SUBALGEBRAS OF COMMUTATIVE SEMIGROUP SATISFYING THE LAW x = x + m

Georgi Čupona
Matematički fakultet p.f. 504 Skopje
Siniša Crvenković, Gradimir Vojvodić
Prirodno-matematički fakultet. Institut za matematiku
21000 Novi Sad, ul. dr Ilije Djuričića 4, Jugoslavija

ABSTRACT

An algebra with a type Ω and a carrier A is an Ω -subalgebra of a semigroup S if $A\subseteq S$ and if there is a mapping $\omega\mapsto\overline{\omega}$ of Ω into S such that $\omega(a_1,\ldots,a_n)=\overline{\omega}a_1\ldots a_n$, for every n-ary operator $\omega\in\Omega$ and the sequence of elements a_1,\ldots,a_n of A. If C is a class of semigroups then by $C(\Omega)$ is denoted the class of Ω -algebras (i.e. algebras of the type Ω) which are subalgebras of semigroups belonging to C. It is well known (see |1| p. 185 or |4| p. 78) that SEM(Ω) is the class of all Ω -algebras. It is also known (|5|) that ABSEM(Ω) is a variety. The object of our investigations is the set V of varietis \underline{V} of semigroups such that $\underline{V}(\Omega)$ is also a variety. In Theorem 1. of this paper we show that $\underline{C}_{\mathbf{r},\mathbf{m}}(\Omega)$ is a variety only if $\mathbf{r}=1$ or Ω does not contain \mathbf{n} -ary operators for $\mathbf{n} \geq 2$, where $\underline{C}_{\mathbf{r},\mathbf{m}}$ is the class of commutative semigroups which satisfy the law $\mathbf{x}^{\mathbf{r}}=\mathbf{x}^{\mathbf{r}+\mathbf{m}}$.

O. MAIN RESULTS

First, we note that if Ω is a set of finitary operators then $\Omega(n) = \{\omega \in \Omega \mid \omega \text{ is an } n\text{-ary operator}\}$. Obviously an Ω -algebra is an Ω -subalgebra of a semigroup S iff the corresponding restriction $\Omega \setminus \Omega(0)$ -algebra is an $\Omega \setminus \Omega(0)$ -subalgebra of S. Thus, we can assume that $\Omega(0) = \emptyset$ i.e. that Ω does not contain nullary operators.

THEOREM 1. $C_{r,m}(\Omega)$ is a variety iff r=1 or $\Omega = \Omega(1)$.

THEOREM 2. Let A be a nonempty set, r and m two positive integers, and L a subsemigroup of the semigroup T_A of all transformations of A, such that $\mathsf{L} \in \mathsf{C}_{r,m}$. Then, there exists a semigroup $\mathsf{M} \in \mathsf{C}_{r,m}$ with the following properties:

- (i) L is a subsemigroup of M;
- (ii) A \subseteq M;
- (iii) $(\forall a \in A, \exists \phi \in L) \phi(a) = \phi a.$ (ϕa is the "product" of ϕ and a in M)

Before giving the formulation of the last theorem, we have to give some preliminary definitions. Namely, if A is a nonempty set, then by O(A) is denoted the set of finitary (not nullary) operations on A, i.e. $O(A) = \bigcup_{n=1}^{\infty} O_n(A)$, where $O_n(A) = A^n$ consists of all n-ary operations on A. If $L \subseteq O(A)$, then $L(n) = L \cap O_n(A)$. An infinite collection $\{1 \mid i=1,2,\ldots\}$ of partial binary operations can be defined on O(A) by

(1)
$$\phi \in O_{\tilde{n}}(A)$$
, $\psi \in O_{\tilde{m}}(A)$, $i \le n \implies \phi^{i} \psi(x_{1}, \dots, x_{m+n-1}) = \phi(x_{1}, \dots, x_{i-1}, \psi(x_{i}, \dots, x_{i+m-1}), \dots, x_{i+m}, \dots, x_{m+n-1})$

(See for example |6| p. 7-49 or |3| p. 9). We have that (O(A), +) is a monoid. Further on, for the operation + a usual multiplicative notation will be used. An operation $\phi \in O_n(A)$ is called commutative if

(2)
$$\phi(a_1,...,a_n) = \phi(a_{i_1},...,a_{i_n})$$

for every sequence $a_1, \ldots, a_n \in A$ and permutation $v \mapsto i_v$ of $N_n = \{1, 2, \ldots, n\}$.

