SOLVABILITY OF CONVOLUTION EQUATIONS IN $H^{-1}(M_p)$

Stevan Pilipović and Arpad Takači Prirodno-matematički fakultet. Institut za matematiku 21000 Novi Sad, ul. dr Ilije Djuričića 4, Jugoslavija

ABSTRACT.

We obtain estimates for the Fourier transform of convolutors on the space $\#\{M_p\}$ introduced in |7|. This enables us to prove that the convolution equation (1) in $\#\{M_p\}$ is solvable in $\#\{M_p\}$ iff it is solvable in $\#\{M_p\}$ for each $p \ge p_o(v)$.

INTRODUCTION

We introduced the space $H \cap \{M_p\}$ in |7|. We showed that $H \cap \{M_p\}$ can be obtained as the inductive limit of the spaces $H \cap \{M_p\}$, $p=1,2,\ldots$, defined in |10|. Some examples of the space $H \cap \{M_p\}$ were analysed in: |10| and |5| for $M_p(\mathbf{x}) := M(p\mathbf{x})$ where $M(\mathbf{x})$ is a fixed convex function; in |1|, |8|, |9| and |4| for $M_p(\mathbf{x}) := p \cdot |\mathbf{x}|^S$ where s is a fixed natural number; and in |6| for $M_p(\mathbf{x}) := |\mathbf{x}|^P$.

In the third part of this paper we prove that the convolution equation

$$(1) S \star U = V ,$$

where S belongs to the space of convolutors on $H\{M_p\}$, denoted by $O_C(H\{M_p\})$, is solvable by U in $H\{M_p\}$ for arbitrary $VeH\{M_p\}$ iff it is solvable in each $K(M_p)$, $p \ge p_O(V) \in N$. We obtain this result from some assetrions in |7| (here given in the first part of the paper), and from the estimates for the Fourier transform of the convolutor S (proved in the second part of the paper), of course, we use the well - known results on surjectivity of equation (1) given in |1|, |9| and |5|.

As in |7| we are considering the one dimensional case, but with some simple modifications the results of this paper can be used for the n-dimensional case.

1. SOME NOTIONS AND ASSERTIONS FROM 7

Throughout the paper we denote by $\{m_p(x)\}_{p\in \mathbb{N}}$, $x\geq 0$, a sequence of continuous increasing functions for $x\geq 0$ which satisfy $m_p(0)=0$, $m_p(\infty)=\infty$ and $m_p(x)\leq m_{p+1}(x)$ for each $p=1,2,\ldots$ and $x\geq 0$. Putting

(2)
$$M_{p}(x) := \int_{0}^{|x|} m_{p}(t) dt, p=1,2,..., x \in \mathbb{R}$$

we obtain another sequence of functions. Each $M_p(x)$ is an even convex function and increases to infinity faster than any linear function when $|x| \to \infty$. This implies that its dual function in the sense of Young (|3|)

$$M_p^{\star}(y) = \int_0^{|y|} m_p^{-1}$$
 (t) dt

is finite for arbitrary $y \in \mathbb{R}$; $m_p^{-1}(x)$, $x \ge 0$, is the inverse function for $m_p(x)$.

Our main assumption on the sequence $\{M_{p}(x)\}_{p \in \mathbb{N}}$ is

(A) For each p ϵ N there exist $X_p \ge 0$ and p' ϵ N such that $M_p(px) \le M_p \cdot (x) \text{ for } |x| \ge X_p .$

Let us denote the smallest p' for which this inequality holds for large |x| by r(p). Observe that this condition is satisfied in the mentioned spaces of the type $H'\{M_p\}$.

DEFINITION 1. The vector space of smooth functions $\phi(\mathbf{x})$ on R with the properity

$$\gamma_{p}(\phi) := \sup\{|\phi^{(j)}(x)| \cdot \exp(M_{p}(x)); x \in R, 0 \le j \le p\} < \infty$$

for each pen, topologized with the sequence of norms $\{\gamma_{\mathbf{p}}\}_{\mathbf{p}\in\mathbf{N}}$ is denoted by $H\{\mathbf{M}_{\mathbf{p}}\}$.

 $H\{M_p\}$ is a space of the type $K\{\exp(M_p(x))\}$ from |2|. The dual of $H\{M_p\}$, denoted by $H\{M_p\}$, is a proper subspace of the space of distributions \mathcal{D} .

