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Introduction

In paper [4], Yeh and Bang developed an algebra of fuzzy relations, the
range of a membership function being [0, 1]. They gave a characterization of
the fuzzy similarity relation.

This paper considers fuzzy relations on set 4 as fuzzy sets on 4 X A4,
characterized by a membership function m: 4 X A—>B, where B is a complete
Boolean algebra.

Section Il gives a characterization theorem of fuzzy equivalence relations,
together with some notions and properties of these relations.

In section III fuzzy homomorphism between two algebras is defined and
a characterization theorem of the fuzzy congruence relation is proved.

I. Preliminaries

1. A FUZZY BINARY RELATION R from a set X to a set Y is a fuzzy,
set on XX Y, with a membership function mg, defined by

mp: X X Y>B,

where B represents a complete Boolean algebra (B. A, V,%0, ). If X=Y,
then R is a fuzzy (binary) relation on X.

2. If R is a fuzzy relation from X to Y, then a FUZZY INVERSE of R,
denoted by R-1, is a fuzzy relation from ¥ to X characterized by

ma—1(y, %) L mg (x,5), xeX, yeV.
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3. If R and 8 are two fuzzy relations from X to Y and from Y to Z respectively,
then R o S denotes a COMPOSITION of R and S. This is a fuzzy relation from
X to Z, such that

mros (%, 2) d%je\gmn () Ams(,2) xeX, zeZ

4. Let R be a fuzzy relation on X.

a) R is REFLEXIVE iff

for all x mg (x, x)=1;

b) R is SYMMETRIC iff

for all x,yeX mg (%, y)=mgr (¥, x);

c¢) R is TRANSITIVE iff

forallx, yeX mr (x,¥)=V(mgr (x, 2) Amr (2,))
(which is equivalent to Ro R;eﬁ).

A reflexive, symmetric and transitive fuzzy relation on a set X is a FUZZY
EQUIVALENCE RELATION on X.

5. Let A={A4, ) be an algebra, B a complete Boolean algebra (as in 1.),
and K a fuzzy equivalence relation on 4. K is called a FUZZY CONGRUENCE
RELATION on 4, iff it satisfies a substitution property:

(SP) If f denotes an n-ary operation on A and if
mg (61, b1)=p1, . . ., mg (@n, bu)=pn, a1, b€ 4, p1€B
1<<i<n, then

me (f(ay, ...5an), f(br,..., ba)) € [‘/zlpc]*; (defined in [3]).

II. Fuzzy equivalence relations

DEFINITION 1. Let R be a fuzzy relation from set A to set Ai.
a) For a given a€ A, R (a) is a fuzzy set on A, defined by
mr (x)=mr (a, x), x €A1}
b) AR & (R(a); aed);
c¢) For a given ae 4

Le@w £ {mra (x); xe€ ).

* ([p)) is a pincipal filter generated by peB)
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LEMMA 1. Let F be a filter in B and R a fuzzy relation on set A. Ry de-
notes a binary relation on A, defined by

(x:y)ERF iff mr(x,y)eF, (xyeA).

a) If R is a fuzzy equivalence relation, then Rp is an equivalence relation;

b) The mapping h:R—>Rp (ReRp(A)) is a homomorphism from Rg(A4)
tnto R (A)*.

Proof: a) Ry is an equivalence relation:
For all a€ A, (a, a) € Rp, since mg (a a)=1 (reflexivity);
Since for all @, b€ A mg (a, b)=mr (b, a), symmetry follows immediately;

R is the transitive fuzzy relation and mg (a, b)=mg (a, x) Amr (x, b),
and since F is a filter, from mg (a, x) € F and mg (x, b) € F, it follows that mg (a,b) € F.
By the definition of Rp, then, it is a transitive relation.

b) If for R, S € Rp(A4), R<S, then for all x,y € A4 mg (x, y)<ms (%, 3),
and since F is a filter, from mg (x, y) € F, it follows that ms (x,y) € F. Hence
Rr<Sp.

Thus / is homomorphism, which was to be proved.

LEMMA 2. Let R be a fuzzy equivalence relation on A, and F any filter
in B.
If Rayp & {b; mr (a,b) € F} (,block”), and ARF def {R(a)r; a € 4},
then ARy is a partition of A.

Proof: Each element of A4 is in some block, since for all a € 4 mg (a, a)=1.

If R (a)r and R (b)r are any two blocks in ARp, then they are either equal
or their intersection is empty. Indeed, if x € R (@)r "R (b)r, then mr (a, x) € F
and mg (b, y)e F, Now, if y € R (a)r, then mg (a,y) € F, and since R is symmetric
and transitive, mg (x,y) € F. Hence mg (b,y) € F, and finally y € R (b)p.

