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ABSTRACT.

We obtain estimates for the Fourier transform of con-
volutorsofithe space H’{MP} introduced in |7]|. This enables us
to prove that the convolution equation (1) in H"{M_} is sol-
vable in H’{Mp} iff it is solvable in K’(Mp) for each P.ipo(V)-

INTRODUCTION

. We showed that
H“{M_} can be obtained as the inductive limit of the spaces

H (M
H7{M

We introduced the space H’{Mp} in |7

), p=1,2,..., defined in |10

. Some examples of the space

ol o B o]

} were analysed in: |10| and |5] for M _(x): =M(px) where

M(x) is a fixed convex function; in |1|, [8], [9]| and [4] for
M (x): =p-|x|® where s is a fixed natural number;andin |6| for
= p
M = .
p(X¥) e = x|

In the third part of this paper we prove that the con-
volution equation

(1) S*xU=V ,

where S belongs to the space of convolutors on HTMp}, denoted
by Oé(H’{MO}), is solvable by U in H’{Mp} for arbitrary veH’{Mp}

iff it is solvable in each K’(MD), P.iPo(V)EN- We obtain this
result from some assetrions in ]7! (here given in the first part
of the paper), and from the estimates for the Fourier transform
of the convolutor § (proved in the second part of the paper),Of
course, we use the well - known results onzghrjectivity of equ-
ation (1) given in |1}, |9] and [5].
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As in |7| we are considering the one dimensional case,
but with some simple modifications the results of this paper

can be used for the n-dimensional case.

1. SOME NOTIONS AND ASSERTIONS FROM 7]

Throughout the paper we denote by {mp(x)} x>0, a

peN’
sequence of continuous increasing functions for x>0 which sa-

tisfy mp(O) =0, mp(w) =« and mp(x) imp+l(X) for each p=1,2,...

and x> 0. Putting
| x
(2) M (x):= [ m_(t)dt , p=1,2,..., X€R
p o P

we obtain another sequence of functions. Each M_(x) is an even
convex function and increases to infinity faster than any line-
ar function when |x| +«. This implies that its dual function in
the sense of Young (|3])

* ) hfl “1 (pyat

M = m

pY o 'p

is finite for arbitrary y € R; m;l(x), x>0, is the inverse fun-

ction for mp(x) .

Our main assumption on the sequence {Mp (X)}pEN is

(&) For each p € N there exist szo and p~ € N such that

Mp(px) iMp,(x) for |x]| 1xp .

Let us denote the smallest p~ for which this inequality holds
for large |x| by r(p). Observe that this condition is satis-
fied in the mentioned spaces of the type H‘{Mp}.

DEFINITION 1. The vector space of smooth functions
$(x) on R with the properity

yp(¢): =sup{[¢(j) (x)]oexp(Mp(x)); X€R, 0<j<pl<e=
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for each pe N , topologized with the sequence of norms
{Yp}peN 18 denoted by H{Mp}.

H{Mp} is a space of the type K{exp(Mp(x))} from !2].
The dual of H{Mp}denoted by H’{Mp}, is a proper subspace of
the space of distributions D ~.

Following llO[ and |5!, we denote by K(Mp) the space of
smooth functions ¢(x) on R with the property

(3)

°p,k(¢) : =sup{|¢ (x) "exp (M, (kx)) ;X €R, 0 <j <k} <ew

for each k=1,2,... and fixed p € N. We have

THEOREM 1. The spaces H{M{} and 'ﬂPOﬁK(Mp) are topo-
logically Zeomorphic. The spaces H'{Mp} and indK’(Mp) are
topologically isomorphic when H‘{MP} and each K’(Mp) are end-
owed with strong topology.

Naturally, projK(Mp) stands for the projective limit

of the spaces K(Mp); an analogous meaning has <nd K’(Mp).
The convolution between S € H’{Mp} and ¢ eH{Mp} is de-
fined in the usual way
(S*d)(x): =<S(y), ¢(x-y)>

and it is a smooth function which defines a regular element
from f{{Mp}. We are mainly interested in those distributions
S from H’{Mp} for which the function (8 x¢) (x) is in H{Mp}

whenever ¢ (x) is from H{Mp}.

