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1, Introduction

In this paper we shall prove some fixed point theorems in probabilistic metric
spaces, using Bocsan’s fixed point theorem from [3] and some of the results from [7].

In [27] A.N. Sherstnev introduced the notion of random normed space
which is a special Menger probabilistic metric space. Some fixed point theorems in
probabilistic metric and random normed spaces are proved in [6], [16], [17], [18].

A probabilistic metric space (S, F) is formed by a nonempty set S together
with a mapping & which assigns to each (x, y)eS x § a distribution function F;,y
such that the following conditions are satisfied:

(F1) Fzy (£)=1 for all :=0 if and only if x=y.
(F2) For every (x,)ES XS, Fzy (0)=0.

(F3) For every (x.y)€SX S, Fuy=Fy, .

(F4) If Fz,y(r)=1 and Fy,,(s)=1 then Fy,; (r—}—s)=l

By a Menger space (S, ¥, t), we mean a probabxhsnc metric space (S ?)
with (F4) replaced by the condition:

(F4) For every (x, y, 2)eS x Sx 8§ and every r, s =0:
Fz,2 (r+s)=t (Fz,y(r), Fy,z(s)
where ¢ is a T-norm [20].

The (e, l)-'ropology is introduced by the family {U., (&, M}ves, e>0, 2e(0,1)
where:

Uy (e, N={u | Fyu,v (&)>1—2}
and this topology is metrisable if sup ¢ (x, x)=1.
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A random normed space (S, F, t) is a triplet, where § is a linear sprce over
K, F:S5—A+(A+ is the set of all the distribution functions F such that F(0)=0).
and ¢ is a T-norm such that the following conditions are satisfied:

(R1) Fp (0)=0, for all peS.
(R2) FP=H¢P=OEX, WhereH(u)= {l u>0

0 u<0
(R3) IfAisanon-zero scalar then:

Fip (u)=F,,[I—:—l], for all peS, ueR.

(R4) Fpiq (u+v) =t (Fp (), Fq(v)), for all p, ¢eS, u=>0,0=0.
(R5) t(u, v) >max {u-+v—1, 0}, for all u, ve[0, 1].

A random normed space (S, F,t) is a Menger space under the mapping
& defined by: .

F (9, 9)=Fp-o for all p, qu.

If T-norm ¢ is continuous then § is a Hausdorff topological vector space under the
(e, M)-topology.

Let A be the set of all the dlstrlbutlon function F and F>G (F, GeA) iff
F (x) =G (%), for evety xcR. Furthermore, F>G iff F>=@G and F#G. If FeA then:

Sr={G| GeA, G=F}.
DEFINITION 1. [3] The topology in A for which is the family
{Sr | FeA}

the subbase of closed subsets is t-topology.

Bocsan and Constantin [8] introduced the notion of probabilistic bounded
subset in a probabilistic metric space.

DEFINITION 2. [5] Ler (S, F) be a pfobabilz';s'tic metric space and A< S.
The function D4 on R defined by:

Dy (u)—sup inf Fp,q (@)

v<u_p,ge4
is called the probabilistic diameter of A and A ts probabilistic bounded if:
sup D4 (u)=1_.

By % (S) we shall denote the set of all probabilistic bounded subsets of a
probabilistic metric space.

DEFINITION 3. [7] A mapping v: T (S)>A s a random measure of
noncompactness if the following smplication holds:

v (A)=H<>A is precompact in the (g, A)-topology.
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Kuratowski’s function o4 for a probabilistic bounded subset A< S, defined by:
@4 (u)=sup {e | >0, there exists a finite cover -4 of 4
such that Dg (u) >, for all Se4}
is an example of the random measure of noncompactness.

DEFINITION 4. Let M:S—S be continuous and v be a random measure
of noncompactness. The mapping M is v probabilistic densifying if and onlv if:

For every AeBB(S), va<H=Ypmu)>Ya-

In the next theorem ®:S8X S—A is a T-continuous mapping. It is easy to see, si-
milarly as in [3], that the following Theorem is valid..

THEOREM 1. Let (S, F, t) be.a complete Menger space with a Tonorm ¢
such that sup t (a, a)=1 and M: S— S be a y-probabilistic densifying where the random

a<l
measure of noncompactness satisfies the following condition:

Yau{py=Ya>» for every AT (S), peS.
Furthermore suppose that the following conditions are satisfied:
1. There exists pocS such that sup Gy, (x)=1, where:
ZER

G.‘Do (x)=lnf {F M”Pn_l’o(x) l neN}.
2. For every p, qeS, p7~q 1s:
© (Mp, Mq)>® (p, g)-

Then there exists one and only one fixed point of M.