DEFINITION 2. Let R be a fuzzy equivalence relation on a set A. If
P (A) denotes the power set of A, then Pgr(A) s its subset defined by

Pr(4) ¥ U ARy,
PERB

DEFINITION 3. A FUZZY FUNCTION from a set A to a set A
is a fuzy relation £ from A to Ay such that

i) for each a € A, there is exactly one X € Ay, such that mg (a, X)=1;

ii) Each peB, p=+0, appears once ar mostias a value mga) (X), X€ A1 (see
Definition 1.).
We shall now define an important fuzzy relation from A4 to Pg (A4).

* R(A) and Ra (A) are complete lattices of all equivalence relations and all fuzzy equi
valence relations on A respectively. (see [3]).
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DEFINITION 4. Let R be a fuzzy equivalence relation on A. We define
a fuzzy relation h from A to Pg (A) im the following way: For a€ A and X € Pr (A)

my (a, X) &£ {V(m“ R (@mp=X), iff ae X -

O otherwise.

LEMMA 3. 4 fuzzy relation h, defined bv (1) is a fuzzy function.

Proof. For ae A, let X=R (a);yy (such X exist, according to Lemma 2).
Hence my, (a, X)=1. Now, if for some Y € Pr (A), mn (a, Y)=1 too, then by the
definition of h (Vmy; R (a)imy=Y)=1. Hence for each m; if y e R (@m;,
mg (a, y) 2m;. But since Vmy=1, it follows that mg(a,y)=1 and y e R (a)y
It is known that for G<F, R (a)r <R (a)¢ (see [2]), and thus Y=R (a)p. That
proves i) of Definition 3.

To prove ii), take

my (a, X)=my (a, Y)=p € B.
If b € X, then mg (a, b)) =p and b e Y (and contrary). Hence it follows that X=Y.

h also has the following properties:

LEMMA 4. iii) For all X € Pg (A), Ly-1 (x) contains et most one element
p#0;

iv) If for some X p,q€ Ly, then p/\q€ Ly;

v) If for some X p € Lyw), p € Luwy and for q<p q € Lnw), then g€ Lpg).

Proof.

iii) If X=R (a);z=R (®)i¢), then be R (a)[p) and X=R (b)ip. Hence,
my (a, X)=mp (b, X).

iv) If mp (@, X)=p and mn (a, Y)=¢q, then X=R (a);p) and Y=R (a)iy.
Then

X U Y={x;mg (a, X)>p or mg (a, X)>q}=(transitivity)
{x; mg (@, X) =pA4q}, ie.
X v YSR(@upro-

v) This is a simple consequence of the fact that mx (a, b) =p unphes — for
p=2q—beR (a)y.

DEFINITION 5. A fuzzy function h from A to Ay is termed canonical
iff it satisfies iii), iv) and v) of Lemma 4 (where Pr (A) is treated as an arbitrary
set Ay).

The main result of this section is the following theorem.

THEOREM 1. 4 fuzzy relation R on a set A is a fuzzy equivalence relation
on A, iff there is another set A1 and a canonical fuzzy function h from A to Ai, such
that

R=h-h"1
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Proof. Let R be a fuzzy equivalence relation on 4. The set 4; will be Pg (A4).
Finally, let h be the fuzzy canonical function from A4 to Pr(4). Now, if

mr{a, b)=m and Z=R (a)im), then

b€ R (a)m and my (a, Z) Amp (b, Z)=m. Hence,

\z/(mh (a, Z) Amp 1 (Z, b))=mp n-1 (a, b) € {m), and thus
R<heh 1,

If mpon-1 (a, 5)=m>0, then

V (mp (a, X) Amy (b, X))=m, and since m>0, there is a collection of ele-
X

ments X; € Pr(4), i € I, such that a, b € X; for all 4. This means that my, (a, X;)=
=mp (b, X:) and Vmy(a, X;)=m. Hence by the definition of h mg (a, b)e[m)
1

i.e. ho h 1R,
Thus, R=hoh"1.

Suppose now that there is another set A4, and a fuzzy canonical function
h from A to Ai, such that a fuzzy relation R on A4 is equal to hoh-l,
R is reflexive:

mr(a, a)=mpon-1 (a, a) ?e\z/h(mh (a, X) A mpt (X, a))j’e\j,mh (a, X)=1.
by the property i), Definition 3.
R is symmetric:

R:R-1=R, by the definition of R.
R is transitive:

If a, b, ce A, then by ii), Definition 3,

mr(a, )=(Vg; mn(a, X)=my(c, X)=¢) and

mg (b, )=(Vr; mu(b, Y)y=mu(c, Y)=r), X, YeA.
Hence, for each ¢
my (a, ) Amr(c, ))=(VgA Vr; mg(a, X)=my(c, X)=¢ and

mu (6, Y)=mn (b, Y)=r).

