A THEOREM ON ALMOST CONTINUOUS SELECTION PROPERTY AND ITS APPLICATIONS

Olga Hadžić and Ljiljana Gajić Prirodno-matematički fakultet.Institut za matematiku 21000 Novi Sad, ul. dr Ilije Djuričića 4, Jugoslavija.

1. INTRODUCTION

E.Michael and C.Pixley proved the following Theorem which unifies and generalizes some previously known results about the almost continuous selection property.

THEOREM 1. |8| Let X be paracompact, Y be a Banach space, $Z \subseteq X$ with $\dim_X Z \le 0$ and $\phi: X \to F(Y)$ a lower semicontinuous mapping with $\phi(x)$ convex for all $x \in X \setminus Z$. Then ϕ admits a selection.

In this paper we shall prove that a similar result holds also if X is a normal topological space and Y is a paranormed space.

First, we shall give some notations and definitions. Let: $2^Y = \{S \mid S \subseteq Y, S \neq \emptyset\}$ and $F(Y) = \{S \mid S \in 2^Y \text{ and } S \text{ is closed in } Y\}$. A mapping $\phi \colon X \to 2^Y$ is lower semicontinuous (1.c.s.) if and only if the set $\{x \mid x \in X, \ \phi(x) \cap V \neq \emptyset\}$ is open in X for every open V in Y. A selection for a mapping $\phi \colon X \to F(Y)$ is a continuous mapping $f \colon X \to Y$ such that $f(x) \in \phi(x)$ for all $x \in X$. Finally, if $Z \subseteq X$ then $\dim_X Z \subseteq X \to Y$ means that $X \to Y$ such that

Let E be a linear space—over the real or complex number field. The function $||\ ||^*: E \to [0,\infty)$ will be called a paranorm if and only if:

- 1. $||x||^* = 0 \iff x = 0$.
- 2. $||-x||^* = ||x||^*$, for every $x \in E$.
- 3. $||x+y||^* \le ||x||^* + ||y||^*$, for every x,y $\in E$.
- 4. If $||\mathbf{x}_n \mathbf{x}_0|| + 0$, $\lambda_n + \lambda_0$ then $||\lambda_n \mathbf{x}_n \lambda_0 \mathbf{x}_0|| + 0$.

Then we say that $(E, || \ || \star)$ is a paranormed space. The space E is also a topological vector space in which the fundamental system of neighbourhoods of zero in E is given by the family $\{U_{\epsilon}\}_{\epsilon \geq 0}$ where $U_{\epsilon} = \{x \mid x \in E, \ ||x|| \ \star < \epsilon\}$.

In |9| the following fixed point theorem is proved.

THEOREM 2. Let K be a bounded, closed and convex subset of E and $T: K \to K$ be a completely continuous operator on K. If there exists a number $C(K) \geq 0$ such that:

(1) $\|\lambda \mathbf{x}\| * \leq C(K)\lambda \|\mathbf{x}\| *$, for every $0 \leq \lambda < 1$ and $\mathbf{x} \in K-K$ then there exists an element $\mathbf{p} \in K$ such that $\mathbf{T}\mathbf{p} = \mathbf{p}$.

In |9| Zima has given an example of the space E and of the set K such that the relation (1) is satisfied.

DEFINITION Let (E, || || *) be a paranormed space and K be a nonempty subset of E. If there exists C(K) > 0 such that (1) holds we say that K satisfies the Zima condition.

Some fixed point theorems in paranormed spaces are proved in $\lceil 3 \rceil$.

2. AN ALMOST CONTINUOUS SELECTION THEOREM

First, we shall prove the following Lemma.

LEMMA 1. Let $(Y, ||\cdot||*)$ be a paranormed space, K be a compact and convex subset of Y which satisfies the Zima condition . Then for every $\epsilon>0$ there exists $\delta>0$ so that:

$$co((U_{\delta} + C) \cap K) \subseteq C + U_{\epsilon}$$

for every closed and convex subset C of K.

