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A.A. Lok3in and V.E. Rok [1] gave a solution of the equation:
¢

1) 82u (2, ) — au(t,x)+§82u(t—‘r,x)G(1:)d1: 0

with the initial conditions:
@) 2 u(,x)=0, (2') 2w (0,x)=3.

This is the mathematical model of the oscillation of a bar examined for visco
elasticity. By experiment one knows that the function G (r) behaves in zero as
ct*1l, 0<a<1l, ¢>0. The mentioned authors supposed that:
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3) G (r)=2 T +)\2F o2 +R (@), A>0, 0<a<l,

and solved this equation in two special cases: I R (f)=0 and IT R (t)EC°° R (0)_
=R (0)=0, R’ (r) has ,sufficiently small values” on [0, T

In this paper we shall trear equation (1) in another way and we shall compare
our results with those of the mentioned authors. )

The main difficulty in solving equation (1) lies in the fact that the initial
problem (2) does not allow the classical solutions. For this reason we shall state
precisely what solution we are looking for. Following the physical meaning of
our problem, we suppose that a solution satisfies equation (1) for x40 and we
enlarge it to the point x=0 ir such a way that it is continuous in xeR for r=0. This
extension has to satisfy condition (2). For condition (2'") we have to give a some
more explanations: For every r>0 let u (¢, x) be a distribution defined by the
function #(z, x), xeR. Then

Bt (0, )= lim 2D —#0:%)
h—++0 h

where the limit is in the space of distributions <%’.
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Let us look for the equation in the field 7 of Mikusinski [2] which corres-
ponds to equation (1). Using the wellknown relation:

f=stf—snLf ©)— ...—sf @D O)—f#D (0) ]
we have:
{a?u (2, %)} =s2u (x)—su (0, x)—O0¢u (0, x) I
and
)

({08 1=, %) G () d v} =% (&, %)} G=Isu (x)—su (0, x)—8m (0, x) I G.
0

Here we used the conventional notations: f={f(¢)} for an element from field
M which corresponds to the numerical function f(£)eC0s00)> # (x)={u (¢,%)} for en
operator function which corresponds to the function u (s, x), s is the differential
operator and 7 is the unit element in field 7.

The equation in field _/ which corresponds to equation (1) is:

@ w (x)—2u(x) (I+G)=—s (I+G) u (0, x)—(I+G) o (0,x).
The characteristic equation for the homogeneous part of this equation is:
%) w?—s2 (I+G)=0

If a solution of this equation exists and if it is a logarithm, then the general
solution of the homogeneous part of equation (4) is:

(6) u# (x)=c1 exp (—xs\/I+ G)+ca exp (xs\/I+G), ca cee M.

I CASE, G=2\*+422 2%, 0<<a<C1, A>0 (/ is the integral operator in the
field A, I=s1), '

For the supposed form of G, \/ I4+G=4(I4+") and we have two solutjons
of the characteristic equation, which are logarithms.

PROPOSITION 1. For every local integrable function F defined over [0, co0)

and every (>0, the function:
¢

o) u (6, )=t (1, )+ | dhsg (—7, ) F(x) d v |
0

1s a solution to equation (1) for R () =0 in the region: t >0, x720 and it satisfies the
tnitial condition (2); the function i4g (2, x), B =0 is:

(e—1e1)P (1B, — (1 —o0), —Alxl (— )= 0=, > } %70

4 - 0 , 0|«
8 Y] 1, X)=—
(8 146 (2 %) 2 ta/F(B-l-l) , >0 }x=0
0 o, =0

where & is Wright's function [5].
Solution (8) belongs to C= for ¢ >0, x#0 and is not continuous in the pomt
(0, 0). It has no derivative in ¥ for x=0 (along the z-axis).
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Before we begin with the proof of proposition 1, we shall prove the following
two lemmas:

LEMMA 1. Wright's function:

_ (<o
¢ @—o —m)= ,gur(nﬂ)r(a o)’

