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ABSTRACT

An algebra with a type @ and a carrier A is an Q-subalge-
bra of a semigroup S if Ac S and if there is a mapping we>a  of

Q into S such that w(a;,...,a ) =wa a

1°°° anr
17+ 1@, of A. TE C

is a class of semigroups then by C(f2) is denoted the class of

for every n-ary ope-
rator w ¢} and the sequence of elements a

Q-algebras (i.e. algebras of the type Q) which are subalgebras
of semigroups belonging to C. It is well known (see [1| p. 185
or |4 p. 78) that SEM(Q) is the class of all Q-algebras. It is
also known (|5]) that ABSEM(Q) is a variety. The object of our
investigations is the set V of varietis V of semigroups such that
V() is also a variety. In Theorem 1. of this paper we show that
gr'm(g) is a variety only if r=1 or Q does not contain n -ary

operators for n > 2, where Er is the class of commutative semi-

7
groups which satisfy the law xr==xr+m.

0. MAIN RESULTS

First, we note that if § is a set of finitary operators
then 9 (n) = {w € 2|w is an n-ary operator}. Obviously an f-algebra
is an Q-subalgebra of a semigroup S iff the corresponding restri-
ction QN Q(0)-algebra is an 2\ Q(0)-subalgebra of S. Thus, we can
assume that Q(0) =@ i.e. that {! does not contain nullary opera-
tors.
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THEOREM 1. Cr m(Q) ig a variety i1ff r=1 or Q=Q0(1).
—L.

THEOREM 2. Let A be a nonempty set, r and m two po-
sitive integers, and L a subsemigroup of the semigroup TA of all
transformations of A, such that L.egr o Then, there exists a

14
semigroup D!egr n with the following properties:
r
(i) L is a subsemigroup of M;
(1) AgM ;
(227) (vaehA, 3p eL)d(a) =da. ( da Zs the "product'" of ¢ and

a in M)

Before giving the formulation of the last theorem, we
have to give some preliminary definitions. Namely, if A is a
nonempty set, then by O(A) is denoted the set of finitary (not

nullary) operations on A, i.e. O(A)= U On(A), where On(A) =

n n=1
= AA consists of all n-ary operations on A. If L&O(A), then

L(n) =IJ10n(A). An infinite collection {il i=1,2,...} of par-

tial binary operations can be defined on O({(a) by

(1) ¢eO (A, vyeO (A), i<n =
i

o+ w(xl:---;x )=¢(x1l"'lxi_llw(xil'-'Ix )+

m+n-1 i+m-1

'xi+m""’xm+n—l)

(See for example (6| p. 7-49 or [3] p. 9). We have that (O(A);as
is a monoid. Further on, for the operation + a usual multipli-
cative notation will be used. An operation ¢ eon(A) is called
commutative if

(2) ¢(a1,...,an) = ¢(ail,...,a.n)

for every sequence a
= {1,2,...,n}.

l,...,an € A and permutation veil of Nn =

THEOREM 3. Let L be a commutative subsemigroup of
the semigroup O(A) such that all the operations belonging to L
are commutative and ¢ iq;=¢w, for any ¢,¢ €L end ie {1,..
...,n} where ¢ € L{n). Let m be a positive Integer and assume

that L satisfies the following statement:
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(*) If ¢l,...,¢p€L, ¢v€L(nV+l) and il”'"ip’jl""’jp’al""
“s aq’Bl""’Bq are posit;’ve integers such that:
(3) i, Ejv(modm), oy EBA(modm)
and
(4) 1+J.1nl +...+ 1pnp=ot1 +...+
1+j.n, +...+ jn = +...+ B
then 1% Jp p 1 q’

o a 3 j B B
1 ay, o 41 P, 1 q
1 yeeesX ) -d)l ...¢p (x1 ,...,xq )

i i
(5) ¢, ...¢pp(x q

78 an tdentity equation on A. Then, there exists a semigroup
mMec, o and a homomorphism ¢~ ¢ from L into M such that the fo-
i

llowing statements are satisfied:

(i) (Vo eL(1)) & = ¢;
(17) Ac M ; .
(ii2) (va ,...,a €A, ¢ €L(n))¢(a;,...,a ) = $al...an .