Proof: Let $\delta > 0$ be such that $U_{\delta} + U_{\delta} \subseteq U = \frac{\epsilon}{C^2(\kappa)}$. Since

the set C is closed and K is compact there exists a finite set $F = \{x_1, x_2, \dots, x_n\} \subseteq C$ so that

$$C \subseteq \bigcup_{i=1}^{n} \{x_i + U_{\delta}\}$$
.

Then
$$(C + U_{\delta}) \cap K \subseteq \bigcup_{i=1}^{n} \{ (x_i + U_{\delta} - \frac{\varepsilon}{C^2(K)}) \cap K \}$$
.

Let $\{\beta_k\}_{k=1}^n$ be a partition of the unity subordinated to the open covering $\{(x_i + U \in \frac{\epsilon}{C^2(K)})\}_{i=1}^n$. Suppose now that $z \in co\{(C + U_i) \cap K\}$.

Then there exist $\gamma_{i} \geq 0$ (i=1,2,...,m) and $z_{j} \in \{(C+U_{\delta})^{\bigcap} K\}$ (j=1,2,...,m) so that $z = \sum_{j=1}^{\infty} \gamma_{j} z_{j}$. Further, for every $j \in \{1,2,...,m\}$

$$c_j = \sum_{k=1}^{n} \beta_k(z_j) x_k$$

Then from the fact that C is convex it follows that $c_j \in C$, for every $j \in \{1,2,\ldots,m\}$ and so $c = \sum_{j=1}^{m} \gamma_j c_j \in C$. Now, we shall prove

that $z-c\in U_{\epsilon}$, which implies that $z\in U_{\epsilon}+C$. Indeed, since the set K satisfies the Zima condition it follows that:

which means that $z - c \in U_{\epsilon}$.

THEOREM 3.Let X be a normal topological space, $(Y, || \cdot || \star)$ be a paranormed space, $Z \subseteq X$ so that $\dim_X Z \leq 0$ and $\varphi: X \to F(Y)$ be a lower semicontinuous mapping so that $\varphi(x)$ is convex, for every $x \in X \setminus Z$. If $\varphi(X) \subseteq K$ where K is a compact and convex subset of Y and K satisfies the Zima condition then φ has the almost continuous selection property which means that for every $\varepsilon > 0$ there exists a continuous mapping $f: X \to K$ such that $f(x) \in U_E + \varphi(x)$, for every $x \in Y$.

Proof: For every $\varepsilon > 0$ we shall denote the set U_{ε} + $+\phi(x)$ by $B_{\varepsilon}(\phi(x))$ for every $x \in X$. Let us prove that there exists $f: X \to \mathbb{F}$ such that $f(x) \in B_{\varepsilon}(\phi(x))$, for every $x \in X$. From Lemma it

follows that for $\varepsilon > 0$ there exists $\delta > 0$ so that for every $x \in X \setminus Z$:

$$co((U_{\delta} + \phi(x)) \cap K) \subseteq U_{\epsilon} + \phi(x) = B_{\epsilon}(\phi(x))$$
.

Since $\{U_{\delta} + y\}_{y \in K}$ is an open covering of the set K and K is compact, there exists a finite subset $\{y_1, y_2, \ldots, y_n\} \subseteq K$ such that:

$$K \subseteq \bigcup_{i=1}^{n} \{ y_i + U_{\delta} \} .$$

Further, for every k=1,2,...,n let $U_{Y_k}\subseteq X$ be defined in the following way:

$$U_{Y_k} = \{x \mid x \in X, y_k \in B_{\delta} (\phi(x))\}$$
.