Following |10| and |5|, we denote by $K(M_n)$ the space of smooth functions $\phi(x)$ on R with the property

 $\rho_{p,k}(\phi) := \sup\{|\phi^{(j)}(x)| \cdot \exp(M_{p}(kx)); x \in R, 0 \le j \le k\} < \infty$ for each k=1,2,... and fixed p $\in \mathbb{N}$. We have

THEOREM 1. The spaces $H\{M_p\}$ and $projK(M_p)$ are topologically isomorphic. The spaces $H^{-1}(M_{p})$ and $indK^{-1}(M_{p})$ are topologically isomorphic when $H^{*}\{M_{p}\}$ and each $K^{*}(M_{p})$ are endowed with strong topology.

Naturally, $projK(M_{D})$ stands for the projective limit of the spaces $K(M_{D})$; an analogous meaning has $ind K'(M_{D})$.

The convolution between $S \in H'\{M_{D}\}$ and $\phi \in H\{M_{D}\}$ is defined in the usual way

$$(S * \phi)(x) := \langle S(y), \phi(x-y) \rangle$$

and it is a smooth function which defines a regular element from $H'\{M_D\}$. We are mainly interested in those distributions S from $H \cap \{M_D\}$ for which the function $(S \star \phi)(x)$ is in $H\{M_D\}$ whenever $\phi(x)$ is from $H\{M_{D}\}$.

DEFINITION 2. The distribution $S \in H^{*}\{M_{p}\}$ is a convolution operator - convolutor iff the mapping $S * : \phi + S * \phi$ is continuous and maps $H\{M_{p}\}$ into itself.

We denote the space of convolutors on $\{(M_D)\}$ by O´(\mathcal{H} ´ $\{M_p\}$). It is known that if $1 \le p \le q$ then \mathcal{H} ´ $\{M_p\}$ ⊂ \mathcal{H} ´ $\{M_q\}$ and $O_{C}(K^{\prime}(M_{Q})) \subset O_{C}(K^{\prime}(M_{D}))$.

THEOREM 2. The distribution $S \in H'\{M_p\}$ is a convolutor on $H'\{M_p\}$ iff for each $p \in N$ there exist $m \in N_O$ and a continuous function on R, F(x), with the property

$$\|F(x) \cdot \exp(m_{p}(x))\|_{L_{\infty}} < \infty$$
 , such that $S(x) = D^{m}F(x)$.

The symbol "D" stands for the distributional derivative. Theorem 2 together with the representation of the convolutors on $K^*(M_D)$ for fixed p ϵ N (see |10|) implies

(3)
$$\bigcap_{p=1}^{\infty} O_{C}(K'(M_{p})) = O_{C}(H'\{M_{p}\}).$$

This set - theoretical equality will be essential in the proof of Theorem 6.

2. THE FOURIER TRANSFORMATION ON $H^{\{M\}}_{D}$

The Fourier transformation $\hat{\phi}$ of $\varphi \in \mathcal{H}\{M_{\underbrace{p}}\}$ defined by

$$(F \phi(x))(\zeta) := \hat{\phi}(\zeta) := \int_{R} \exp(-ix\zeta) \cdot \phi(x) dx$$

is an entire analytic function of the complex variable ζ . Let us denote by $H\{M_p\}$ the set of entire analytic functions $\psi(\zeta)$ with the property $\mathcal{P}\phi=\psi$ for some $\phi\in H\{M_p\}$. In Theorem 3 we shall prove that the Fourier transformation is a topological isomorphism from $H\{M_p\}$ onto $H\{M_p\}$. In order to characterize $H\{M_p\}$, we shall use the following normed spaces introduced in |10|:

$$\begin{split} \mathbf{W}_{M,A}^{k} &:= \{ \varphi \in \mathbf{C}^{\infty} \big| \sup \{ \big| \varphi^{\left(\mathbf{j} \right)} \left(\mathbf{x} \right) \big| \cdot \exp \left(\mathbf{M} \left(\mathbf{x} / A \right) \right) \, ; \quad \mathbf{x} \in \mathbf{R} \, , \\ & 0 \leq \mathbf{j} \leq \mathbf{k} \} < \infty \} \, , \\ & \mathbf{W}_{k}^{M,A} \, := \{ \psi \in \mathbf{U} \big| \sup \{ \left(1 + \big| \mathbf{x} \big| \right)^{k} \cdot \big| \psi \left(\mathbf{x} + \mathbf{i} \mathbf{y} \right) \big| \cdot \exp \left(-\mathbf{M} \left(\mathbf{A} \mathbf{y} \right) \right) \, ; \\ & \mathbf{x} + \mathbf{i} \mathbf{y} \in \mathbf{C} \} < \infty \} \end{split}$$

where M(x) is a convex function of the from (2), k is a non-negative integer, A a positive constant, C^{∞} is the space of smooth functions on R and U is the space of entire analytic functions on C.