THEOREM 3. Let L be a commutative subsemigroup of the semigroup O(A) such that all the operations belonging to L are commutative and $\phi^{i}_{+}\psi=\phi\psi$, for any $\phi,\psi\in L$ and $i\in\{1,\ldots,n\}$ where $\phi\in L(n)$. Let m be a positive integer and assume that L satisfies the following statement:

(*) If
$$\phi_1, \ldots, \phi_p \in L$$
, $\phi_v \in L(n_v+1)$ and $i_1, \ldots, i_p, j_1, \ldots, j_p, \alpha_1, \ldots$, $\alpha_q, \beta_1, \ldots, \beta_q$ are positive integers such that:

(3)
$$\mathbf{i}_{v} \equiv \mathbf{j}_{v} \pmod{n}$$
, $\alpha_{\lambda} \equiv \beta_{\lambda} \pmod{n}$

$$(5) \qquad \phi_1^{i_1} \dots \phi_p^{i_p}(x_1^{\alpha_1}, \dots, x_q^{\alpha_q}) \ = \ \phi_1^{j_1} \dots \phi_p^{j_p}(x_1^{\beta_1}, \dots, x_q^{\beta_q})$$

is an identity equation on A. Then, there exists a semigroup $\mathbf{M} \in \underline{\mathbf{C}}_1$, \mathbf{m} and a homomorphism $\phi \mapsto \bar{\phi}$ from L into \mathbf{M} such that the following statements are satisfied:

(i)
$$(\forall \phi \in L(1)) \overline{\phi} = \phi;$$

(ii) A⊆M;

$$(iii) \quad (\forall \mathbf{a}_1, \dots, \mathbf{a}_n \in \mathbf{A}, \ \phi \in \mathbf{L}(\mathbf{n})) \phi (\mathbf{a}_1, \dots, \mathbf{a}_n) = \overline{\phi} \mathbf{a}_1 \dots \mathbf{a}_n \ .$$

Obviously, the part of Theorem 1. for r=1, is a special case of Theorem 2.. But the corresponding generalization for $r\geq 2$ is not true, for, by Theorem 1., $C_{r,m}(\Omega)$ is not a variety if $r\geq 2$ and $\Omega\neq\Omega(1)$. It should also be noticed that if $L\neq L(1)$ then the homomorphism $\phi\mapsto\bar{\phi}$ is not a monomorphism, for $\bar{\phi}=\phi^{m+1}$ but if $\phi\in L(n)$ $n\geq 2$, then $\phi^{m+1}\neq \phi$. This suggests the problem of finding the set of varieties \underline{V} of semigroups such that every subsemigroup $L\in \underline{V}$ of O(A) (or more special of $T_A=O_1(A)$) can be embedded in a semigroup $M\in V$.

1. Proof of Theorem 1. Identities in $\underline{C}_{r,m}(\Omega)$. Obviously, if A is an Ω -algebra belonging to $\underline{C}_{r,m}(\Omega)$ then A satisfies the following identity equations:

$$(**) \qquad \phi(x_1, \dots, x_n) = \phi(x_{i_1}, \dots, x_{i_n})$$

for every $\phi \in \Omega$ (n) and permutation $\nu \mapsto i_{\nu}$ of N_n , i.e. the all operations of the algebra are commutative,

$$(***) \qquad \phi \psi = \psi \phi = \phi \stackrel{i}{+} \psi$$

for any $\phi, \psi \in \Omega$ and $i \in \{1, 2, \dots, n\}$ where $\phi \in \Omega(n)$;

and (*´) which is obtained from (*) in Theorem 3., replacing L with Ω and (3) with

(3')
$$i_{\nu} = j_{\nu}$$
 or $(i_{\nu}, j_{\nu} \ge r \text{ and } i_{\nu} = j_{\nu} \pmod{n})$
 $\alpha_{\lambda} = \beta_{\lambda}$ or $(\alpha_{\lambda}, \beta_{\lambda} \ge r \text{ and } \alpha_{\lambda} = \beta_{\lambda} \pmod{n})$

It can be easily seen that all identity equations, which hold in all Ω -algebras belonging to $\underline{C}_{r,m}(\Omega)$, are consequences of (*´), (**) and (***). Namely, let ξ be an Ω -term (a term with operational symbols from $\Omega)$ with i_{ν} occurrences of the operator ω_{ν} , and α_{λ} occurrences of the variable x_{λ} . Then, by a finite number of applications of (**) and (***) we can obtain that

$$\xi = \omega_1^{i_1} \cdots \omega_p^{i_p} (x_1^{\alpha_1}, \dots, x_q^{\alpha_q})$$

is an identity in $\underline{C}_{r,m}(\Omega)$. We have to show that if (3´) is not satisfied then (5) is not an identity in $\underline{C}_{r,m}(\Omega)$. Let F be a semigroup in $\underline{C}_{r,m}$ which is freely generated by Ω \emptyset $\{e_1, e_2, \ldots, e_k, \ldots\}$, where $e_{\gamma} \notin \Omega$. By putting

$$\omega(u_1,\ldots,u_n) = \omega u_1 \ldots u_n$$
,

for every $\omega \in \Omega(n)$ and $u_1,\ldots,u_n \in F$ we obtain an Ω -algebra F, which, obviously, belongs to $\underline{C}_{r,m}(\Omega)$. If (3') is not satisfied, then

$$\omega_1^{i_1} \dots \omega_p^{i_p} e_1^{\alpha_1} \dots e_q^{\alpha_q} \neq \omega_1^{j_1} \dots \omega_p^{j_p} e_1^{\beta_1} \dots e_q^{\beta_q}$$
,

in the semigroup F, i.e.

$$\omega_1^{i_1} \ldots \omega_p^{i_p} (e_1^{\alpha_1}, \ldots, e_q^{\alpha_q}) \neq \omega_1^{j_1} \ldots \omega_p^{j_p} (e_1^{\beta_1}, \ldots, e_q^{\beta_q})$$

in the Ω -algebra F.