Since the mapping ϕ is lower semicontinuous it follows that every set $\mathbf{U}_{\mathbf{y}_k}$ is an open subset of X. Since X is a normal topological space there exists an open covering $\{\mathbf{V}_{\mathbf{y}_k}\}_{k=1}^n$ such that $\overline{\mathbf{V}}_{\mathbf{y}_k}$ \mathbf{C} $\mathbf{U}_{\mathbf{y}_k}$ for every ke{1,2,...,n}. Further let:

$$F_{x} = \{y_{k} | y_{k} \in K, x \in \overline{V}_{y_{k}}\}$$
 , for every $x \in X$.

From the definition of $F_{\mathbf{x}}$ it follows that for every $\mathbf{x} \in X$ $F_{\mathbf{x}} \subset B_{\mathcal{K}}(\phi(\mathbf{x}))$. Let $S = X \setminus Z$ and for every $\mathbf{s} \in S$:

$$G_{S} = \{x \mid x \in X, \text{ co } F_{S} \subseteq B_{\varepsilon}(\phi(x))\} \setminus \{ \begin{array}{cc} \emptyset & \overline{V}_{Y_{k}} & \overline{V}_{Y_{k}} \end{array} \}.$$

Every set G_{s} is nonempty, since $s \in G_{s}$. Namely:

co
$$F_{g} \subset co(B_{g}(\phi(s)) \cap K) \subset B_{g}(\phi(s))$$
 .

Using Lemma 1 we conclude that for every seS the set G_s is open. Further, for every xeG_s we have that $F_x \subseteq F_s$ since $x \notin \overline{V}_{Y_k}$ if $y_k \notin F_s$. Let $G = \bigcup_{s \in S} G_s$ and $E = X \setminus G$. Since G is open the set E is seS closed and $\dim E \leq 0$. For the relatively open covering $\{V_{Y_k} \cap E\}_{k=1}^n$ of E there exists a relatively open, disjoint covering $\{D_{Y_k}\}_{k=1}^n$ such that $D_{Y_k} \subseteq V_{Y_k} \cap E$ and let $W_{Y_k} = V_{Y_k} \cap (D_{Y_k} \cup G)$ for every $k=1,2,\ldots,n$. Now, we shall define the mapping f: X + K in the following way:

$$f(x) = \sum_{k=1}^{n} p_{y_k}(x)y_k$$
, for every $x \in X$

and $\{p_{y_k}\}_{k=1}^n$ is the partition of the unity subordinated to $\{w_{y_k}\}_{k=1}^n$. It is obvious that the mapping f is continuous. Let $x \in E$. Then there exists one y_k such that $x \in D_{y_k}$ and so:

$$f(x) = y_k e B_{\delta}(\phi(x)) \cap K \subseteq B_{\epsilon}(\phi(x))$$
.

Suppose that $x \in G = \bigcup_{s \in S} G_s$ and let $x \in G_s$, for $s \in S$. Then from the definition of the mapping f it follows that $f(x) \in G$. Further, $x \in G_s$ implies $F_x \subset F_s$ and so:

$$f(x) \in CC$$
 $F_x \subseteq CO$ $F_s \subseteq B_{\varepsilon}(\phi(x))$.

Using Theorem 3 we can formulate the following fixed point theorem for multivalued mapping in paranormed space. Some fixed point theorems for multivalued mappings in paranormed spaces are proved in |3|.

THEOREM 4. Let Y be a complete paranormed space, K be a compact and convex subset which satisfies the Zima condition (K \subseteq Y), $Z\subseteq K$ with dim $Z\le 0$ and $\varphi:K\to F(K)$ be a lower semicontinuous mapping such that $\varphi(x)$ is convex, for every $x\in K\setminus Z$. Then there exists at least one fixed point of the mapping φ .

Proof: Since every compact topological space is normal, from Theorem 3 it follows that there exists a continuous mapping $f: K \to K$ such that all the conditions of Theorem 2 are satisfied and so there exists $x \in K$ so that x = f(x). Then x is a fixed point of the mapping ϕ .