We shall also need the normed space $\#(M_p)$, the space of smooth functions $\phi(x)$ on R such that $\gamma_p(\phi) < \infty$ for fixed $p \in N$. Observe that $\#(M_p) = W_{M_p,1}^p$.

From the proof of Theorems 1 and 2 in |3|, page 20, the following inclusions hold:

$$(4) F(W_{M,A}^k) \subset W_k^{M,A+d} ,$$

(5)
$$F(W_{k+2}^{M,A}) \subset W_{M,A+d}^{k}$$

for arbitrary d > 0. Let us prove

LEMMA 1. The following equalities hold both in the set - theoretical and topological sence:

(a)
$$\bigcap_{p=1}^{\infty} w_p^{M^*_{p,1}+d} = \bigcap_{p=1}^{\infty} w_p^{M^*_{p,1}}$$

(b)
$$\int_{p=1}^{\infty} W_{M_{p+2},1+d}^{p} = \int_{p=1}^{\infty} W_{M_{p},1}^{p}$$

for arbitrary d > 0.

Proof. We shall prove only part a), since the proof of part b) is similar to that of a).

It is clear that
$$W_p^{m^*,1} \subset W_p^{m^*,1+d}$$
 hence $\bigcap_{p=1}^{\infty} W_p^{m^*,1+d} \subset \bigcap_{p=1}^{\infty} W_p^{m^*,1+d}$ also in the topological sence.

In order to prove the opposite inclusion, let us show that there exists $p_1 = p_1(p,d) \in N$ for given $p \in N$ and d > 0, such

that for sufficiently large |y|

(6)
$$-M*(y) \leq -M* ((1+d)y)$$
.

This inequality implies a) in a set - theoretical sence; if the mentioned spaces are endowed with the projective topology, using the same inequality one obtaines a) also in a topological sence. So, let p and d be given. From condition (A) follows the existence of p_1 eN such that for sufficiently large $|x|:M_p((1+d)x) \le M_{p_1}(x)$. Turning to the dual functions in the sense of Young, we obtain (6).

Since in the set - theoretical sense

$$H\{M_p\} = \bigcap_{p=1}^{\infty} H(M_p)$$

we at once get

(7)
$$H\{M_p\} = F(\bigcap_{p=1}^{\infty} H(M_p)) \subset \bigcap_{p=1}^{\infty} F(H(M_p))$$

Let us prove that the inclusion in (7) can be replaced by the equality.

LEMMA 2. We have in the set - theoretical sence

$$H\{M_p\} = \bigcap_{p=1}^{\infty} F(H(M_p))$$
.

Proof. Let $\psi \in \bigcap_{p=1}^\infty F(\mathcal{H}(M_p))$; from (4) we obtain that $\psi(\zeta)$ is an entire analytic function and that it insreases on the $\xi(:=\text{Re }\zeta)$ - axis faster than any power of $1/|\xi|$. Its inverse Fourier transformation.

(8)
$$(\mathfrak{F}^{-1}\psi(\xi))(\mathbf{x}) := \phi(\mathbf{x}) := \frac{1}{2 \cdot \pi} \cdot \int_{\mathcal{P}} \exp(i\mathbf{x}\xi) \cdot \psi(\xi) d\xi$$

is a smooth function on R. From (5) and (8) we get

$$2\pi \cdot \phi(\mathbf{x}) = (F\psi(-\xi))(\mathbf{x}) \in \bigcap_{p=1}^{\infty} W_{p+2}^{p}, 1+2\mathbf{d}$$

Hence by Lemma 1, part b), we obtain $2\pi \cdot \phi(x) \in H\{M_p\}$, and this implies $\psi(\zeta) \in H\{M_p\}$.