This proves that (*´), (**) and (***) is an axiom system for the set of identities which are satisfied in all Ω -algebras belonging to $\underline{C}_{r,m}(\Omega)$.

1.2 $r \ge 2$ and $\Omega \ne \Omega(1)$. We shall give an example of an Ω -algebra which does not belong to $C_{r,m}(\Omega)$, although it satisfies all the identities (*'), (**) and (***).

Let $\omega \in \Omega(n+1)$, where $n \ge 1$, and let i be the least positive integer such that $in+1-r=p\ge 0$. Thus, $1\le i\le r$. Let $E=\{e_1,\ldots,e_{rn},e\}$ be a set with rn+1 distinct elements and let A be the Ω -algebra with the presentation

$$\langle E; \omega^{i}(e_{1}, ..., e_{p}, e^{r}) = \omega^{r}(e_{1}, ..., e_{rn}, e) \rangle$$
 (**), (**), (***)

where the indices (*'), (**), (***) mean that A satisfies all the identities (*'), (**), (***).

In algebra A the following inequality holds:

(6)
$$\omega^{i}(e_{1},...,e_{p},e^{r}) \neq \omega^{r+m}(e_{1},...,e_{rn},e^{1+mn})$$
,

for neither the left nor right hand side allows a proper transformation by (*´) and, by applying defining relation on $\omega^{i}(e_{1},\ldots,e_{p},e^{r})$ we get $\omega^{r}(e_{1},\ldots,e_{rn},e)$, so we can only turn to $\omega^{i}(e_{1},\ldots,e_{p},e^{r})$. But, if we assume that $A \in \underline{C}_{r,m}(\Omega)$, i.e. that A is an Ω subalgebra of semigroup $S \in \underline{C}_{r,m}$, then we would have:

$$\omega^{i}(e_{1}, \dots, e_{p}, e^{r}) = \overline{\omega}^{i}e_{1} \dots e_{p}e^{r} =$$

$$= \overline{\omega}^{i}e_{1} \dots e_{p}e^{r+mn} = \omega^{i}(e_{1}, \dots, e_{p}e^{r})e^{mn} =$$

$$= \omega^{r}(e_{1}, \dots, e_{p}, e)e^{mn} = \overline{\omega}^{r}e_{1} \dots e_{p}e^{1+mn} =$$

$$= \overline{\omega}^{r+m}e_{1} \dots e_{p}e^{1+mn} = \omega^{r+m}(e_{1}, \dots, e_{p}, e^{1+mn}) .$$

This example shows that, if $r\geq 2$ and $\Omega\neq\Omega\,(1)\,,$ then $\underline{C}_{r\,,m}\,(\Omega)$ is a proper quasi variety.

1.3 r = 1. Let A be an Ω -algebra, and let Ω be a subset of Ω such that different operators of Ω induce different operations on A, and for every $\omega \in \Omega(n)$, there is an $\omega' \in \Omega'(n)$ such that ω and ω' induce the same operation on A. Then, the Ω -algebra A is an Ω -subalgebra of a semigroup S iff the corresponding restricted

 Ω' -algebra is an Ω' -subalgebra of S. Morover, (A,Ω) satisfies the identity (*'), (**) and (***) iff (A,Ω') satisfies the same identities. Therefore, we can assume that Ω is a set of finitary operations on A.i.e. $\Omega \subseteq O(A)$.

Let L be the subsemigroup of O(A) generated by Ω and let an Ω -algebra satisfy (*´), (**), (***). Then, the L-algebra A satisfy the same propositions and by the Theorem 3. the L-algebra is an L-subalgebra of a semigroup M ε $C_{1,m}$, hence, we obtain that the given Ω -algebra A is an Ω -subalgebra of M.

1.4 $r \ge 2$ and $\Omega = \Omega(1)$. In this case an Ω -algebra satisfies all the idenitities (*´), (**) and (***) iff the semigroup L of transformations (generated by Ω) belongs to $\underline{C}_{r,m}$. By the Theorem 2. we have that if an Ω -algebra satisfies all the identities (*´), (**) and (***), then it is an Ω -subalgebra of a semigroup $S \in \underline{C}_{r,m}$. Therefore, $\underline{C}_{r,m}(\Omega)$ is, in this case, a variety.

Thus, the proof of Theorem 1. is completed, i.e. it is reduced to Theorems 2. and 3..