COROLLARY 1. Let Y be a complete paranormed space, K be a closed and convex subset of Y, $\phi: K \to F(K)$ be a lower semicontinuous mapping such that $\overline{\phi(K)}$ is compact, $\overline{\text{CO}}$ $\phi(K)$ satisfies the Zima condition and there exists $\underline{M} \subseteq \overline{\text{CO}}$ $\phi(K)$ such that $\dim_{\mathbf{Y}} \underline{M} \leq 0$ If $\phi(\mathbf{x})$ is convex, for every $\mathbf{x} \in \overline{\text{CO}}$ $\phi(K) \setminus \underline{M}$ then there exists $\mathbf{x} \in K$ such that $\mathbf{x} \in \phi(\mathbf{x})$.

Proof: We shall apply Theorem 4 taking for the set K the set $\overline{\text{co}} \phi(K)$. Since Y is a complete paranormed space and $\overline{\phi(K)}$ is complete, it follows |6| that the set $\overline{\text{co}} \phi(K)$ is also compact. Further, from $\phi(K) \subset K$ it follows that $\overline{\text{co}} \phi(K) \subset K$, since K is closed and convex this implies that $\phi(\overline{\text{co}} \phi(K)) \subset \phi(K) \subset \overline{\text{co}} \phi(K)$. So we

have that:

$$\phi : \overline{co} \phi(K) \rightarrow F(\overline{co} \phi(K))$$

and all the conditions of Theorem 4 are satisfied, which implies that there exists $x \in \overline{co} \phi(K)$ such that $x \in \phi(x)$.

COROLLARY 2. Let Y be a complete paranormed space, K be a closed and convex subset of Y, $\phi: K \to F(K)$ be a lower semicontinuous mapping such that \overline{CO} $\phi(K)$ satisfies the Zima condition and that the following two conditions are satisfied:

(i) There exists a nonempty set $C \subset K$ such that $C \subset \varphi(C)$ and $M \subseteq C$ with $\dim_{Y} M \leq 0$ so that $\varphi(x)$ is convex for every $x \in K \setminus M$.

(ii) If $Q = \overline{CO} Q \subset K$ and $Q = \overline{CO} \varphi(Q)$ then Q is compact. Then there exists $x \in K$ so that $x \in \varphi(x)$.

Proof: The proof is similar to the proof of the Theorem from |1|. Let $A = \{Q | Q \subseteq K, Q = \overline{co} \ Q, C \subseteq Q, \ \phi(Q) \subseteq Q \}$. Then $A \neq \emptyset$ and $Q \in A$ implies $\overline{co} \ \phi(Q) \in A$. Let $C_O = \bigcap_{Q \in A} Q$. Since $C \subseteq C_O$, C_O is a nonempty, closed and convex subset of K. Further, $C_O = \overline{co} \ \phi(C_O)$ and from (ii) it follows that C_O is compact. Since $M \subseteq C$ and $C \subseteq C_O$ we conclude that $M \subseteq C_O$ and $K \setminus M \supseteq C_O \setminus M$. This implies that $\phi(C_O)$ satisfies all the conditions of Theorem 4 and there exists $X \in K$ such that $X \in \phi(X)$.

Remark: From the proof of Theorem 3 it is easy to see that we can suppose that Y is a topological vector space, K is such that for every open neighbourhood V of zero in Y there exists an open neighbourhood U of zero in Y such that for every closed and convex subset C of K:

and ϕ is a lower semicontinuous mapping from X into K such that, for every open neighbourhood U of zero in Y the set:

$$T = \{x \mid x \in X, C \subseteq U + \phi(x)\}$$

is open, where, C' is a compact subset of Y.

Now, we shall give an example of topological vector space Y such that for every neighbourhood U of Y there exists a neigh-

bourhood V of Y such that $co((V+C) \cap K) \subseteq C+U$, where K is a compact and convex subset of Y and C be an arbitrary closed and convex subset of K.