DEFINITION 2. The distribution S EH'{MP} 8 a con-
volution operator — convolutor Tff the mapping S*:1¢p+8* ¢

18 continuous and maps H{Mp} into itself.

We denote the space of convolutors on H’{MP} by
O’(H’fMp}). It is known that if 1 <p <g then K’(Mpch‘(Mq) and

0G (K" (Mg)) € 0 (K~ (M) .
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THEOREM 2. The distribution S € H‘{Mp} i8 a convolu-
tor on H‘{Mp} 1ff for each p €N there exist me No and a conti-
nuous function on R, F(x), with the property

IF(x) « expm (x|l |, <= , such that S(x) =D"F(x) .

The symbol "D" stands for the distributional derivative.

Theorem 2 together with the representation of the convolutors on

K’(Mp) for fixed peN (see |10 ) implies
3 n o7 (K"(M = 07 (H"{M .
(3) ey c( ( p)) c( { p})

This set - theoretical equality will be essential in the proof
of Theorem 6.

2. THE FOURIER TRANSFORMATION ON HTMp}

A~

The Fourier transformation ¢ of ¢ eH{MD} defined by

Fo(x))(g): = 3(;): = [ exp(-ixg)-¢(x)ax
R

is an entire analytic function of the complex variableg . Let
us denote by H{Mp} the set of entire analytic functions ¢ (g)
with the property P¢ = ¢ for some ¢ EH{MP}. In Theorem 3 we shall pro-

ve that the Fourier transformation is a topological isomorphism
froml{{Mp} onto H{Mp}. In order to characterize H{M_ }, we shall
use the following normed spaces introduced in [10] :

wﬁ At =10 ecw!sup{)¢(j)(x)!-exp(M(x/A)); X €R ,

0 <3<k} <=},

Wﬁ’A : = hpeUlsup{(l+[x[)k'

¥ (x+iy) | cexp (-M(Ay)) ;

X +iy ¢ C} < =}
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where M(x) is a convex function of the from (2), k is a non-ne-
gative integer, A a positive constant, c” is the space of smooth
functions on R and U is the space of entire analytic functions

on C.

We shall also need the normed space H(Mp), the space of
smooth functions ¢ (x) on R such that Yp(¢) <o for fixed p €N.
Observe that H(Mp)==wp

Mp,
From the proof of Theorems 1 and 2 in [3]| , page 20,

1t

the following inclusions hold:
,A+d

(4) F (W ) S Wy :

A k
(5) F“"Lz) CWM,A+d

for arbitrary 4 >0. Let us prove

LEMMA 1. The following equalities hold both in the
set - theoretical and topological sence:
*
=) M* oo M _,1
(a) n w_pritd n owr
p:l P _=1 S
(b) now = 0 Wb

for arbitrary d>0.

Proof. We shall prove only part a), since the
proof of part b) is similar to that of a).

Mx 1 M*,14d «© M*, 1
It is clear that wpp r:wpp hence wpp =
w  M%,14d p=l
= 0 pr also in the topological sence.
p=1

In order to prove the opposite inclusion, let us show
that there exists p1==p1(p,d)e N for given p €N and d >0, such
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that for sufficiently large |y|

(6) -M* (y) <-M* ((1+d)y)
- 'py

This inequality implies a) in a set - theoretical sence; if thes
mentioned spaces are endowed with the projective topology ,
using the same inequality one obtaines a) also in a topologi-
cal sence. So, let p and d be given. From condition (A) foll-
ows the existence of P e N such that for sufficiently large
!xl:MP((1+d)x)_§Mpl(x). Turning to the dual functions in the

sense of Young, we obtain (6).