2.P r o o f of Theorem 2. If r=1, then Theorem 2. is a corollary of Theorem 3.. Thus, we have to consider only the case r > 2.

We may assume that L is a submonoid of $T_A = O_1(A)$, for if it is not we can add to L the identity transformation $\varepsilon_A : a \mapsto a$.

Let B be the monoid in the veriety $\underline{C}_{r,m}$, which is freely generated by A, i.e. the elements of S are "commutative product of powers" $a_1^{\alpha_1} a_2^{\alpha_2} \dots a_q^{\alpha_q}$, where $a_1, \dots, a_q \in A$, $a_i \neq a_j$ for $i \neq j$ and $a_i \geq 0$.

$$a_1^{\alpha_1} a_2^{\alpha_2} \dots a_q^{\alpha_q} = a_1^{\beta_1} a_2^{\beta_2} \dots a_q^{\beta_q}$$

iff

$$(\forall \forall \forall \in \{1,2,\ldots,q\}) \; (\alpha_{_{\bigvee}} = \beta_{_{\bigvee}} \; \text{or} \quad (\alpha_{_{\bigvee}},\beta_{_{\bigvee}} \geq r \quad \text{and} \; \alpha_{_{\bigvee}} \equiv \beta_{_{\bigvee}} \; (\text{mod} m)) \; .$$

Let C be the direct product of L and B. If $u=(\phi,a_1^{\alpha_1}...a_{\alpha_1}^{\alpha_q})$ then we denote u by $\phi\underline{a}$, where $\underline{a}=a_1^{\alpha_1}...a_{\alpha_q}^{\alpha_q}$.

If u=u'a, $v=\varphi u'a'$, $u'\in C$, $a'=\varphi(a)$, then we say that (u,v) and (v,u) are two pairs of neighbours. Two elements u,v from C are called equivalent, which is denote by $u^{\mathcal{H}}v$, iff there is a sequence u_0,u_1,\ldots,u_k of elements of C such that $u=u_0$, $v=u_k$, $k\geq 0$ and (u_{i-1},u_i) is a pair of neighbours for each $i\in\{1,\ldots,k\}$. Obviously, \mathcal{H} is a congruence on C. Denote by M the corresponding factor monoid $C_{/\mathcal{H}}$

We can assume that L is a submonoid of M, for we have:

(i´)
$$\phi, \psi \in L \implies (\phi \mathcal{H} \psi \implies \phi = \psi)$$
.

If $a=\varphi\left(a'\right)$ then $a \gtrsim \varphi a'$, and thus the proof will be completed if we show that the following proposition is satisfied

(ii')
$$a,a' \in A \Rightarrow (a \otimes a' \Rightarrow a = a')$$
.

Let a \in A and u_0, u_1, \ldots, u_k be a sequence of elements of C such that $a = u_0$ and (u_{i-1}, u_i) is a pair of neighbours for each $i \in \{1, 2, \ldots, k\}$. We are going to show that each u_i has a form $u_i = \phi_i a_i$ where $\phi_i (a_i) = a$. First, this is true for i = 0, $a = u_0 = ea$, e(a) = a. Assume that $u_{k-1} = \phi_{k-1} a_{k-1}$ and $\phi_{k-1} (a_{k-1}) = a$. Then, we have

- (I) $u_k = \phi \phi_{k-1} a_k$, $\phi(a_k) = a_{k-1}$, and thus $\phi_{k-1} \phi(a_k) = a$ or
 - (II) $u_k = \phi_{k-1} a_k$, $\phi_{k-1} = \phi \phi_{k-1}$ $\phi(a_{k-1}) = a_k$ and then $\phi_{k-1}(a_k) = \phi_{k-1}\phi(a_{k-1}) = \phi_{k-1}(a_{k-1}) = a.$

This completes the proof of Theorem 2..

- 3. P r o o f of Theorem 3. L satisfies the assumptions of Theorem 3. iff L \mathbf{u} $\{\epsilon\}$ satisfies them, and thus we can assume that L is a submonoid of O(A).
- 3.1. Let Ξ be the least congruence on L such that $\overline{L} = L_{/\Xi} \in \underline{C}_{1,m}$. More explicitly, Ξ is defined in the following way:

Let $\phi,\psi\in L,$ then, $\phi\equiv\psi$ iff there exist $\phi_1,\dots,\phi_p\in L$ and nonnegetive integers $i_{\,\nu\lambda},\ j_{\,\nu\lambda}$ such that:

(3.1)
$$i_{\nu\lambda} = j_{\nu\lambda} = 0$$
 or $(i_{\nu\lambda}, j_{\nu\lambda} \ge 0 \text{ and } i_{\nu\lambda} \equiv j_{\nu\lambda} \text{ (modm)})$

and the following equalities are satisfied:

$$\phi = \phi_1^{i_1} 1 1_{\phi_2^{i_1}} 1 2 \dots \phi_p^{i_1} 1 p$$

From the given definition immediately follows

3.1.1.
$$\phi \in L(n')$$
, $\psi \in L(n'')$, $\phi \equiv \psi \implies n' \equiv n'' \pmod{n}$.