0<o<l,

for B>o satisfies the relation:

o(B,—o,—2)— Tlﬁ) <Mz, z>0

Proof. — We shall use the following properties of function ¢:

L. (I)(ﬂ,—O',O):l/P (B)’
2. 16 (B,—0,—2) | <M, B>0, 0<o< 1, 220,

3. ;f— b (Br—0,2)=6 (B—0,—0,).
$-4

By the mean value theorem:

16 B:—0,—2)—1T' @) | <z|¢B—0,—0,—20(z) |, 0<6(x)<I
<Mz, =z=0.

Remark. If f—20 =0, then ¢ (B—o, —o, —=2) is a monotone decreasing fun-
ction, becausedizcb B—0, —06, —2)=—¢(B—206, —6, —2) and & (B—206, —o,
—2) is a nonregative function for z 0. In this case the constent M from the ine-
quality given in the lemma is: M=1T" (B—o).

LEMMA 2. There is no operator ce_fl such that ¢ exp (xs) exp (Axst-%), x>0,
0<a<<l, A>0 is defined by a numerical function which for every x>0 belongs to the
set £ (£ is the set of local integrable functions over [0, oo)) and does not equal identi-
cally zero.

Proof. — Let us suppose that

¢ exp (35) exp (s —{H (, 0}
thatis
c={H (x, )} exp(—xs) exp (—ixs1—%);

from this relation it follows that ¢ (¢) depends on x and ¢ (£)=0, 0 <t<x It is po-
sible only in the case ¢ (¢)=0.

Proof of proposition 1. Bearing in mind the general solutior (6) and lemma
(2) we see that we have to look for the solurions of equation (1) which are defined
by functions in the following expression:
u (x)—{cl exp (—xs) exp (—Axs1—%), x>0
cg exp (xs) exp (dxs'—%), x<0
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If we require even that x=0 is the line of symmetry for this solution, then
9 u(@)=cexp(—|x|s)exp(—Ar|x|s%), x40, ce M.

We know that

€xp (—}\ | x | Sl—a)____{;—l (13 (0,"‘(1 ——a),—}\ | x| ;—(l—a)), >0

» t<0
as well as
) u@=c {‘g‘_ Px1)1d 0, —(1—a),—A | x| (e— | x )~0-), ii II zll
=c{uo (£,x)}.

If we take c=—;— I, the cortesponding solution is

0

(10) 1w (2, x)=%{§ (1L,—Q—a), =Al el (=[x DET), > | x| .

> IS | x|

We shall show that function 1 (¢, x) can be extended in such a way that the condi-
tions of (2) are satisfied.

For this aim let us analyze the behaviour of this function when we approach
the z-axis, that is when x—0.
If t>0 and ¢ is fixed, then

lim # (0, x)=%, x—0, indepen-

: dent of £>=¢>0. It is easy to see
that lim #1 (0, x)=0, x—0. Choo-
sing a suitable approach to po-
int (0, 0), we can obtain for lim
w (¢ %), (& x)—(0, 0) all the

(@t X)= X)) = values which take the function
UhHH=0 N toe wG0=0 &(l, —(1—a), —z), 2=0: Letr
! ! be any positive number, then for
* t=|x]+(r |x)YA lim g, x)=

=—%—<{> (1, —(1—e),—Ajr), x—0

—e te %
Fig. 1
(t—0 100).
Beering in mind this analysis of the behaviour of funetion ; (z, x), we extend

it one the ¢-axis in such a way that # (, 0)=%,t>0 and w, (0, 0)=0. The function

so obtained #; (¢, x) is continuous over the half plane ¢ >0 from which we took point
(0, 0) and is bounded over the whole half plane ¢ >0, because the furction ¢ (1,—
—(l—«), —2) is bounded for all z=0 too. ’

Now we shall show that #; (z, x) satisfies the initial conditions (2). Condition
(2') is satisfied by the definition of this function. There remains only condition (2")
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With parameter ¢ function #; (2, x) defines a family of distributions:

o0

a1 nE@dr, E@eD.