But the elements of the form g A r always belong to both L) and Lap (iv) and v)
Lemma 4), which implies the transitivity of R, i.e.

mg (a, c) A mr(c, b) <mg(a, b), for all c.
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INl. Fuzzy homomorphism and congruence relations
Let K be a fuzzy congruence relation on an algebra A=<{4, (J> (5., Preli-
minaries).
We define a new algebra g (A)={Px(A), O> where, for a given n-ary
operation denoted by f,

f (K (adpys - - - > K (@ndp) &5 K@) % .
i=1

a=f(ar,...,an), als-..>an a€ A, pt,...,pn€B.

The operations are well defined; the result does not depend on elements
a;. Indeed, if

hhe K (al)[pl), ey bpe K(aﬂ,)[p”), then
mg (ai, bi)=my€ [p), 1<i<n.

Now, if f(bi,..., by)=>b, then by the substitution property

k3
mg (f (a1, sy an), f(bls <. b")) 21/\1"11’ ie.
n
mg (a, b) € [Aps), and hence be K (a)[ N 20
=1 =1

DEFINITION 6. Let o4={A1, 0> and As={A2,)> be rwo algebras
of the same similarity class. A FUZZY HOMOMORPHISM from A1 to Az is

a fuzzy relation h from Ax to Az satisfying:
a) h is a fuzzy function:
b) Ifforaie A1, bie A3, mpe B, 1 <i<n
mp (@i, by)=my, then
my(fla, . .ran), f(Br,...,bn) € [i/glmt), (FfeO.
A fuzzy homomorphism which is a canonical function (Definition 5), will be
called a fuzzy canonical homomorphism.

LEMMA 5. For a given fuzzy congruence relation K on an algebra A=
=(A, (> let h be a fuzzy relation from A to Pr(A), given by (1), Definition 4.
h is a fuszzy canonical homomorphism from A onto Pr(A).

Proof. According to Lemmas 3. and 4., h is a fuzzy cononical function,
and we have to prove that it satisfies the substitution property, (), Definition 6).

If mp (@i, Ki)=my, 1 <i<{n, then by the definition of h X;=XK (ag)m,. Hence,
by the definition of the operations in Pr(A)

mu(f(ay ... an)s f (Ii (@mys- -« > K(an)imyp)=

=mp (a, K (a)[,/t m,')) =\ M.
{m] f=]l
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Since each X e Px(A) is of the form K (a)p (for some aeA and peB,
clearly my (a, X)=(Vp;; K(a)pyp=X), which proves that h is ,onto”.
t

The following theorem states the main result.

THEOREM 2. A fuzzy relation K on algebra A={A, > is a fuzzy con-
gruence relation on A, iff there is another algebra A1 and a fuzzy canonical homo-
morphism W from A to A, such that K=hoh-1,

Proof. Let A be the algebra #Px(A4). Then the first part of the proof
is already given by Theorem 1, and Lemma 5. Now, all we have to prove is that
if K=hoh-1, where h is the above-mentioned homomorphism, then a fuzzy equi-
valence relation K=hoh~! satisfies the substitution property.

Let mnon—1 (a1, b))=my, 1<i<n. Then

n n

Ams= A (Mnon-1 (as, by))=
n i=1 =1
A (V (mn (a1, X;,)V mu (bs, X3))) < (since h is a homomporphism)
=1 j§;

\‘é_( (mn (f(ats .. .san)s F(Xps oo s XeDA
7

mn (f (15« 5 ba)s (X5 o -0 Xgp))=

Mhon-t (@, b), le.

Muon-1 (f(a1s . - -5 an)y (b1, - .. 5 Bw))) =AM
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KARAKTERIZACIJA RASPLINUTIH RELACIJA EKVIVALENCIJE I RASPLINUTIH
KONGRUENCIJA NA ALGEBRAMA

Branimir Sefelja

REZIME

U radu se posmatraju rasplinute (fuzzy) relacije iz skupa 4 u skup A1, kao rasplinuti skupovi
na A X A1, sa vrednostima iz kompletne Bulove algebre B

U delu I definisana je rasplinuta funkcija i dokazan je stav:

TEOREMA 1: Rasplinuta relacija R na skupu A je rasplinuta relacija ekvivalencije na A4,
ako i samo ako postoji drugi skup A1 i rasplinuta kanonska funkcija h sa 4 na A1, takva da je R=
hoh-1,

(U [4] je odgovarajudi stav dokazan za rasplinute relacije sa vrednostima iz intervala [0, 1]).

U delu IT definisan je rasplinuti homomorfizam i za rasplinute kongruencije na datoj algebri
(uvedene u radu [3]), dokazan stav:

TEOREMA 2: Rasplinuta relacija K na algebri .4=<A4, Q) je rasplinuta relacija kongru-
encije na 4, ako i samo ako postoji druga algebra _4; i rasplinuti kanonski homomorfizam h iz
o4 na A1, takav da je K=hoh-1.