We can now prove

THEOREM 3. a) The elements from $H\{M_p\}$ are entire analytic functions $\psi(\zeta)$ which satisfy

$$h_{p}(\psi) := \sup \left\{ (1+\left|\xi\right|)^{p} \cdot \left| \phi\left(\xi+i\eta\right) \right| \cdot \exp\left(-M_{p}^{\star}(\eta)\right); \, \xi+i\eta \in \mathbb{C} \right\} < \infty$$
for each pen.

b) If the topology on $H\{M_p\}$ is given by the set of seminorms $\{h_p\}_{p\in N}$, the Fourier transformation is a topological isomorphism from $H\{M_p\}$ onto $H\{M_p\}$.

P r o o f. a) Follows from Lemmas 1 and 2. b) The space $H\{M_D^-\}$ is of the type

 $Z\{(1+|\xi|)^p \cdot \exp(-M^*_p(\eta))\}$ introduced in |2|, hence it is a Frechet space. Since the Fourier transformation is a surjective mapping from $H\{M_p\}$ onto $H\{M_p\}$ by its definition, we can use the open mapping theorem, which asserts just what we want to prove.

The dual space H'{Mp} of H{Mp} is the space of Fourier transformations of the distributions from H'{Mp} defined by the Parseval formula

$$\langle FS, F\phi \rangle := 2 \cdot \pi \langle S, \phi \rangle$$

where $S \in H^{(M_p)}, \phi \in H\{M_p\}$ and $\phi(x) := \phi(-x)$.

In the case when S is a convolutor, we have the foll-owing

THEOREM 4. The Fourier transformation of $S \in O_C^*(H\{M_p\})$ denoted by $\hat{S}(\xi)$ is a function which can be analitically continued on the whole complex plane C and it has the following property: for each $p \in N$ there exists a positive

number cand a natural number n so that

$$(9) \qquad |\hat{S}(\xi+i\eta)| \leq c \cdot (1+|\xi|)^{n} \cdot \exp(M_{\mathbf{p}}^{\star}(\eta)).$$

Conversely, if for an entire analytic function $\hat{S}(\zeta)$ for each $p \in N$ there exist c>0 and $n \in N$ so that (9) holds , then there exists a convolutor S on $H'\{M_p\}$ such that $FS=\hat{S}$.

Proof. Let $S \in \mathcal{H}^{\prime}\{M_{\widehat{p}}\}$. From Theorem 2 follows that $\hat{S}(\zeta) = (i\zeta)^{m} \hat{F}(\zeta)$ where for given $p \in \mathbb{N}$, m and F(x) are chosen as in Theorem 2. Observe that the rate on increase in infinity of the function F(x) implies that $\hat{F}(\zeta) := (FF)(\zeta)$ is an entire analytic function. From |3|, page 21 follows

$$|\hat{F}(\xi+i\eta)| \leq c_1 \cdot \exp(M_D^*((1+d)\eta))$$

for some $c_1 = c_1(d,p)$, 0 < d < 1. Using condition (A) we can choose $p_1 \in \mathbb{N}$, $p_1 < p$ (except maybe for finitely many) so that for sufficiently large |n|

$$M_{p}^{*}((1+d)\eta) \leq M_{p_{1}}^{*}(\eta)$$

and this implies the estimate (9) for p_1 in the place of p. We can choose p so that the corresponding p_1 come across a sub-sequence of the sequence of natural numbers and this observation finishes the proof of necessity of condition (9).

Let us suppose now that $\hat{S}(\zeta)$ is an entire analytic function which satisfies (9). From |10|, Bemerkung IV.2, it follows that $S(x) = \frac{1}{2 \cdot \pi} (\hat{S}(-\xi))(x)$ is the finite sum of the distribution derivatives of continuous functions $F_{i}(x)$, i.e.

(10)
$$S(x) = \sum_{j=1}^{m} D^{j}F_{j}(x) \quad \text{where}$$

 $F_{j}\left(x\right)=0\left(\exp\left(-M_{p}\left(kx\right)\right)\right) \text{ when } \left|x\right|\rightarrow\infty \text{ and } k>0 \text{ does not depend on } j.$

Again using condition(A), we can find a suitable $\textbf{p}_1 \in \textbf{N},$ $\textbf{p}_1 < \textbf{p},$ such that

$$F_{j}(x) = 0 (\exp(-M_{p_{j}}(x)))$$
 when $|x| \to \infty$ for each j , $0 \le j \le m$.