To prove the existence of the limit in relation (2'') we use

THEOREM A [3]. If for sequence {T;} of distributions, T;(p) has a limit

T (¢) for every @€, then T is a distribution and sequence {T;} converges strongly
to distribution T.

This theorem is also valuable for a filter which has a base bounded or countable.

At the beginning of this paper we gave an explanation of what we mean by
9 (0, x). Using theorem A and the fact that z; (0, x)=0 for évery xeR, we have to
realize the followmg limitto find 9:z1 (0, x):

lim [ 1 (%) 9 () de=
40 B _op
| - -
=lim —

rai0 25 ) O (L —(1—0), =2 x|(A—|x[)~0=9) @ (x) dx

S N '
Fim= {60, —(—w, =2 2 (-1 () d.
J(

Introducing a new variable y, yA=x, we have

1
T {4 (1, —(1—ad, —2ghe (1) 0=) ¢ (51) .
0 |

We shall show that this:limit gives ¢ (0) for every e that is d;i1 (0, x)=38.
1

We start from the relation Sq: (0) dy=¢ (0) to estimate the difference:
| | ' L

1
{61, (1) —2h (1 —3)-0-) o (yh) dv— SqJ(O)dv Scb(l —
0

1 .
— (1—a),—2yhe (1—3)-4-9) | ¢ (H)— @ (O) | dy+{1 & (1, —(1 —a)s—2ok"
0

(1=y)~@=)—11]1¢ (0) | dy.
From the mequahty

](p(vh)—cp(O)\<yh|cp (@yh)l <hM, 0<y<l, 0<O<1, >0
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and the boundness of function ¢ (1, —(1—a), —2), 20, it follows thar the first
integral tends to zero with A4—-+0. For the second integral we use lemma 1:

1
14 (1, —(1—a), =3k (1—a)-0-=)—11dy <>Mhe —"—— ay
0 (l_y)l—a

and it also converges to zero with 2—-4-0.

. , o 1
Let us take now for operator ¢, in the symmetric solution (9°), that c=311+".

>0, then the solution of equation (1) for x=%0 is

L ((e— =) (148, —(1—o), =2 | x| (¢— | x])-0-0), > | x|
Uui+3 (t, x)=— -
210 : s 1< %]
This function can be continuously extended over the z-axis (x=0). For >0 and
fixed we have:
tB

Eﬂ(t_ Jx| P (4B, —(1—a), =2 | x| (t— | x l)_(l—a))=m

and

lim  (— x| Po(1+B, —(1—a), —r | x| (¢— | x| )~1~)=0
¢, 2)—(0,0)
because ¢ (1, —(1—a), —2), 20 is a bounded function.

For this reason we extend function wu1+p (¢, x) over the ¢-axis in such a way that

- 1 . .- TN cir  om)
w1+p (2, 0)=7 T (B+1). This extension #14p (¢, x) satisfies condition (2°).

Let F be a local integrable function over [0, o). Then the function:
1

U (¢, %)=\inss (1=, %) F (3) dy
0

is also a continuous function over the half plane >0 and U (0, x)=0, xeR. So
U (¢, x) is a solution of equation (1) too, obtained for ¢=/1+8F, which satisfies the
initial condition (2'). We have only to show that 8, U (0, x)=0, xeR, where the partial
derivative is in the sense we explained before:

lim —1 J- U (h, x) ¢ (x) dx=
A>+0 A

h h—z

= lim j (=3P $ (148, —(1—e) —Xx(h—2—3) ) F() o () dyd;
o

_1_
Y
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after a change of variable x=2k we have:
1 h(1-2)

—1im | | ((1-2)-31F 6 (148, —(1-a), —Aah [R(1-2)=y]"0-) F(3) p (ah) dydz
0y @

h
<clim {F@)dy=o0.
h>+0 §

We have brought the proof of proposition 1. to an end.