First, we shall give some notations and notions from |7| and |2|. A linear mapping Φ of a topological semifield E into another F is said to be positive if $\Phi(x) \geq 0$ in F, for every $x \in E$ with $x \geq 0$. Let || || be a mapping of a linear space X over Rinto a topological semifield E and Φ be a continuous positive linear mapping of E into itself. The triplet $(X, || ||, \Phi)$ is called a paranormed space over E and || || a Φ -paranorm on X over E if the following conditions are satisfied:

- (P1) $||x|| \ge 0$, for every $x \in X$.
- (P2) $||\lambda x|| = |\lambda| ||x||$, for every real λ and every $x \in X$.
- (P3) $||x+y|| \le \Phi(||x|| + ||y||)$, for every x,y eX.

DEFINITION A set K,K \subseteq X, where (X,|| ||, Φ) is a Φ paranormed space, is said to be of type Φ if and only if for every n \in N, every $\underset{n}{\times}_1$, $\underset{n}{\times}_2$,..., $\underset{n}{\times}_n$ \in K-K and every λ_i , $0 \le \lambda_i < 1$ (i=1,2,...,n) such that $\underset{i=1}{\Sigma}$ $\lambda_i = 1$, we have:

$$|| \sum_{i=1}^{n} \lambda_{i} \mathbf{x}_{i} || \leq \sum_{i=1}^{n} \lambda_{i} \Phi(|| \mathbf{x}_{i} ||)$$

In |7| is proved that every topological vector space is a Φ -paranormed space over a topological semifield R_{Δ} . We shall use in the further text the following notation:

$$U_{\mu,\epsilon} = \{x \mid x \in X, ||x|| (t) < \epsilon, \text{ for every } t \in \mu\}$$

where μ is a finite subset of Δ and $\epsilon>0$. Then X is a topological vector space in which $\{U_{\mu,\epsilon}\}_{\epsilon>0,\,\mu\in\Delta}$ is the base of the fundamental system of zero in E.Similarly as in Lemma 1 we shall prove the following Lemma.

LEMMA 2. Let $(Y, || \ ||, \Phi)$ be a paranormed space, K be a compact and convex subset of Yof type Φ . Then for every $U \in \{U_{\mu, E}\}$ there exists $V \in \{U_{\mu, E}\}$ such that:

for every closed and convex subset C of K.

Proof: Let $U=U_{\mu,\epsilon}$, $\mu\subset\Delta$ and $\epsilon>0$. Since the mapping Φ is linear and continuous it follows that $N_1=(\Phi^2)^{-1}(U_{\mu,\epsilon})$ is a neighbourhood of zero in R_Δ and let $\mu\subset\Delta$ and $\epsilon'>0$ be such that:

$$U_{\mathbf{x}', \epsilon'} \subseteq \{\mathbf{x} | \|\mathbf{x}\| \in \mathbf{N}_1\}.$$

Let μ " $\subset \Delta$ and ε " > 0 be such that:

$$U_{\mu}$$
, ε + U_{μ} , ε \subseteq U_{μ} , ε

We shall prove that $co((C + U_{\mu}, \epsilon, \epsilon)) \cap K) \subseteq C + U_{\mu, \epsilon}$. Let z and c be as in Lemma 2, where we take U_{μ}, ϵ instead of U_{δ} and $U_{\mu, \epsilon}$ instead of U_{δ} . Then we have that te μ implies:

$$\begin{aligned} ||z-c|| & (t) &= ||\sum_{j=1}^{m} \gamma_{j}z_{j} - \sum_{j=1}^{m} \gamma_{j}c_{j}|| (t) \leq \\ & j=1 & j=1 \end{aligned}$$

$$\leq \sum_{j=1}^{m} \gamma_{j} \Phi(||z_{j}-c_{j}||) (t) = \\ &= \sum_{j=1}^{m} \gamma_{j} \Phi(\sum_{k=1}^{m} \beta_{k}(z_{j})) \Phi(||z_{j}-x_{k}||) (t) \leq \\ & j=1 & k=1 \end{aligned}$$