3.1.2. ϕ e L(1), ψ e L, ϕ \equiv ψ \Longrightarrow ϕ = ψ (Thus, we assume that L(1) \subseteq \overline{L} = L_{/=}).

Now, we are going to show that if $\varphi \equiv \psi$, then φ and ψ have the same action to "similar sequences".

3.1.3. Let $\phi \equiv \psi$, $\phi \in L(n'+1)$, $\psi \in L(n''+1)$ and $\alpha_1, \dots, \alpha_q, \beta_1, \dots$, β_q are such that $\alpha_{\vee}, \beta_{\vee} > 0$, $\alpha_{\vee} \equiv \beta_{\vee}$ (modm)

(3.3)
$$\alpha_1 + \ldots + \alpha_q = n'+1, \beta_1 + \ldots + \beta_q = n'' + 1.$$

Then,

(3.4)
$$\phi(x_1^{\alpha_1}, \dots, x_q^{\alpha_q}) = \psi(x_1^{\beta_1}, \dots, x_q^{\beta_q})$$

is an identity equation on A.

Proof. If n'=0 or n=0, then by 3.1.2. $\phi=\psi$. Thus, we can assume that n'>0 and n">0. Let (3.2) be satisfied and let $\phi_{_{\downarrow}}$ \in L(n $_{_{\downarrow}}$ +1). From n'>0 and n">0 it follows that for each μ there exists a λ such that $j_{_{\mu}\lambda}>0$ and $n_{_{\lambda}}>0$. We can assume that $j_{_{11}}>0$, $n_{_{1}}>0$. Let $s_{_{1}}$ be the least nonnegative integer such that

(3.5)
$$1+j_{11}n_1+s_1mn_1+j_{12}n_2+\ldots+j_{1p}n_p-(\beta_1+\beta_2+\ldots+\beta_q)=t_1\geq 0.$$
 Then

$$t_1 = 1 + j_{11}n_1 + j_{12}n_2 + \dots + j_{1p}n_p - (\beta_1 + \dots + \beta_q) \pmod{m}$$

$$= 1+i_{11}n_1+i_{12}+n_2+...+i_{1p}n_p-(\alpha_1+...+\alpha_q) \pmod{q} \pmod{q}$$

Now, by (*) we have:

$$\begin{array}{lll} \phi(x_{1}^{\alpha_{1}}, \ldots, x_{q}^{\alpha_{q}}) &=& \phi_{1}^{i_{1}1} \ldots \phi_{p}^{i_{1}p}(x_{1}^{\alpha_{1}}, \ldots, x_{q}^{\alpha_{q}}) \\ &=& \phi_{1}^{j_{1}1+s_{1}m} \phi_{2}^{j_{1}2} \ldots \phi_{p}^{j_{1}p}(x_{1}^{\beta_{1}+t_{1}}, x_{2}^{\beta_{2}}, \ldots, x_{q}^{\beta_{q}}) \,. \end{array}$$

If $j_{2\lambda_2}$, $n_{\lambda_2} > 0$, then in the same way we obtain:

$$\phi(\mathbf{x}_{1}^{\alpha_{1}}, \dots, \mathbf{x}_{q}^{\alpha_{q}}) = \phi_{1}^{j_{21}} \dots \phi_{p}^{j_{2p}} \phi_{\lambda_{2}}^{s_{2}m}(\mathbf{x}_{1}^{\beta_{1}+t_{2}}, \mathbf{x}_{2}^{\beta_{2}}, \dots, \mathbf{x}_{q}^{\beta_{q}})$$

where s_2 is chosen in a similar way as s_1 . Finally, we should obtain

$$\phi(x_1, \dots, x_q^q) = \psi(x_1, \dots, x_q^q).$$

3.1.4. If $\phi \equiv \psi$ and $\phi, \psi \in L(n)$ then $\phi = \psi$.

P r o o f. This is an immediate corollary from 3.1.3.. Further on, if $\varphi \in L$ then by $\overline{\varphi}$ shall be denoted the element of $\overline{L} = L_{/\equiv}$ such that $\varphi \in \overline{\varphi}$.

3.2. As in 2, denote by B the monoid in the variety $\underline{C}_{1,m}$ which is freely generated by A, and by C the direct product $\overline{L} \times B$. An element $u=(\overline{\phi},a_1^{\alpha_1}\ldots a_q^{\alpha_q})$ shall be $\overline{\phi}\underline{a}$. The relation of neighbourhoodness shall also be defined in the same way. Namely, if

$$u=u'a$$
, $v=\overline{\phi}u'a_1a_2...a_n$, $\phi \in L(n)$ and $a=\phi(a_1,...,a_n)$,

then (u,v) and (v,u) are the pairs of neighbours generated by ϕ . The relation % is the reflexive and transitive extension of the relation of neighbourhoodness; % is a congruence on C. Denote the factor monoid by M.