Obviously, the part of Theorem 1. for r=1, is a speci-
al case of Theorem 2.. But the corresponding generalization for
r >2 is not true, for, by Theorem 1., gr,mm) is not a variety
if r >2 and £ # {(1). It should also be noticed that if L #L(1)
then the homomorphism ¢ » ¢ is not a monomorphism, for (3 =¢m+1
but if ¢ €L(n) n2>2, then ™!

of finding the set of varieties V of semigroups such that every

# ¢ . This suggests the problem

subsemigroup L €V of O(A) (or more special of TA=01 (a)) can be

embedded in a semigroup M eV.

1. Pr oo f of Theorem 1. Identities in C. m(Q) . Obvi-
r
ously, if A is an {-algebra belonging to Er m(sz) then A satis-

r
fies the following identity equations:

(**) ¢(Xll---rxn) = ¢(Xill-"lxin)

for every ¢ € 2 (n) and permutation v iv of Nn’ i.e. the all

operations of the algebra are commutative,
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(*x%) oy =up=0iu
for any ¢,y € and i€ {1,2.,,,.n} where ¢ € Q(n);

and (*°) which is obtained from (*) in Theorem 3., replacing
L with @ and (3) with
(37) i = jv or (iv’jv >r and iv Ejv(modm))

a, = B or (ax,BXAzr' and ay Esx(modm))

X

It can be easily seen that all identity equations, which
hold in all Q-algebras belonging to Er,m(Q)’ are consedgquences
of (*7), (**) and (***), Namely, let & be an Q-term (a termwith
operational symbols from Q) with iv occurrences of the operator

w and o, occurrences of the variable x Then, by a finite nu-

A AT
mber of applications of (**) and (***) we can obtain that
i i o o
1 1
£ = wl ...wpp(xl ,...,xqq)
is an identity in <, m(Q). We have to show that if (3°) is not
r

satisfied then (5) is not an identity in Sr m(Q). Let F be a
r

semigroup in gr m which is freely generated by Q u{el,e2,...
r
-1€ps..-} , vhere evﬁ Q. By putting

a_

w(ul,...,un) = wuy ... U

for every we Q(n) and u AN € F we obtain an Q-algebra F ,

17
which, obviously, belongs to Sr m(Q). If (37) is not satisfied,
r

then

J
p, 1 q 1 1 q
wy e wp e, .eq # Wy .w e, ...e ,
in the semigroup F, i.e.
i i o o 3j 3 g B
1 p 1 q 1 P 1 q
Wy ...wp (el ,...,eq ) #(nl ...wp (el yaees€ )

in the Q-algebra F.
This proves that (*7), (**) and (***) is an axiom sys-
tem for the set of identities which are satisfied in all Q-al-

gebras belonging to C ().
-r,m



Subalgebras of commutative semigroup satisfying ... 221

1.2 r>2 and @ # Q(1). We shall give an example of an Q-algebra
which does mnot belong to C. (), although it satisfies all the
r

identities (*7), (**) and (***),

Let w € Q(n+l1), where n>1, and let i be the least posi-
tive integer such that in+1-r=p>0. Thus, 1<i<r. Let E =
= {el,...,er
A  be the f2-algebra with the presentation

n,e} be a set with rn+l distinct elements and let

i r, _ r
<Ej;w (el,...,ep,e ) =w (el,...,ern,e)? (%), (x%) , (*%%)

where the indices (*7), (**),(***) mean that A satisfies all

the identities (*7), (**), (**%*),
In algebra A the following inequality holds:

i + +
(6) wl(el,...,ep,er) # 0t m(el,...,ern,el mn,

for neither the left nor right hand side allows a proper tran-
sformation by (*”) and, by applying defining relation on

i r r
w (el,...,e ,e7) we get w (e .,€__,€), so we can only turn

P 17 rn
i r . .
to w (el,...,ep,e ). But, if we assume that A egr’m(Q), i.e.
that A is an Q subalgebra of semigroup S egr m’ then we would
r
have:
(e e ,ef) = wle e ef =
w 1’ ’ Pr 1°
- = iy Lo STYMD _ 1(e e er)emn _
w l... w 1,. 7 E"
w® (e e ,e)e™ = pfe e eltMR _
1"' ’ pl l- -
—r+ 1+mn r+m 1+mn
= w¥f me1 e epe = w (el,...,ep,e ) .