$$\leq \sum_{j=1}^{m} \gamma_{j} (\sum_{k=1}^{m} \beta_{k}(z_{j})) \Phi^{2}(||z_{j}-x_{k}||) (t) = \\ &= \sum_{j=1}^{m} \gamma_{j} (\sum_{k=1}^{m} \beta_{k}(z_{j})) \Phi^{2}(||z_{j}-x_{k}||) (t) = \\ &= \sum_{j=1}^{m} \gamma_{j} (\sum_{k=1}^{m} \beta_{k}(z_{j})) \Phi^{2}(||z_{j}-x_{k}||) (t)$$

Since $\beta_k(z_j) \neq 0$ implies that $z_j - x_k \in U_{\mu', \epsilon'}$ and so $||z_j - x_k|| \in N_1$ we have that

$$||\mathbf{z} - \mathbf{c}|| \text{ (t)} \leq \sum_{\mathbf{j} = 1}^{n} \gamma_{\mathbf{j}} \sum_{\mathbf{k} = 1}^{n} \beta_{\mathbf{k}} (\mathbf{z}_{\mathbf{j}}) \, \epsilon = \epsilon \text{ and so } \mathbf{z} - \mathbf{c} \, e \, \mathbf{U}_{\mu, \epsilon} .$$

$$\beta_{\mathbf{k}}(\mathbf{z}_{\mathbf{j}}) \neq 0$$

ì

Using this Lemma we can formulate the following fixed point theorem.

THEOREM 5. Let Y be a complete φ paranormed space, K be a compact, convex subset of type φ of Y and ZC K with $\dim_Y Z \leq 0$. Further, let $\varphi\colon K \to F(K)$ be a lower semicontinuous mapping such that $\varphi(x)$ is convex, for every $x \in K \setminus Z$ and the set $\{x \mid x \in K, C \subseteq U + \varphi(x)\}$ is open, for every $C \subseteq Y$ be compact and U be an arbitrary open neighbourhood of zero in Y. Then there exists at least one fixed point of the mapping φ .

REFERENCES

- 1 J. DANES, Some fixed point theorems, Comment.Math.Univ.Carolineae, 9(1968), 223-235
- |2| 0. Hadžić, On the admissibility of topological vector spaces, Acta Sci.Math., Tamus 42, Fasc. 1-2(1980),81-85.
- 3 O. Hadžić, On multivalued mappings in paranormed spaces, Comment.

 Math. Univ. Carolinea, 22, 1 (1981), 129-136.
- [4] O. Hadžić, Some fixed and almost fixed point theorems for multivalued mappings in topological vector spaces, Nonlinear Analysis, Theory, Methods and Applications Vol. 5, No. 9, (1981), 1009-1019.
- |5| 0.Hadžić, Lj.Gajić, A fixed point theorem for multivalued mappings in topological vector spaces, Fund.Math., CIX (1980), 163-167.
- O. Hadžić, Lj. Gajić, Some generalizations of Schauder fixed point theorem in paranormed spaces, Matematički Vesnik knjiga 5(18)(33), 1981, 43-50.
- [7] S.Kasahara, On Formulations of Topological Linear Spaces by Topological Semifields, Math.Jap. 19 (1974),121-134.
- [8] E.Michael, C.Pixley, A unified theorem on continuous selections, Pacific Journal of Mathematics, Vol. 87, No. 1, 1980, 187-188.

9 K.Zima, On the Schauder's fixed point theorem with respect to paranormed spaces, Comm. Math., 19 (1977), 421-423.

REZIME

TEORÈMA O OSOBINI GOTOVO NEPREKIDNE SELEKCIJE I PRIMENA

U ovom radu dokazano je uopštenje teoreme Michaela i Pixleyao gotovo neprekidnoj selekciji u paranormiranim prostorima.