Let X be a separable Banach space and V be the ser of all random variables
on the complete probability measure space (Q,% , P) with values in X. So eV
if and only if £:Q—->X and:

{o| 0eQ, E(w)eB}eX
for every Borel’s subset B of X. For every EeV let:
Fe (x)=P{o | 0eQ, [& ()] <x}, for every xeR.

The mapping F:£—F; () is a random seminorm on V if T-norm ¢ is tm and the
(e, M)-topology on V induced by F is the convergence in probability [4). =

Let 2 be the set of all classes of random variables from V which are P equal
almost everywhere. Then the triplet (24, F, tm) is a random normed space where
the mapping % :9!—A is defined by:

F:E—Fg, for every EeZl
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2. Fixed point theorems

Applying Theorem 1 we shall prove a fixed point theorem for mapping
M: Q% i.e. the existence of an element £e such that ME=E,

In the next Theorem we shall suppose that y is a random measure of noncom-
pactness such that yau(py =74 for every A% (Z)) and every peZl.

THEOREM 2. Let M: U~ be a v probabilistic densifying mapping such
that the following conditions are satisfied:

1. There exists C=>O so that for every Ue:
Plo|weQ, || (MU)(w)|<C}=L1
2. a) For every U, Ve?l:
Plo | weQ, [[(MU) (0)—(MV) ()] <|U ()= V (o)]}=1.
b) For every U, Ve there exists ¢y, v=>0 so that.
Plo | 0eQ, [[(MU) (0)—MV) (0)l|<ev,v <|IU (0)—V (w)[}>0.
Then there exists one and only one fixed point of the mapping M.

Proof: We shall prove that all the conditions of Theorem 1 are satisfied,
where (S, F, ) is random normed space (2, &, tm) and the mapping ©: 2 x 24— A
is defined by:

O (U, V)=Fy_y, for every U, Vel

The mapping P is T continuous. Let us prove this fact. If Ge A and S¢={F | Fe
€A, F>G} is a closed subset in A then O-1(Se)={(U, V)|(U, V)e UxN
and Fy_y>G}. Since Sx S is metrisable, it is sufficient to prove that:

{(Uns Vi)lnens @1 (Se) and lim (Un, Vau)=(U, V)=>(U,V) € @1 (S¢).
71400
From (Un, Va) e @1 (Sq), it follows that Fy,-y,>G, and since:

lim inf FU,,—V,,=FU——V

neN
we have Fy_y>G which implies that (U, V) e ®-1 (S¢). Furthermore:
M QO (MU, MV)>® (U, V), for every UAV (U, Ve

which means that Fayp-yv =Fy_y but Fyy-my7Fy-v. Let us prove (1). In the
subsequent text we shall use the following notations: If U, Ve % and ¢>0 then
By,ve={0|0wecQ, |U()-V () |<e} and Cy,v={e | ©eQ]MU)(u)—
—(MV) ()| < U ()| —V(w)}. It is obvious that:

"By,v,enCu, v,eSBuu, mv,c for every U, Ve
and so from 2. a, it follows that:

Fy,v (6)=P (Bu,v, e) <P (Buu,uv, &)=Fuv-mv (o).
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Let us show that:
2 Fy-v (sv,v)<Fpmu-mv (ev, v).
For every U, Ve %l we shall denote by Ay, v the set:
(0] ©eQ, | (MU) (0)—(MV) ()| <ev,y <IU (@)= V (@)I}.
We have that: '

Av,v=Buy.cy,y " Buv, mvzy, v
and:

Buv, uv, ey, y=(Bv.v,eu, y O Buu, mv, ey, 1)V (Bu. v, eu, y O Buu, mv, ey, v)
and so:
P (Bmu,mv, ey, p)=P (Bu,v, sy, v O Buv, mv, ey, v)+P (Au, v).
Since from 2. b), it follows that P(Ay,v)>0, we conclude that:

P (Byu,mv, ey, v)>P (Bu,v,ey, vy O Buu, mv. ey, v).
Furthermore:
3) Bu,v,ey,y=(Buv,v.cu, v Cu,7v)V (Bu,v,cv, v 0 Cu,v)
and (3) implies that:
©) By,v,cu, vO Buu,mv, ey, y=Buv,v,ev, v O Buv, mv, ey, y 0 Cu,v) Y
V(Bu,v,cu, vy O Buu, My, ey O Cu.v).

Since Bu,v,cy,y Cv,v S Byu,mv,cy, (4) implies that:
©) P(Buy,cy, v Buu,mv,e v, v)=P (Bu,v,cy,v)
because P (Cy,v)=1 and P (Cy,v)=0. Frdm (5) we have that:

P (Bmu, mv,¢y,1)>P(Bu,v,eu,v)
and so (2) is satisfied, which implies (1).