Integrating, if necessary, each term in (10) sufficiently many times, we can reduce the sum in (10) to one single term, i.e.

$$S(x) = D^{m}F(x)$$

where F(x) is continuous function on R such that

$$F(x) = 0 \left(\exp \left(-M_{p_1}(x) \right) \right) \text{ when } |x| \rightarrow \infty.$$

As in the first part of the proof, we can choose $\ p$ such that the corresponding $\ p_1$ come across a sub-sequence of the sequence of natural numbers.

So, we have proven Theorem 4 for each p & N except may ybe for the first finitely many; but if it holds for some p, then it holds for each p'smaller than p.

Theorem 4 implies that if S is a convolutor on $H^{\{M_p\}}$ then the mapping $S \star : \psi + S \star \psi$ (S := FS) is a continuous linear mapping from $H\{M_p\}$ into $H\{M_p\}$. Hence, if $T \in H^{\{M_p\}}$, one can define the product $\hat{S} \cdot \hat{T}$ by

$$\langle \, \hat{\textbf{S}} \cdot \hat{\textbf{T}}, \psi \, \rangle \ := \ \langle \hat{\textbf{T}}, \hat{\textbf{S}} \cdot \psi \, \rangle \ \ \text{where} \quad \hat{\textbf{T}} := \textit{F}\,\textbf{T} \quad \text{and} \ \psi \in \textbf{H}\{\textbf{M}_{p}\} \ .$$
 It is easy to prove that $\textit{F}(\textbf{S} \star \textbf{T}) = \textit{F}\,\textbf{S} \cdot \textit{F}\,\textbf{T}$.

3. SOLVABILITY OF (1) IN $H = \{M_p\}$

Our task is to characterize the surjective convolutors on $H^{\{M_p\}}$, and, what turns out to be equivalent with surjectivity, to find those convolutors on $H^{\{M_p\}}$ which have fundamental solutions in $H^{\{M_p\}}$. Various "slowly decreasing functions" play an important role in this part. In |5| the following definition is given:

DEFINITION 3. An entire analytic function $F(\zeta)$ is called an $M_{\bf q}$ -slowly decreasing function (q $\varepsilon\,N$) if it satis-

fies an inequality of the form

(11)
$$\sup\{|F(\xi+w)|; |w| \le \rho(\log(1+|\xi|)); w \in R\} \ge C_O \cdot (1+|\xi|)$$
, $\xi \in R$,

for some positive constants C_0 and N_0 , and

(12)
$$\rho(\mathbf{x}) := A \cdot \frac{\mathbf{x}}{M_{\mathbf{q}}^{-1}(\mathbf{x})} + B, \quad \mathbf{x} > 0$$

for some A > 0 and B € R .

If (11) holds for $\rho(x) = \text{const}$, $F(\zeta)$ is called extremely slowly decreasing.

It is easy to show that
$$\frac{x}{M_{G}^{-1}(x)} \le M_{G}^{*-1}(x)$$
 for $x > 0$.

Since this function tends to infinity when x does, there exist positive numbers A_1 and L_1 such that

(13)
$$\rho(\mathbf{x}) \leq \rho_1(\mathbf{x}) := A_1 \cdot M_{\mathbf{G}}^{*-1}(\mathbf{x}) \quad \text{for } \mathbf{x} \geq L_1.$$

The sign "-1" stands for the inverse function.

The following theorem gives a sufficient condition for an entire analytic function to be extremely slowly decreasing.

THEOREM 5. Let $F(\zeta)$ be an entire analytic function which is M_q -slowly decreasing for some $q \in N$. Let $p \in N$ be larger than $r(\max\{|A_1|, q\})$, $(A_1 \text{ from } (13))$ and let us suppose that $F(\zeta)$ satisfies an estimate (9) for some c,n and this p. Then $F(\zeta)$ is extremely slowly desreasing.