Remark. Function #14p(¢,x); B>=0 has no partial derivative in x for x=0;
there exist only left and right partial derivatives in this point. Let us find them.
For a fixed t>0 we can take % to be ,,small enough” so that |z| <t. In that case:

1. -
7 [u1+p (@ h)_u1+ﬂ(t’ 0]=

=21—h[(t—|hl)ﬁcl>(1+(3, —(1—«), —l]h|(t_|hl)‘(1—a))_L]

re+n
—1\# AN )
B G L) P o LV - S
2r TE+1) I («+p) re+mn
for>0is: . ot
B 1 A gt
= += +0(h), B>0,
2 T'®) 2 I'(x+B) o, 8
and for =0
Al 1
= 0 (h).
2h T () o)
Now it is easy to see that:
Bafivea(ts £0)=F— FA— g
e @ 2T ed®
za—l
aa;A 3 0 - .
t (¢, £0)=FA T (@)

12, %) dug (%)
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II CASE, G algebraic operator

Let us suppose that G is of the form:

’ o © fa—1 ‘
(11) G=Z atl“'[_—_:{z ai d ], aio>0, 0<1'od<1, 1'021.

=i, 1=, T (i)

The characteristic equation (5) has two solutions, because the set of elgebraic ope-
rators is algebraically closed. We suppose that:

w=s ), dilé=sw, L=I*
=0

is one of the solutions. The coefficient dy can be 4 1; we decide upon dy=1. Then
we have:

wi—(I+G)=(w1—I)2+2 (wn—I)—-G=0
whence

w1—1=~;— [G—(ur—1D)?].

From this relation we obtain successively:

d1——1 a
2
| 2
it
(12) 2 2)
1 n—1
dp=—[an— Z dn—jdj]: n>=2
2 =

A solution of the characteristic equation is:

k 0
(13) w= ) di 14 D dylisl
i=0 1=k+1
where % is chosen in such a way that & «—1<0, and (2-+1) «—1>0. The second
solution of the characteristic equation can be found starting with do=—1 and it
differs from the first one only by the sign. Both solutions of the characteristic equ-

ation are logarithms [2] and a general solution of equation (1) exists for this value
of G:

(14) u (x)=c1 exp (—xw)+c2 exp (xw), x#0, ce .
PROPOSITION 2. Eguation (1) with G (t) given by relation (11) has a solution
which is a numerical function having a line of symmetry x=0 and satisfying condition

(2'); this solution satisfies condition (2'') too if we have 11— 1>0 where 11 is the index
of coefficient dy such that 11>, di=0 for ip<<i<<d1, dy,#0.
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To prove this proposition we use the following lemma:
LEMMA 3. Let a1>0 and 1—ka>0, then the operator:
exp (— | x|ast™@— ... — | x| cpstHa)
is defined by a continuous function for t =0 and x540.
The proof of this lemma is the direct consequence of a theoretn proved in [4}:

THEOREM B. Ler us suppose:

1. Functions u (t) and v (t) have their Laplace-transforms U (2) and V (2)
respectively, absolute convergent for Re z >x1, and V (2) dszers of zero tn the half plane
Re z>x13 .

2. exp{ (z) x] < : >0, x>0, Rez>x>x1;
V(Z) lzl+c| ) o
3. exp[——[M x] <M, x>0, Rez>=x:>x1.
V(=) : v

Then there exists one and onlv one solution of the equation:

Vv (D)+=y ()=0, x>0,
4

in _{ which satisfies the tritial condition v (0)=1. This solution is defined by the conti-
nous function in the domain t =0, x>0:

T tioo
1 _U®@
i ] j exp (¢2) exp{ 72 x] dz.