If $\phi, \psi \in L$ then $\overline{\phi} \approx \overline{\psi}$ iff $\phi \equiv \psi$, and thus $\overline{L} \subseteq M$. By 3.1.2. we have $L(1) \subseteq M$. In further considerations, we are going to prove the following statement:

(ii')
$$a,a' \in A \Rightarrow (a \otimes a' \Leftrightarrow a = a'),$$

which implies (ii), and as we have $a=\phi(a_1,\ldots,a_n) \Rightarrow a \sqrt[n]{\phi}a_1\ldots a_n$ this will complete the proof of Theorem 2.

3.3. In order to prove statement (ii´), we shall consider a special subset T of C, and a mapping $u \mapsto \llbracket u \rrbracket$ from T into A. If $u \in T$ then u is called a "term", and $\llbracket u \rrbracket$ the "value" of u.

Let $u=\overline{\phi}a_0a_1...a_p \in C$, $\phi \in L(n+1)$, $a_v \in A$ be such that $n \equiv p \pmod{n}$. Then, $u \in T$ iff a) $n \geq 1$, or b) n=0, and there is a decomposition $\phi=\phi_0\phi_1...\phi_p$ such that

$$\phi_{O}(a_{O}) = \phi_{1}(a_{1}) = ... = \phi_{p}(a_{p}) = a.$$

In case a), there exist nonnegative integers i, j such that

$$(im+1)n+1 = im+p+1$$

and then we put

$$[u] = \phi^{im+1}(a_0^{jm+1}, a_1, \dots, a_p)$$
.

In case b), value [u] is defined by [u]=a.

The value [u] of a term u of form a), does not depend on i,j or on ϕ by (*) and 3.1.3.. But, we have to show that the same is true for a term of a form b).

Namely, if it is possible for ϕ to have another decomposition $\varphi=\psi_O\psi_1\dots\psi_G$ such that

$$\psi_{0}(b_{0}) = \psi_{1}(b_{1}) = ... = \psi_{0}(b_{0}) = b$$
,

where $a_0 a_1 \dots a_p = b_0 b_1 \dots b_q$ in B, we have to show that a = b. First, we can assume that p=q and that $a_0 = b_0$. Then, we have

$$\begin{array}{lll} \mathbf{a} &=& \boldsymbol{\varphi}_{o}\left(\mathbf{a}_{o}\right) &=& \boldsymbol{\varphi}_{o}^{m}\boldsymbol{\varphi}_{o}\left(\mathbf{a}_{o}\right) &=& \boldsymbol{\varphi}_{o}^{m}\boldsymbol{\varphi}_{1}\left(\mathbf{a}_{1}\right) = \dots = \boldsymbol{\varphi}_{o}^{m}\boldsymbol{\varphi}_{1}^{m}\dots\boldsymbol{\varphi}_{p}^{m}\boldsymbol{\varphi}_{o}\left(\mathbf{a}_{o}\right) &=& \\ &=& \boldsymbol{\psi}_{o}^{m}\boldsymbol{\psi}_{1}^{m}\dots\boldsymbol{\psi}_{p}^{m}\boldsymbol{\varphi}_{o}^{p}\boldsymbol{\varphi}_{o}\left(\mathbf{a}_{o}\right) &=& \boldsymbol{\varphi}_{1}\boldsymbol{\psi}_{o}^{m}\boldsymbol{\psi}_{1}^{m}\dots\boldsymbol{\psi}_{p}^{m}\boldsymbol{\varphi}_{o}^{p}\left(\mathbf{a}_{1}\right) &=& \\ &=& \boldsymbol{\varphi}_{1}\boldsymbol{\psi}_{o}^{m}\boldsymbol{\psi}_{1}^{m-1}\dots\boldsymbol{\psi}_{p}^{m}\boldsymbol{\varphi}_{o}^{p}\boldsymbol{\psi}_{o}\left(\mathbf{a}_{o}\right) &=& \boldsymbol{\varphi}_{1}\boldsymbol{\psi}_{o}\boldsymbol{\psi}_{1}^{m-1}\dots\boldsymbol{\psi}_{p}^{m}\boldsymbol{\varphi}_{o}^{p-1}\boldsymbol{\varphi}_{o}\left(\mathbf{a}_{o}\right) &=& \\ &=& \dots =& \boldsymbol{\varphi}_{1}\boldsymbol{\varphi}_{2}\dots\boldsymbol{\varphi}_{p}\boldsymbol{\psi}_{o}^{p}\boldsymbol{\psi}_{1}^{m-1}\dots\boldsymbol{\psi}_{p}^{m-1}\boldsymbol{\varphi}_{o}\left(\mathbf{a}_{o}\right) &=& \boldsymbol{\psi}_{o}^{p+1}\boldsymbol{\psi}_{1}^{m}\dots\boldsymbol{\psi}_{p}^{m}\left(\mathbf{a}_{o}\right) &=& \\ &=& \boldsymbol{\psi}_{o}\boldsymbol{\psi}_{1}^{m}\dots\boldsymbol{\psi}_{p}^{m}\left(\mathbf{a}_{o}\right) &=& \boldsymbol{\psi}_{1}^{m+1}\boldsymbol{\psi}_{2}^{m}\dots\boldsymbol{\psi}_{p}^{m}\left(\mathbf{a}_{1}\right) = \boldsymbol{\psi}_{2}^{m+1}\boldsymbol{\psi}_{3}^{m}\dots\boldsymbol{\psi}_{p}^{m}\left(\mathbf{a}_{2}\right) &=& \\ &=& \boldsymbol{\psi}_{o}^{m+1}\left(\mathbf{a}_{p}\right) &=& \boldsymbol{\psi}_{p}\left(\mathbf{a}_{p}\right) &=& \mathbf{b}. \end{array}$$