This example shows that, if r>2 and Q#Q(1), then

gr m(Q) is a proper quasi variety.
I

1.3 r=1. Let A be an Q-algebra, andlet 2~ be a subset of Q
such that different operatérs of @ induce different operations
on A, and for every w € (n), there is an w” € 8°(n) such that w
and w~ induce the same operation on A. Thenrthe Q-algebra A is

an {i-subalgebra of a semigroup § iff the corresponding restricted
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Q” -algebra is an {2 “~subalgebra of S. Morover, (A,Q) satisfies
the identity (*7), (**) and (***) iff (A,Q") satisfies the same
+ jdentities. Therefore, we can assume that  is a set of finita-

ry operationsonA,i.e. Q=0(A).

Let L be the subsemigroup of O(A) generated by ? and
let an Q-algebra satisfy (*7), (**), (***)_ Then, the L-alge-
bra A satisfy the same propositions and by the Theorem 3. the

L-algebra is an L-subalgebra of a semigroup MeC hence, we

1,m '
obtain that the given Q-algebra A is an Q-subalgebra of M.

1.4 r>2 and Q= Q(1). 1In this case an {i-algebra satisfies
all the idenitities (*7), (**) and (***) iff the semigroup L of

transformations (generated by §1) belongs to gr - By the Theo-
P2

rem 2. we have that if an -algebra satisfies all the identiti-
es (*7), (**) and (***), then it is an Q-subalgebra of a semi-

group S €C Therefore, C () is, in this case, a variety.
~r,m =r,m
Thus, the proof of Theorem 1. is completed, i.e. it is

reduced to Theorems 2. and 3..

2.P r o o f of Theorem 2. If r=1, then Theorem 2. is a corolla-
ry of Theorem 3.. Thus, we have to consider only the case r > 2.
We may assume that L is a submonoid of TA=01(A) , for

if it is not we can add to L the identity transformation e, :a+ a.

A
Let B be the monoid in the veriety —C—r m’ which is free-

4
ly generated by A, i.e. the elements of S are "commutative pro-

o, o
duct of powers"a.la 2...a3q , where a

18 ...,aqe A, aiaéaj for

1I

i#3j and a\)iO.

iff
(V\)e{l,2,...,q})(a\)=8v or (O‘\,'B\,ir and a\)EB\)(modm)).

o
Let C be the direct product of L and B. If u-= (¢,a1'1...

..a:q) then we denote u by ¢a, where §=a(i1...agq .
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If u=ua, v=¢ua’, u'€C, a’=¢(a), then we say that
(u,v) and (v,u) are two pairs of neighbours. Two elements u,v
from C are called equivalent, which is denote by u®v, iff there
is a sequence uo,u y+..,u0, Of elements of C such that u=ug o

1 k

v=u k>0 and (ui_l,ui) is a pair of neighbours for each

k'
ief{1,...,k}. Obviously, ¥ is a congruence on C. Denote by M

the corresponding factor monoid C/%

We can assume that L is a submonoid of M, for we have:
(i7) o, EL = (¢xyY = ¢ =VY).

If a=¢(a”) then ay¢da”, and thus the proof will be co-

mpleted if we show that the following proposition is satisfied
(ii ) a,a’€eA = (agya’ = a=a’).