P r o o f. The property of p implies that the number

$$A_2 := \sup \{ \frac{M_{\sigma}^{\star}(x)}{M_{\sigma}^{\star}(x/A_1)}, x \ge L_1 \} + 1$$

is finite. Let us take $L \ge L_1$ so large that $\rho_1(\log(I + |\xi|)) > 1$ for each ξ with $|\xi| > L$. Let us fix ξ with $|\xi| > L$ and define

$$\beta := \frac{\log \rho}{\log (M_{\mathbf{p}}^{*-1}(\mathbf{A}_{2} \cdot M_{\mathbf{q}}^{*}(\rho/\mathbf{A}_{1}))) - \log \rho}$$

where $\rho := \rho_1(\log(1+|\xi|)) > 1$. The definition of A_2 implies $\beta > 0$ and let us put

$$\bar{R} := \rho^{\frac{\beta+1}{\beta}}$$

As in |4| , we apply Hadamard's Three Circles Theorem on the function $F(\xi+\lambda w)\,(\lambda-\text{ complex variable})$ for the circles with radiuses $1,\rho,\overline{R}$ and $\gamma:=\frac{\log(\overline{R}/\varrho)}{\log\overline{R}}=\frac{1}{\beta+1}$. All the time, w is a complex parameter. So we have

(14)
$$\sup\{|F(\xi+w)| ; |w| \le 1 \} \ge$$

$$\ge (\sup\{|F(\xi+\rho w)| ; |w| \ge 1\})^{1+\beta}/(\sup\{|F(\xi+Rw)|; |w| \le 1\})^{\beta}.$$

Using (9) we obtain

$$|F(\xi + \overline{R}w)| = |F(\xi + \overline{R} \cdot Rew + i \cdot \overline{R} \cdot Imw)| \le$$

$$\le c \cdot (1 + |\xi|)^n \cdot (1 + \overline{R})^n \cdot exp(M_p^*(\overline{R})) \le c' \cdot c \cdot (1 + |\xi|)^n \cdot exp(2 \cdot M_p^*(\overline{R}))$$

where we have put c´:= $\sup\{(1+\overline{R})^n \cdot \exp(-M_D^*(\overline{R})) ; \overline{R} \in R\} < \infty$

Since we have constructed \overline{R} so that $M_p^*(\overline{R}) = A_2 \cdot M_q^*(\rho/A_1)$ we have

(15)
$$\sup\{|F(\xi+\widetilde{R}w)| ; |w| \le 1\} \le C \cdot (1+|\xi|)^{n+A_2}$$

for some C>0. Returning to (14) using (11) we obtain the statement for $|\xi|>L$.

Using the Maximum Principle we obtain for $|\xi| < L$

$$\sup\{|F(\xi+w)| ; |w| \le 1\} \ge C_1 > 0$$

and this together with (15) gives

$$\sup\{|F(\xi+w)| ; |w| \le 1\} \ge C_2 (1+|\xi|)^{-(N_0+n+2A_2)}$$

i.e. $F(\zeta)$ is extremely slowly decreasing.

If we suppose that instead of the condition (A) the stronger condition

following Theorem 5', which generalized Theorem 3 from 4.

(A´) Let p,p´є N and p´>p. For each $\overline{C}>0$ there exists $X_p>0$ such that $M_p(\overline{C}\cdot x) \leq M_p$ ′(x) for $|x| \geq X_p$ is satisfied, then in the same way as Theorem 5 we may prove the

THEOREM 5°. Let $F(\zeta)$ be an entire analytic function which satisfies an estimate (9) for some c,n and p. If $F(\zeta)$ is M_q - slowly decreasing for some natural number q,1 \leq q < p, then it is extremely slowly decreasing.

Theorems 4 and 5 combined with relation (3) imply

THEOREM 6. If the Fourier transform \hat{S} of the distribution $S \in O_{\hat{C}}(H'\{M_p\})$ is M_q -slowly decreasing for some $q \in N$ then \hat{S} is M_p -slowly decreasing for each $p \in N$.

Let us prove now

THEOREM 7. The following conditions are equivallent, provided that $S \in H^*\{M_D^-\}$

 (s_1) \hat{S} is M_Q -slowly decreasing for some $p \in N$, $(\hat{S} := FS)$;

(s₂) S has a fundamental solution in $H'\{M_p\}$;

 (s_3) $S * H^{\{M_p\}} = H^{\{M_p\}}.$

Proof. Since Dirac's measure is in $H^{\prime}\{M_{p}\}$, we have $(s_{3}) => (s_{2})$. If S has a fundamental solution in $H^{\prime}\{M_{p}\}$, in view of Theorem 1 it belongs to some $K^{\prime}(M_{p})$. The Theorem in |5|, page 2, states, among other things, that the convolutor S on $K^{\prime}(M_{p})$ has a fundamental solution in $K^{\prime}(M_{p})$ iff \hat{S} is a M_{p} -slowly decreasing function. Hence $(s_{2}) => (s_{1})$. Finally, if \hat{S} is M_{p} -slowly decreasing for some peN, by Theorem 6 and the mentioned theorem from |5|, it is surjective on $K^{\prime}(M_{p})$ for each p=1,2,....But,by Theorem 1 the union of the spaces $K^{\prime}(M_{p})$

is just $H^{\{M_p\}}$. i.e. $(s_1) \Longrightarrow (s_3)$.