It remains to be proved that condition 1 of Theorem 1 is satisfied. Indeed we
have that for every Ue <l

sup Gy (x)=1
x

where:
Gy (x)=inf {Famy_uv(x) | ne N}.

Since Fy—y (x)=P{o| 0 Q,|U (0)—V (w)|<x} we shall prove that:
(6) sup inf P{o]weQ| (M) (@)—U (0)|<d=1

>0 ne

for everty Ue <L
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In order to prove (6) we shall show that fo1 every A € (0, 1) there exists ¢ (A)>0
so that:

inf P{o| e Q,| (M) (0)—U (o)<t (A)}>1—A.
neN

LetUe2and 3 (") for M <<Asuchthzt Fy (3 (A))>1—N".
Furthermore let: D={o | € Q,|U (o)|<d (A"}
An={0 | © € QM) (@)~ U (@] <C+3 (W)}, neN
" Ba={o0 | w e Q,|| (M*U) (0)]| <C}.
Since BpnnD<c A, and P(Bap)=I, it follows that:

/

P(Ap)>1—%, for every ne N
and so:

inf P(Ap)=1—=N>1-2

neN
which implies (6).

We can apply Theorem 2 in order to obtain a fixed point theorem for the
random normed operator 7:Qx X-—+X, where X is a separable Banach space.
The mapping T:Qx X—X is a random operator if and only if for every xe X
the mapping &—>7T (0, x¥) is a random variable. Here we shall suppose that
(Q, K, P) is an atomic probability measure space i. e, Q=u Q, , where Q, are
different atoms, neN

Then every random variable £:Q X is constant P a.e. on every atom.

In [7] it is proved that a continuous random operator 7:Q X X-—>X has a
fixed point § € ¢ if and only if £ is the fixed point of the operator T: > de-

fined by:
(TE) (2)=T (w, £ (), e
A random operator T:Q X X—X is a random nonexpansive operator if and only if:
P{o|weQ, T(w,):X>X is a nonexpansive mapping}=1
and a random densifying if and only if:
Plo|weQ, T(w,):X—>Xis « densifying}=1.

In [7] is defined [on a random normed space (2, F, tm)] the random measure
of noncompactness d4(-) for 4 e () in the following way:

G4 (x)=P{0|0eQ, a(d(w)<x}, for every xe R where 4 (o)={§ (w)]
| § € 4}.
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In [7] it is proved that the mapping T:A>N is #-densifying if and only if the
random operator T:Q x X—X is a-densifying. From Theorem 2 we obtain the
following Corollary.

‘COROLLARY. Ler T:QXX—X be a random nonexpansive o~densifying
operator such that there exists a bounded subset M < X such that:

Plo]|lweQ, T(o, X)eM}=1.
If for each two measurable mappings €1, E2: Q—X there exists € (§1, £2)>0 such that:
P{w|weQ|T (0, & (w)—T (o &2 (0)<e (1, &) <|&1 () —E2 ()]} >0

then there exists one and only one £ e Y such that:
T (0, E(0))=E(w) P ae.

3. Continuous dependance of fixed points on the parameter

We shall apply Theorem 1 on a continuous dependance of fixed points on
the parameter.

In the following Theorem we shall suppose that y is a random measure
of noncompactness defined on I (S), where (S, 7, ¢) is a random normed space,
such that for every A4, Be T (S):

(7) ACB=>'YA ZYB

It is known th:t the Kuratowski measure of noncompactness has this pro-
peity.

As in [18] we shall prove the following Theorem.

THEOREM 3. Let (S,F,1) be a complete random normed space with T-
~norm t such that t is continuots, let X be a probabilistic bounded and closed subset
of S, A be a metrisable topological space and M:X X A—X be a continuous mapping
and ©:XxX—>A be a v continuous mapping such that the following conditions are
satisfied:

(a) For every x,y € X, x5~y and every Ae A:

o (M (% A), My, A))>(D (2 y)

(b) For every X'= X such that vx'<<H and every A e A there exzsts a neigh-
bourhood V (X', \) of e A such that:

L'ecV,L' is compact=>yYy (x, L) >YX -
Then there exists one and only .one continuous mapping f: A—>X such that:

FM=MI[f()2] for every re 4.

Proof: From Theorem 1 it follows that there exists, for every Ae A one
and only one element f(A) € X such that:

FR=M{F @) N
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That the mapping f is continuous we can prove, as in [18], since
Y{M (O Am), | RENY ZYM(X" L)
where X' and L' are defined by:
X'={f()|neN}, L'={|n=m}cAnV (X,
where 1{_11;1:0 A=A ({M}rev=X). The rest of the proof is as in [18].

From Theorem 3 we obtain the following Corollary.