Since in the set - theoretical sense
[ee]

H
21 (Mp)

H{M_}
P p

we at once get

©

FCn HMM)D))e N F(HM))
p=1 P p=1 P

]

(7) H{Mp}

Let us prove that the inclusion in (7) can be replaced by the

equality.
LEMMA 2. We have in the set - theoretical sence
HE{M_} = n FHM)) .
Pl oo P
Proof. Let ye N F(H(MP)) 7 from (4) we obtain
p=1

that y(z) is an entire analytic finction and that it insreases
on the £(: =Re z) - axis faster than any power of 1/|&| . Its
inverse Fourier transformation.

1
2.7

(8) (7 () (X):=¢(x) 1= . [ exp(ixE)+y(£)dE
R

is a smooth function on R. From (5) and (8) we get

2regp(x) = Py (-EN(x) e N wﬁ

p=1 Mp+ar1+2d
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Hence by Lemma 1, part b), we obtain 2me¢ (x) eH{Mp}, and this
implies ¥ (z) € H{Mp}.

We can now prove

THEOREM 3. a) The elements from H{Mp} are entire
analytic functione Y(L) which satisfy

h, (¥) :=sup { (1+]E]HP. ¢(E+in)l'exp(-MI’;(n)); E+ineC) <w

for each FEN.

b) If the topology on H{Mp} 18 given by the set of

seminorms {h_} the Fourier transformation s a topologi-

P pEN °
cal igomorphism from H{Mp} onto H{Mp}

Proof. a)Follows from Lemmas 1 and 2. )
b)The spaceI{{Mp} is of the type

Z{(1+|£!)p-exp(-M*p(n))} introduced in |[2], hence it is a Fre-
chet space. Since the Fourier transformation is a surjective

mapping from H{Mp} onto H{Mp} by its definition, we can use the
open mapping theorem, which asserts just what we want to prove.

The dual space H‘{Mp} of H{M_} is the space of Fouri-
er transformations of thedistributions from H’{Mp} defined by

the Parseval formula
<FS, Fé>:=2+1<S, ¢>
where SeH (M}, 6 ¢ HIM} and §(x) 1 =0(-x) .

In the case when S is a convolutor, we have the foll-

owing

THEOREM 4. The Fourier transforﬁation of
s eOé(H{Mp}) denoted by §(E) ie a function which can be ana-
litically continued on the whole complex plane C and it has
the following property: for each p €N there exists a poasitive
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number c and a natural number n so that

() Is(e+in)| cc- (1+]g)) M exp M (n) .

Conversgely, if for an entire analytic fumction S(T)
for each p €N there exist ¢ >0 and neN go that (9) holds ,

then there exists a convolutor § on H‘{Mp} such that FS =8

) Proof. Let Se H’{Mp}. From Theorem 2 follows that
S(z) = (i)™ F(z) where for given p €N, m and F(x) are chosen
as in Theorem 2. Observe that the rate on increase in infinity
of the function F(x) implies that }(C) : =(FF) (¢) is an entire
analytic function. From |3| , page 21 follows

|F(g+in) | <c ~exp (Mt ((1+d)n))

1

for some cl==c1(d,p), 0 <d<1l. Using condition (A) we can choose

P, €N, P, <P (except maybe for finitely many) so that for su-
fficiently large |n]|
M* ((14d)n) <M* (n
(14) My )
and this implies the estimate (9) for P, in the place of p.
We can choose p so that the corresponding p, come across a
sub-sequence of the sequence of natural numbers and this observa-

tion finishes the proof of necessity of condition (9).

Let us suppose now that S(z) is an entire analytic
function which satisfies (9). From |10| , Bemerkung IV.2, it
follows that S(x)==§%F (5(-£)) (x) is the finite sum of the di-

stribution derivatives of continuous functions Fj(x), i.e.

m .
(10) s(x)= ) DIF.(x) where
=1
Fj(x)==0(exp(-Mp(kx))) when [x| +~ and k>0 does not
depend on j.
Again using condition(A), we can find a suitable P, €N,

P, <P, such that
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Fj(x) =0 (exp(-M, (x))) when |x| »o for each j, 0<3j<m.
1

Integrating, if necessary, each term in (10) sufficiently many
times, we can reduce the sum in (10) to one single term, i.e.