Let a € A and uo,ul,...,uk be a sequence of elements of
C such that a==uO and (ui—l'ui) is a pair of neighbours for

each i€e{1,2,...,k}. We are going to show that each u; has a
form ui=¢iai where ¢i(ai)=a. First, this is true for i=0, a=u, =
=ea, e€(a)=a. Assume that Up 1013y, and ¢, _,(ay_,)=a. Then,
we have

(1) uk=¢¢k_lak, ¢(ak)=ak_1, and thus ¢k_l¢(ak) = a
or

(I1) uk=¢k_lak, ¢k—1=¢¢k—1 ¢(ak_l)=ak and then

1)

P21 (@) =00 (8 1) = by (e ) = a.

This completes the proof of Theorem 2..

3. Pr o o f of Theorem 3. L satisfies the assumptions of Theo-
rem 3. iff L v {e} satisfies them, and thus we can assume that
L is a submonoid of O(A).

3.1. Let = be the least congruence on L such that i==L/: eglln'
- 14

More explicitly,= is defined in the following way:

Let ¢,y €L, then, ¢ =y iff there exist ¢l,...,¢belaand

nonnegetive integers ivk' jvx such that:

(3.1) i =0 or (i >0 and i (modm) )

vA T3 vA’Iua v -
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and the following equalitiesare satisfied:

i i i
s 11,712 1p
T P
3y, 3 3 1,4 i
11,712 lp _ .21, 22 2p
(3.2) ¢11¢2 Sty 6,570,550 0]

g a1, 0q-12 02a-1p _ a1, a2 ¢iqp
) ) b 1T, ey

s S b
o A1eTA2 L 4T =y,
From the given definition immediately follows

3.1.1. ¢ e L(n") , YveLn™M, ¢=¢ = n~=n""(modm).

3.1.2. ¢ e L(1), Y eL, ¢=¢y = ¢ =y (Thus, we assume that

L(1)SL =L,.).

/=
Now, we are going to show that if ¢ =y, then ¢ and ¢

have the same action to "similar sequences".

3.1.3. Let ¢=y, ¢€eL{n"+1), Y eL(n"+1) and al,...,aq,Bl,...

...,Bq are such that aV,BV >0, o, EBV (modm)
(3.3) oy +...+ aq = n"+1, Bl+...+ Bq =n + ;.
Then, ,
Qg Q B1 B
qy _ q
(3.4) ¢(x1 ,...,xq ) u;(x1 ,...,xq )

is an identity equation on A.

Proof. If n"=0 or n"=0, then by 3.1.2. ¢=y.
Thus, we can assume that n“>0 and n”>0. Let (3.2) be satis-
fied and let ¢v € L(nv+1). From n“ >0 and n”>0 it follows that

for each p there exists a A such that juA >0 and n, >0. We can

assume that j11 >0, n, > 0. Let s, be the least nonnegative in-
teger such that

(3.5) 1+311n1+slmn1+312n2+...+jlpnp-(61+62+...+6q)==t1.i0

Then
t1 E1+311n1+312n2+...+31Pnp—(61+...+8q)(modm)
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= 141 n +i

1% 12+n2+...+1 n —(al+--rhq)(modm)5 0 (modm) .

1p p

Now, by (*) we have:

oy o i i o o

11 1
¢(x1 ,...,xqq) = ¢1 ...¢p p(x1 ,...,xqq)
- Jll-'slm 312 ¢le(x81+t1 xBZ qu)
1 2 ety 1 1Ky reee s X )
If 3 , n, >0, then in the same way we obtain:
2A2 Az
R . g1+t B, B
o, a Jj Jj s m 2 q
q, _ 21 2p .27 (x ' X raeesX )
¢(x1 ,...,xq ) = ¢1 ...¢p ¢X2 1 2 e

where S, is chosen in a similar way as s,. Finally, we should

1
obtain
[« ) o Bl B

¢ (x, ,...,xqq)=\p(xl ,...,xqq).
3.1.4. If ¢ =y and ¢,y € L(n) then ¢=P.

Proof. This is an immediate corollary from 3.1.3..