Thus, the value [u] of a term u is uniquely determined.

Now, we shall state some propositions concerning terms
and values of terms.

- 3.3.1. If $\overline{\phi}\underline{a} \in T$ and $\phi \in L(sm+1)$ for some $s \ge 0$ then $\overline{\phi}\overline{\psi}\underline{a} \in T$ and $\left[\overline{\phi}\left[\overline{\psi}\underline{a}\right]\right] = \left[\overline{\phi}\overline{\psi}\underline{a}\right].$
- 3.3.2. If $\overline{\phi}$ and $\overline{a} = \psi(a_1, \dots, a_n)$ then $\overline{\phi} \psi$ and $\overline{\phi}$
- 3.3.3. If $\overline{\phi\psi}\underline{a}b_1...b_n \in T$ and $\psi(b_1,...,b_n) = a$ then $\overline{\phi\psi}\underline{m}\underline{a}a \in T$ and $[\overline{\phi\psi}\underline{a}b_1...b_n] = [\overline{\phi\psi}\underline{m}\underline{a}a].$

The proofs of 3.3.1. and 3.3.2. are straightforward and will not be given explicitly. If $\phi\psi$ is not unary, then 3.3.3. is a corollary of 3.3.2., and we are going to consider only the case when $\phi, \psi \in L(1)$:

Assume that $\overline{\phi\psi^{i}}\underline{a}b_{1} \in T$ and $\overline{\left[\phi\psi^{i}\underline{a}b_{1}\right]} = d$, $i \ge 1$. Then, $\overline{\phi\psi^{i}}\underline{=}\phi_{0}\phi_{1}\dots\phi_{p}, \quad \underline{a}b_{1} = a_{1}\dots a_{p}b_{1}, \quad p = 0 \text{ (mod m)} \quad b_{1}, a_{v} \in A, \quad \psi(b_{1}) = a,$ $d = \phi_{0}(b_{1}) = \phi_{1}(a_{1}) = \dots = \phi_{p}(a_{p}) ,$

and

$$\psi\left(\mathtt{d}\right) \; = \; \phi_{o}\left(\psi\left(\mathtt{b}_{1}\right)\right) \; = \; \psi\phi_{1}\left(\mathtt{a}_{1}\right) \; = \ldots = \; \psi\phi_{p}\left(\mathtt{a}_{p}\right) \; \; , \label{eq:power_power_power_power}$$

where we obtain

$$\left[\phi_{0}\phi_{1}\dots\phi_{p}\psi^{P}\underline{a}a\right] = \left[\phi\psi^{i}\underline{a}a\right] = \psi(d)$$

for $a = \psi(b_1)$, and $\psi^{i+p} = \psi^i$. From $\phi \psi^i \underline{a} a \in T$ and $a = \psi(b_1)$, by 3.3.2., it follows that $\phi \psi^{i+1} \underline{a} b_1 \in T$ and $[\phi \psi^i \underline{a} \underline{a}] = [\overline{\phi} \psi^{i+1} \underline{a} b_1]$.

Thus we have

$$\left[\overline{\phi \psi^{m}} \underline{\mathbf{a}} \underline{\mathbf{a}} \right] = \left[\overline{\phi \psi^{m+1}} \underline{\mathbf{a}} \mathbf{b}_{1} \right] = \left[\overline{\phi \psi} \underline{\mathbf{a}} \mathbf{b}_{1} \right].$$

4.3. Here statement (ii') (from the end of 3.2.) will be shown, and this will complete the proof of Theorem 3.

First, we prove that

4.3.1. If $a=u_0, u_1, \ldots, u_p$ is a sequence of elements of C such that $p \ge 0$ and u_{i-1}, u_i is a pair of neighbours generated by ϕ_i for each $i \in \{1, \ldots, p\}$, then $\phi_1^m \ldots \phi_q^m u_i \in T$ for each $i \in \{1, \ldots, p\}$ and:

$$(3.6) \qquad \left[\phi_{\mathbf{i}}^{\mathbf{m}} \mathbf{a}\right] = \left[\phi_{\mathbf{i}}^{\mathbf{m}} \dots \phi_{\mathbf{i}}^{\mathbf{m}} \mathbf{u}_{\mathbf{i}}\right] = \mathbf{a}.$$

Proof. Assume that (3.6) is true, and that i < p. Then:

(I) $u_i = ub$, $u_{i+1} = \phi ub_1...b_n$, or

(II)
$$u_{i} = \phi ub_{1} ... b_{n}, \quad u_{i+1} = ub$$

where $\phi = \phi_{i+1}$, $b = \phi(b_1, \dots, b_n)$, $u \in C$.