S(x) = DmF(x)
where F(x) is continuous function on R such that

F(x) = O(exp(—Mp (x))) when |x|-+=
1

As in the first part of the proof, we can choose p
such that the corresponding p, come across a sub-sequence of

the sequence of natural numbers.

So, we have proven Theorem 4 for each p &N except ma-
ybe for the first finitely many; but if it holds for some p,
then it holds for each p~” smaller than p.

Theorem 4 implies Ehat Ef S is a convolutor on H’{Mp}
then the mapping S*: Yy >S*y (S:=pFS) is a continuous line-
ar mapping from H{Mp} into H{Mp}. Hence, if Te H’{Mp}, one
can define the product S+T by

< 8T,y > := <T,8+y> where T:=FT and v eH{Mp} .

It is easy to prove that F(S*T) =FS+FT .

3. SOLVABILITY OF (1) IN H'{Mp}

Our task is to characterize the surjective convolutors
on H'{Mp}, and, what turns out to be equivalent with surjecti-
vity, to find those convolutors on H’{Mp} which have fundamen-
tal solutions in H’{Mp}. Various "slowly decreasing functions"
play an important role in this part. In 5] the following de-

finition is given:

DEFINITION 3. An entire analytic funetion F(r) <&
called an Mq -slowly decreasing function (qeN) if It satig-
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fies an inequality of the form

(11) sup{ |[F(E+w |; |W] <p(log(1+|E[)) ; weR} >

-NO
ico'(l+|€l) ’ EGR,

for some positive constants Cs and NS and

(12) p(x) := A~ + B, x>0

for some A >0 and B€R .

If (11) holds for p{x) =const ,F(g) <s called extre-
mely slowly decreasing.
X *-1
It is easy to show that ———< M (x) for x>0

Mq] (x)~ ¢

Since this function tends to infinity when x does, there exist

positive numbers A, and Ll such that

1
N - M*-l £ N
(13) p (x} ipl(x) 1= A, o (x) or x>L, .
The sign "-1" stands for the inverse function.

The following theorem gives a sufficient condition for

an entire analytic function to be extremely slowly decreasing.

THEOREM 5. Let F(r) be an entire analytic function
which P8 M_ -slowly decreasing for some qe€N. Let pe€N be lar-
ger than r(max{lAll, ql) , (A1 from (13)) and let us suppose
that F(r) satisfies an estimate (9) for some c,n and this p.

Then FP(r) is extremely slowly desreasing.

Proof. The property of p implies that the number
M* (x)
A, : = supf , x>L. +1
2 M;(x/Al) 1

is finite. Let us take L >L. so large that pl(log(1+!£|)) >1

1
for each § with |&| >L. Let us fix & with |g! > L and define
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logp

log(M;_l (Ay*M2(p/A}))) -log o

where p := pl(log(1+]£[)) > 1. The definition of a, implies
B >0 and let us put
B+l
R:= p 8
As in |4] , we apply Hadamard’s Three Circles Theorem
on the function F(£+Aw) (A- complex variable) for the circles

with radiuses 1,p,§ and vy : = 1o (gé;) = B_-}-I . All the time,

w is a complex parameter. So we have

(14) sup{[F(g+w)| ; lw|l <1 } >

148

> (sup{|F(E+pw)| ; Iw]>1}) /(sup{|F(E+Rw) | ; 1w|i1})8_

Using (9) we obtain

iF(£+Rw) | = |F(E+R+Rew +i-R-Imw) | <

< c-(1+]g) " (1+ﬁ)n-exp(M;(§))_<_c’-c- (1+|£])n-exp(2-Ml’;(ﬁ))

where we have put ¢’ : = supf{ (1+§)n-exp(-M;(i)) ; ReR} <o
A Since we have constructed R so that M;(f{) =A2-Ma(p/Al)
we have
n+A2

(15) sup{|F(£+Rw) | ; |w| <1} <C-(1+]g])

for some C>0. Returning to (14) using (11) we obtain the sta-
tement for {g! > L.