Further on, if ¢ € L then by 5 shall be denoted the ele-~
ment of i==L/: such that ¢ €9 .
3.2, As in 2, denote by B the monoid in the variety 91 m which

r
is freely generated by A, and by C the direct product L x B. An
]

a
element u=(9%,a ...aqq) shall be ¢a. The relation of neichbour-

1
hoodness shall also be defined in the same way. Namely, if

u=u’a, v=¢u’a

132 --3, ¢ € L(n) and a=¢(a1,...,an),

then (u,v) and (v,u) are the pairs of neighbours generated by
¢. The relation % is the reflexive and transitive extension of
the relation of neighbourhoodness; %4 is a congruence on C. De-
note the factor monoid by M.

If ¢,b €L then ¢4 ¥ iff ¢ =¥, and thus Lo M. By 3.1.2.
we have L(l)cM. In further considerations, we are going to
prove the following statement:

(ii 7) a,a"€A = (aga’"<= a=a’),
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which implies (ii), and as we have a=¢(a;,...,a ) = anyal...a
this will complete the proof of Theorem 2.

3.3. In order to prove statement (ii”), we shall consider a
special subset T of C, and a mapping u+ Tu] from T into A. If
u€T then u is called a "term", and l:u] the "value" of u.

Let u= ¢a 01" .apeC, ¢ € L(n+l), a, € A be such that
nz p(modm). Then, ueT iff a) n>1, or b) n=0, and there is a

decomposition ¢=¢O¢l...¢p such that
¢O(ao) = ¢l(al) =...= ¢p(ap) = a.
In case a), there exist nonnegative integers i,j such that

(im+1)n+1 = m+p+1l

and then we put

[u] = ¢1m+l (a(j)m+l .,a ) .

,al,.. p

In case b), value [u] is defined by [u]=a.

The value [u]of a term u of form a), does not depend on
i,j or on ¢ by (*) and 3.1.3.. But, we have to show that the
same is true for a term of a form b).
Namely, if it is possible for ¢ to have another decom-
position ¢=wowl...wq such that
lbo(bo) = wl(bl) =...= wq(bc) =b ,

4

where aa .- ap =b b ba in B, we have to show that a=b.
First, we can assume that p=d and that a, —b . Then, we have

_ _ .m _ .m _ _ m.m m _
a = ¢o(ao) = 959% (a ) = ¢o¢l(al)—...—¢O¢l...¢p¢o(ao) =

_ ,mym p - m m m,p _

= WUy VDoBe (ag) = 6 wnl . upeba)) =

1 -1  p—-1

= oyug¥] ---hebu (@) = 4w vl T el e (a) =

- - p m-1 m-1 p+1 m m _

== b0y 0 VR LR 0 () = U Aptay) =

= vou]whtay) = TG ety wg‘”wg...wg(az) -

=T @) =y _(a) =b.
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Thus, the value [u] of a term u is unicuely determined.
Now, we shall state some propositions concerning terms

and values of terms.

3.3.1. If ¢aeT and ¢ € L(sm+l) for some s >o then $ya € T and

[ elval]l = [ev2] .

3.3.2. If ¢aaeT and a=y(a ,...,a ) then ¢yaa, ...a eT and
[ova al...aA] = [¢aa ].

3.3.3. If Gyab,...b_eT and y(b ,...,b ) =a then ¢yTaae™
and

[ #ab,...57 = [s™ad] .

The proofs of 3.3.1. and 3.3.2. are straightforward and will not
be given explicitly. If ¢y is not unary, then 3.3.3. is a coro-
llary of 3.3.2., and we are going to consider only the case when
o,p € L(1):

Assume that ¢¢13b1 e T and [¢¢l§b1] =d, i>1. Then,

¢¢i=¢o¢1"'¢ , ab =a ...a_br p=0(modm) b a €A, w(bl) =a,

P 1 1 o) 1
d = ¢O(b1) = ¢1(a1) =...= ¢p(ap) ’
ahd
V() = ¢ (V(by)) = Vo (a)) =...= Vo (a) ,

where we obtain

[¢O¢l...¢p\bpgaj = [vlad = v(@

for a==w(b1), and wi+p==wi. From ¢wiga €T and a==w(b1), by
. i+1 ioo i+l
3.3.2., it follows that ¢y~ "ab, €T and pv-aa] = [sv Eblj .