Let us turn to the convolution equation (1). We suppose that it is a convolutor on $O_{\mathbf{C}}(H^{\prime}\{M_{\mathbf{p}}\})$, hence by (3) it is a convolutor on each space $K^{\prime}(M_{\mathbf{p}})$. If X^{\prime} is one of the spaces $H^{\prime}\{M_{\mathbf{p}}\}$ or $K^{\prime}(M_{\mathbf{p}})$, $p=1,2,\ldots$, we say that (1) is solvable in X^{\prime} iff for each $V \in X^{\prime}$ there exists an $U \in X^{\prime}$ so that (1) holds.

THEOREM 8. The convolution equation (1) is solvable in H '{M}_p} iff it is solvable in each K '(Mp) ,p=1,2,...

Proof. Let VeH'{Mp} be given and let us denote by p_o the smallest integer for which VeK'(Mp) (see Theorem 1). If (1) is solvable in H'{Mp}, the implication $(s_3) \Longrightarrow (s_1)$ from Theorem 7 shows that S := FS is M_p -slowly decreasing for some $p \in N$, and by Theorem 6 it is M_p -slowly decreasing for each $p \in N$. This implies that (1) is solvable in K'(Mp) for each $p \ge p_o$. The converse is obvious in view of the implication $(s_1) \Longrightarrow (s_3)$.

REFERENCES

- 11 I.Cioranescu, Sur les solutions fondamentales d'order fini de croissance, Math.Annalen, Band 211, Heft 1 (1974), 37-46.
- |2| I.M.Gel fand and G.E.Shilov, Generalized Functions, Volume 2, Academic Press, New York, 1968.
- 3 I.M.Gel fand and G.E.Shilov, Generalized Functions, Volume 3, Academic Press, New York, 1967.
- |4| 0.V.Grudzinski, Examples of Solvable and Non-Solvable Convolution Equations in K_p , $p \ge 1$, Pac.J.Math., Volume 80, 2 (1979), 561-574.
- |5| O.V.Grudzinski, Convolutions Gleichungen in Räumen von Beurling
 Distributionen endlicher Ordnung, Habilitätionschrift,
 Kiel, 1980.

- [6] S.Pilipović and A.Takači, Convolution Equations in the Countable Union of Exponential Distributions, Zbornik radova PMF u Novom Sadu, br. 10 (1980),63-70.
- |7| S.Pilipović and A.Takači, The Space H $^{\prime}$ M $_p$ and Convolutors, Proceedings of the Moscow Conference on Generalized Functions 1980, Moscow, 1981, 415-426.
- |8| S.Sznajder and Z.Zielezny, Solvability of Convolution Equations in K_1 , Proc.Amer.Math.Soc. 57, (1976), 103-106.
- |9| S.Sznajder and Z.Zielezny, Solvability of Convolution Equations in K_p , p>1, Pac.J.Math., Volume 63 (1976), 539-544.
- | 10 | J.Wloka, Über die Gurewič Hörmanderschen Distributionsräume, Math.

 Annalen, Band 160, Heft 5 (1965), 321-362.

REZIME

RESIVOST KONVOLUCIONIH JEDNA ε INA U H^{\bullet} {M $_{_{\rm D}}$ }

U radu su dati potrebni i dovoljni uslovi za rešivost konvolucione jednačine

S * U = V

u prostoru $H^{*}\{M_{D}\}$ (|7|).

Dokazana je teorema.

TEOREMA. Neka je S konvolutor na $\#^{s}\{M_{p}\}$. Sledeći uslovi su ekvivalentni:

- (a) Preslikavanje S*:H {Mp} → H {Mp} je surjektivno;
- (b) S ima fundamentalno rešenje u H (Mp);
- (c) Furijeova transformacija konvolutora S (koja je cela analitička funkcija) je M_D -sporo opadajuća funkcija za neko p \in N.