COROLLARY 2. Let X' be a probabilistic bounded and closed subser of
the random normed space (28, F, tm), A be a metrisable topological space, v be a random
measure of noncompactness on T () such that (7) holds, M: X' x A—+ X' be a continuous
mapping such that the following conditions are satisfied:

(A) For every U, VeX and every AeA:

PloleeQIMWU,N (@—MW,N) ()| <|U(e)-V (o)}=1.
(B) For every U, Ve X’ there exists cy,y=>0 so that:
Plo|weQ|IMU,N) (0)—MV, ) (o)l <evw <[ U (0)—V (w)[}>0.

(C) For X=X, condition (b) of Theorem 3 is satisfied. Then there exists one
and only one continuous mapping f:A—X' so thar:

TR (@=M{F®),N ((‘))’v for every Ae AP ae.

Let X be a separable Banach space, CB (X) the family of all nonempty,
closed and bounded subsets of X and E:w—E(w) be a mapping from Q into
CB (X). The mapping E is measurable if and only if for every closed subset
CcX:

{o]weQ, E(0)NnCH£0}eK.

If (Q, %, P) is an aromic probability measure space, then E is constant
a.s. on every atom. In the subsequent text we shall suppose that E is constant
on every atom.

The mapping U:Q—X is a measurable selector of the mapping E if and only
if U(w)eE (u), for every o € Q.

Using Corollary 2 we can prove the following Corollary in which A is a metri
sable topological space, (L2, K, P) is an atomic probability measure space and
E:w—+E (w) is a measurable mapping from Q into CB(X), ¢ is the set of all measu-
rable selectors with convergence in probability.

COROLLARY 3. Let for every e A, T (A ,") be a random operator
on X such that for every Ae A and every ©wef, T o, E(0))SE(v) and
Plo|weQ,(M\x)1—>T (A w,x) is continuous on AXE (w)}=1. Suppose that
the following . conditions are satisfied:

(I) For every Le A:

PlolweQ T, o,x1)—T O %)l <|x1—xaf, for every x1,x2€E (w)}=1.
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(I1) For each rwo measurable selectors U, V of E there exists ey,y>0 so that
for every AeA:

Plo| 0e QTG 0 U@)—T 0 o, V(o) <eow <| U (w)—P (w)])}>0.

(IIT) For every « € L2 the following condition is satisfied: For everv BS E (»)
and every A€ A there exists a neighbourhood V (A) of A€ A so that for
every compact L'c V:a (T (L', o, B)) <a(B) with a strict inequality
if o (B)>0.

Then there exists one and only one continuous mapping f:A—G such that:
FMN(@=T®% o f(M(w) P ae

Proof: We shall show that all the conditions of Corollary 2 are satisfied
where:

X=¢ and for every Ueé
MU, N (0)=T (3, 0, U(w)), for every wef, AeA.
The random measure of noncompactness «, defined by:
g ()=P{o|weQ, «(4(w)<x} for every xeR(4AeBW )
is such that:
AcB(A4,BeB (W)=>ap<ay.

Indeed from A< B we have that:

A(w)s B(w), for every well.

Using the property of Kuratowski’s measure of noncompactness «, we conclude
that « (4 (0)) <a (B (»)) and so:

{olweQ, aBo)<sic{o|weQ, « (4 (e)<x}

which implies that:
up (x) <aq (x), for every xe R,

In [7] it is proved that the set & is closed in the (g, A)-topology and probabilistic
ally bounded. From (I) and (II), it follows (A) and (B) and it remains to be proved
that condition (C) of Corollary 2 is satisfied. Let X’ € ¢ be such that ax-<<H. Since
X' < ¢, for every o e Q we have that X'(w)< E (w) and there exists ng € N such
that X' (w) is not procompact for every ® € s, Furthermore, P (£3,)>0 and
for every A € A there exists a neighbourhood ¥ (3) of A such that for every L'c ¥V (A)
where L’ is compact:

(8 @ (T (L' 0, X' (o)) < (X' (w)), for every weQ.

From (8) it follows that:
eMX, L) 20X

and it remains to be proved that we have strict inequality. Suppose, or: tﬁe con‘trary;
that:

(9) . apMx:, L)Y=&x".
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From (9) we have that:
a (T (L', 0, X' (0))=a (X' (w)) P ae.

But, for every « € Qn, we have:
o (X (0)>0

and since P (Qs)>0, we obtain a contradiction. Hence, all the conditions of
Corollary 2 are satisfied.
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NEKE PRIMENE TEOREME BOCSANA O NEPOKRETNO] TACKI
Olga Had#ié , Mila Stojakovié

REZIME

U ovom radu su date neke primene uop$tenja teoreme Boscana iz rada [3] u prostoru
(L, F, tm), gde je & skup klasa sludajnih promenljivih sa vrednostima u separabilnom Banahovom
prostoru.