In case (I), by 3.3.2. we have that

and by 3.3.1.

$$\begin{bmatrix} \phi^m \mathbf{a} \end{bmatrix} = \begin{bmatrix} \phi^m \begin{bmatrix} \phi_1^m \dots \phi_1^m \mathbf{u}_1 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} \phi^m \phi_1^m \dots \phi_1^m \mathbf{u} \mathbf{b} \end{bmatrix} =$$

$$= \begin{bmatrix} \phi^m \phi_1^m \dots \phi_i^m \phi_1 \mathbf{u}_1 \dots \mathbf{b}_n \end{bmatrix} = \begin{bmatrix} \phi^m \phi_1^m \dots \phi_i^m \mathbf{u}_{i+1} \end{bmatrix} = \mathbf{a} .$$

In case (II), we have:

$$a = [\phi_1^m \dots \phi_i^m u_i] = [\phi_1^m \dots \phi_i^m \phi u b_1 \dots b_n]$$
 and by 3.1.3.

this implies that

$$a = \left[\phi_1^m \dots \phi_i^m \phi^m ub\right] = \left[\phi_1^m \dots \phi_i^m \phi^m u_{i+1}\right].$$

We also have

and this complete the proof of 4.3.1.

Assume that a,a´ \in A and a \otimes a´. Then, there exists a sequence of elements u_0, u_1, \ldots, u_p of C such that $a=u_0, a´=u_p$ and (u_{i-1}, u_i) is a pair of neighbours generated by $\phi_i \in L$. By 4.3.1. we have

$$a \ = \ \left[\phi_1^m \ldots \phi_p^m a \ \right] \ , \quad a \ = \ \left[\phi_1^m a \right] \ = \ldots = \ \left[\phi_p^m a \ \right] \, ,$$

and also

$$\mathbf{a}^{\,\prime} = \, \left[\!\!\left[\boldsymbol{\varphi}_{\,\mathbf{p}}^{\,\mathbf{m}} \ldots \boldsymbol{\varphi}_{\,\mathbf{1}}^{\,\mathbf{m}} \mathbf{a} \right] \right. , \qquad \mathbf{a}^{\,\prime} = \, \left[\!\!\left[\boldsymbol{\varphi}_{\,\mathbf{p}} \mathbf{a}^{\,\prime} \right] \right. = \ldots = \, \left[\!\!\left[\boldsymbol{\varphi}_{\,\mathbf{p}} \mathbf{a}^{\,\prime} \right] \right. ,$$

which implies that a=a'.

REFERENCES

- 1 Cohn, P.M. Universal algebra, Harper & Row, 1965.
- |2| Čupona G., Vojvodić G., Crvenković S., Subalgebras of semilattices, Zbornik radova, PMF Novi Sad, br. 10, 1980. 191-195.
- | 3 | Белоусов В.Д. n-арные квазигруппы, "штиинца", Кишинев, 1972.
- 4 Курош А.Г., Общая алгебра, "Наука", 1974.
- | 5 Ребене Ю.К., О представлении универсальних алгебр в коммутативных полугрупах, Сиб.мат.жур. 7 (1966) 878-885.
- |6| Чупона Г., За финитарните операции, Годишен зб. Природно-математ. фак. Ун-та, Скопје, 12, А (1959), 7-49.

REZIME

PODALGEBRE KOMUTATIVNIH POLUGRUPA KOJE ZADOVOLJAVAJU

ZAKON x^r = x^{r+m}

Algebra tipa Ω sa nosačem A naziva se Ω -podalgebra polugrupe S ako je A \subseteq S i ako postoji preslikavanje $\omega\mapsto\widetilde{\omega}$ Ω u S takvo da je

$$\omega(a_1,\ldots,a_n) = \overline{\omega}a_1\ldots a_n$$

za svaku n-arnu operaciju $\omega \in \Omega$ i niz elemenata a_1, \ldots, a_n iz A. Ako je K klasa polugrupa tada sa $K(\Omega)$ označavamo klasu Ω -algebri koje su podalgebre polugrupa koje pripadaju K. Ako je K varijetet polugrupa, tada je $K(\Omega)$ kvazivarijetet Ω -algebri.

U ovom radu daju se potrebni i dovoljni uslovi da $\underline{C}_{r,m}(\Omega)$ bude varijetet (Teorema 1.). U teoremama 2. i 3. dat je opis polugrupa operacija koje se mogu potopiti u polugrupe iz $\underline{C}_{r,m}$.