Thus we have

[ov™aa] = [ov™*lab] = [%ab,].
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4.3. Here statement (ii~”) (from the end of 3.2.) will be shown,
and this will complete the proof of Theorem 3.
First, we prove that

4.3.1, If a=uo,u1,...,up is a sequence of elements of C such
that p>0 and Ug_qeuy is a pair of neighbours generated by ¢i
for each i e{l,...,p}, then ¢T...¢2 u; €T for each ie{l,...,p}
and: -
m m =
(3.6) [eia] = [#7-..95u,] = a.
Proof. Assume that (3.6) is true, and that i <p.

Then:

(1) u, = ub, Ui = ¢ub e n ’
or

(I1) u; = ¢ub1...bn, Uiy < ub ,

where ¢=¢i+1, b =¢(bl,,,.bn), ue€cC.
In case (1), by 3.3.2. we have that
m,m m m m m
CoT...656 ;1] = [B7...¢56ub ...b ] = [o7]...65u;] = a,
and by 3.3.1.
m m
el = BMle]...07u]] =[¢ ¢T...¢iub]

m,m m —
[T . .¢Tpub, ... = ["e7...0%u, ] = a .

In case (I1), we have:

EbT(bTul] =[:¢T...¢rin¢ubl...bn] and by 3.1.3.
this implies that ‘
[o---05¢™us) = [B7-..070",; 1]
We also have
C¢"al @m[¢T...¢Tuijj = [T 0T 4ub...p T =
BT~ %o ..by] = [B7.--05u,]
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and this complete the proof of 4.3.1.

Proof. of 3.2. (ii ")

Assume that a,a”€A and ajya’. Then, there exists a se-

quence of elements uo,ul,...,up of C such that a=u_, a =up and

(ui_l,ui) is a pair of neighbours generated by ¢i €L, By 4.3.1.
we have
m m_ - m - — m
a = _¢l...¢pa] , a = [q;la:l =...= [qbpa],
and also

as = BNofal, et = Bl s B,

which implies that a=a“”.

REFERENCES

[1] Cohn, P.M. Universal algebra, Harper & Row, 1965.

{2/ Cupona G.,Vojvodi¢ G., Crvenkovié S., Subalgebras of semilattices, Zbor-
nik radova, PMF Novi Sad, br. 10, 1980. 191-195.

[3| Besloyco B.I. n-apHee KBaSHIPYIMNL, "wrumHia", Kmmmes, 1972,

{4] Kypas A.T., Otwans armme6pa, "Hayka", 1974.

5] PeGere HI.K., O NMPeOCTABNEHMM YHUBEPCATWHMX AMTe6p B KOMMYTATHBEMX
noyrpynax, Cué.mar.xyp. 7 (1966) 878-885,

6] dYynoma I'., 3a dummTapMTe oneparpM, T'OMAEH 36. TPHPODHO-MATEMAT. GaK.
Yu-Ta, Cxkomje, 12, A (1959), 7-49.

REZ IME
PODALGEBRE KOMUTATIVNIH POLUGRUPA KOJE ZADOVOLJAVAJU
ZAKON x5 = x&'m

Algebra tipa { sa nosafem A naziva se - podalgebra polugrupe S
ako je A =8 i ako postoji preslikavanje ww»w 2 u S takvo 'da je

m(al,...,an) = wa,...ay
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za svaku n-arnu operaciju w e i niz elemenata al,...,an iz A.
Ako je K klasa polugrupa tada sa K() oznatavamo klasu Q-alge-
bri koje su podalgebre polugrupa koje pripadaju K. Ako je K
varijetet polugrupa, tada je K(Q) kvazivarijetet (-algebri.

U ovom radu daju se potrebni i dovoljni uslovi da
gr’m(ﬂ) bude varijetet (Teorema 1.). U teoremama 2. i 3. dat
je opis polugrupa operacija koje se mogu potopiti u polugrupe

iz C .
~r,m



