p non-isolated vertices and
with a fixed number of isolated vertices amounts to:

(a1

g (k)

k:

I
!

For p between 2 and n, we get the assertion of the theorem.

Theorem 2. requires a method for the evaluation of g (k). It seems ne-
cessary to evaluate also 4 (k, 1), as the following theorem suggests:

Theorem 3.
k-1

g (k=1 +mZ=2h (k—m, m—1)

Proof. The number 1 corresponds to the partition k=*k. We divide the
remaining partitions of the number & (with all addends exceeding 1) into classes
according to the minimal addend.

The number of the partitions of the form
E=m-+x1+...+xs

with the minimal number m, equals the number of partitions of the number &—m
subject to the condition that all addends exceed m—1, that is, & (k—m, m—1).

As m is between 2 and k—1, the theorem is proved.
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The function A(k, ) satisfies the following conditions:
(2, D=h(3, D=1
h(k, £)=0 for ¢t =k
We shall prove the following recursive relation for the same function:

Theorem 4.
hk,)=h(k, t—1)—h(k—t,t—1)

Proof. Let Ag: denote the set of the partitions, which are counted by
h (&, t). Then it holds:
Ax,t < Ar,t1

Let us observe the set B=Ag,t—1—Ag.1.
Each partition (of the number k) from B contains an addend ¢, i.e., is of
the form
E=t+xi+...Fxs
There is a one-to-one correspodence between the partitions of this form
and the partitions of the form

E—t=x1+...+xs
from Alc—t;t—l-
Hence we have the equality of the cardinalities:

| B |=|Ak-t, t-1]
that is: | Ak, e-1| —|Ax.tl=1Ar-t, 111
or: hk,t—1)—h(k, t)=h(k—t,t—1)

which proves the theorem.

We evaluate m2 (n) by the use of Theorem 2. and just proved auxilliary
theorems. For example, if # is between 2 and 25, then the corresponding values
of mg (n) are in order: 1, 3, 7, 13, 23, 37, 58, 87, 128, 183, 259, 359, 493, 668,
898, 1194, 1578, 2067, 2693, 3484, 4485, 5739, 7313, 9270.

Final Remarks

1. The idea for the characterization of the matroidic graphs by the use of
complete graphs appeared after the examination of the tabel with 208 non-iso-
morphic graphs, having not more than 6 vertices, in [2]. M-3-points were pri-
marily sought in these graphs. The obtained matroidic graphs were analysed
afterwards. ~

2. The supplements of the bases of a matroid (according to the carrier)
are the bases of another, dual, matroid. This gives the equality

Mp—x(n)=my (n)
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By the use of this equality and the values of my(n), mi(n) and me(n), we find
the number of all non-isomorphic matroids on an n-set — m (»), up to n=>35 inclu-
sive. For n between 0 and 5, the values of m (n) are in order

1, 2, 4, 8, 17, 38

3. The attempts, made in order to generalize the obtained results for the
case of matroids of higher ranks, have been unsuccessful so far. It seems that the
enumeration of matroids of higher ranks should be “attacked” starting from other
axioms for matroids.

4. We could enumerate non-isomorphic matroids directly, using solely
the axiom of bases. Such an investigation is, however, very difficult in the case
when the rank exceeds 1.

In order to find my(n), we are to check whether the axiom of bases is satis-

n
fied at 2(") collections of k-subsets of an n-set.

The confirmation of the axiom of bases for each single collection is rather
complicated. When this is accomplished, then an even more difficult problem
arises: how to choose just one representative from each class of mutually iso-
morphic collections that satisfy the axiom of bases.
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Rezime

U radu je dokazana sledeéa teorema:
Broj neizomorfnih matroida ranga 2, na skupu od n elemenata — 3z (n), nalazi se po for-

e
mm= 2 2 gk

=2 k=2

muli:

gde je sa g (k) oznaZen broj moguénosti za rastavljanje prirodnog broja % u zbir prirodnih brojeva
ne manjih od 2, pri femu smatramo istim one mogudénosti koje se razlikuju isklju&ivo u poretku
sabiraka,