Without any difficulty we can check that in case of lemma 3, the conditions
of theorem B are satisfied; we have to take only

K
u=del and wv=[2
i=t,

Proof of proposition 2. — From relation (12), it follows that di=0 for 1<5p

and d¢,=%ai,,>0 ; from the general solution it follows:

. K - )
(1s) u (x)=i lexp (—| x |de‘“'1) exp(— | x| ;d.;l‘"“l)-

is a solution of equatlon (1) for x50 which has the line of symmetry x=0. We shall
show that it is a continuous function for >0 and x=40. .
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The first exponential operator in relation (15) is defined by a function which
is continuous in the domain r >0, x40 (it follows from lemma 3):

l Z,t+ K
- —
Py S exp (tz) exp (f | x ] 4_21: dyz1™10) d2

Zg=co

The second exponential operator can be written in the form:

exp(— [x]| i dilts D=(I+18 {F (t, )},

t=K+1

where B>0 and F (s, x) is the local integrable function in >0 for every xeR,
F (¢, 0)=0, t>0. Solution (15) can be written now:

(16) u(x)= ——lexp (— x| Zd¢ ul‘1)-f-— I8 F(x)exp(— I x| Z dylte™1)
=) =0

which represents a solution of equation (1) in the form of a continuous numerical
function over the domain ¢ >0, x40, syrrunemc to the r-axis (x—-O) and which
satisfies condition (2').

Let us suppose that the supplement condition, f1ja—1>0, of theorem 2 also
be satisfied. Solution (16) can be written:

an - u (x)=-;— exp (— | x| s) exp (— | x | Ast~4) [I+114RF (%)),

where B=(f12—1)/2 and l:—;— a,. That is the same analytical expression as we had

in I case, relation (7).
Thus we have proved our proposition 2.

COMPARISON WITH THE RESULT OF A.A. LOKSIN AND V.E. ROK

In the first case, R (t) =0, the results of the mentioned authors can be obtained
when we take ¢ % (I+A1*R ) in our solution given by relation (9) or (9'). This parti-

cular solution has a specral property Wthh is caled by the Russian authors
»ABTOMOMIeIIbHbie pellreHHa”.

In the second case, R(t)e C®, R(0)=R’' (0)=0 and R’ (t) ,small enough
valued” over [0, T] they give the solution valid for ¢e€ [0, T), in the form of
a series the members which are given by a recurrent formula. Our supposition
is that G (¢) as well R (¢) defines an algebraice operator given by telation (11).
We shall show that the supposition of the mentioned authors mekes pos31ble the
application of theorem 2. .
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For a;=2A and ax=»22? relations (12), which give the coefficients d; are:
1 1
di=2, da=0, da=? as, d4=—2— (aa—2nag), . ..

Functions R (¢) and R’ (z) are:

00 tiu—l : 00 tiu—z
R(@)=> as — and R ()= a;(fa—1) —
2% T & T (i)
and condition R (0)=R’ (0)=0 says: if ag=...=ap_1=0 and ax7#0, k=3, then
ka—2>0. We see from relation (12) that in this case do=. . .=dr-1=0 and dz740,

1 . . . ..
dk='2— ax. The solution of the characteristic equation is:

w=s—|—M“'1+% apl¥e14, .

and kx—1>kx—2>0; it follows that the conditions of proposition 2 aie satis-
fied.
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JEDNACINA OSCILACIJA ZILAVO-ELASTICNOG 3TAPA

Bogoljub Stankovit

REZIME

Matemati¢ki model oscilacija Stapa koji s¢ ispituje na Zilavu elastinost metodom Sapiroa
(Chapiro) dat je sledeéom jednadinom:

; t
a o2u (¢, x)— 828 1, x)+§a§ % (t—7, %) G ()dv=0
0
sa podetnim uslovom:
) u (0, x)=0, e (0, x)=3, xeR.

Eksperimenti pokazuju da se funkcija G (f) ponala u nuli kao ct*-1, c$0, 0<a<l.

Polazeéi od fizitkog smisla modela, raspravljana su dva sludaja: I. Kada je G (¢) dato rela-
cijom (3) za R (t)=0 i II. Kada je G (¢) algebarska funkcija data relacijom (11). U prvom slufaju
pokazano je da su relacijama (7) i (8) data re¥enja diferencijalnog zadatka (1), (2), a u drugom slu-
&aju dati su uslovi pod kojima postoji refenje navedenog zadatka i kakvog oblika su reenja.

Na kraju uporedeni su dobiveni rezultati sa rezultatima rada A. A. Lo¥kina i V. E. Roka
(1]