Using the Maximum Principle we obtain for [§| <L

sup{!F(g+w)| ; |wl <1}>cC, >0

1 >
and this together with (15) cives

- (N_+n+2A,)
sup{|F(g+w) | ; |w| <1}>c, (1+]g])

i.e. F(r) is extremely slowly decreasing.
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If we suppose that instead of the condition (A) the

stronger condition

(A7) Let p,p" €N and p” >p. For each C >0 there exists Xp>0
such that M_(C-x) <M_.(x) for x| >X

p - P - P
is satisfied, then in the same way as Theorem 5 we may prove the

following Theorem 5°, which generalized Theorem 3 from |4].

THEOREM 5. Let FT(t) be an entire analytie function
which satisfies an estimate (8) for some c,n and p. If F(r) <Zs
Mq - slowly decreasing for some natural number a,1<qg<p, then

it 18 extremely slowly decreasing.
Theorems 4 and 5 combined with relation (3) imply

THEOREM 6. If the Fourier transform S of the dis-
tribution Se€ Oé(H’{Mp}) ig My ~slowly decreasing for some qeN
then 8§ is Mp -slowly decreasing for each pe€N.

Let us prove now

THEOREM 7. The following conditions are equiva -
lent, provided that S eH‘{Mp]

~

) § is My—slowly decreasing for some peN, (S:= FS) ;
(52) S has a fundamental solution in H‘{Mp} ;

) SxH"{M } =H{M}.
p p

Proof. Since Dirac’s measure is in H - {M_}, we

have (s;) => (S,). If S has a fundamental solution in H‘{Mp},

in view of Theorem 1 it belongs to some K’(Mp). The Theorem
in |5|, page 2, states, among other things, that the convolu-
tor S on K’(Mp) has a fundamental solution in K‘(Mp) iff s is

a M -slowly decreasing function. Hence (5,) => (sl). Finally,
if S is Mp -slowly decreasing for some p € N, by Theorem 6 and
the mentioned theorem from !5] it is surjective on K’(Mp) for

each p=1,2,... .But,by Theorem 1 the union of the spaces K’(Mp)
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is just H’{Mp}. i.e. (Sl) => (53).

Let us turn to the convolution equation (1). We suppo-
se that it is a convolutor on Oé(H‘{Mp}), hence by (3) it is
a convolutor on each space K’(Mp) . If X~ is one of the spaces
H‘{Mp} or K’(Mp), p=1,2,..., we say that .(1) is solvable in X~

iff for each Ve X~ there exists an Ue X~ so that (1) holds.

THEOREM 8. The convolution equation (1) <8 solva-
ble in H‘{Mp} 1ff ?t i8 solvable in each K‘(Mp) ,p=1,2,...

Proof. Let Ve H’{Mp} be given and let us deno-
te by P, the smallest integer for which Ve K’(Mp) (see Theo -
rem 1). If (1) is solvable in H’{Mp}, the implication (53)=>
=> (sl) from Theorem 7 shows that S:=F§ is Mp -slowly de-

creasing for some p € N, and by Theorem6'it is Mp -slowly de-
creasing for each p € N. This implies that {l)is solvable in K’(Mp)
for each P>p,. The converse is obvious in view of the impli-

cation (sl)=> (s3)-
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REZIME

RESIVOST KONVOLUCIONIH JEDNACZINA U HTMp}

U radu su dati potrebni i dovoljni uslovi za refivost
konvolucione jednaé&ine
S*U=V
u prostoru H’{Mp} (7]).
Dokazana je teorema.

TEOREMA. Neka je S konvolutor na H’{MP}. Slededi us-
lovi su ekvivalentni:
(a) Preslikavanje S*:H’{Mp}*’H’{MP} je surjektivno ;

(b) S ima fundamentalno reZenje u H’{Mp};

(c) Furijeova transformacija konvolutora S (koja je cela ana-

liti&ka funkcija) jJe Mé-sporo opadajuéa funkcija za neko p € N.



