Review of Research Faculty of Science-University of Novi Sad, Volume 11(1981)

STRUCTURE OF GENERALIZED EQUIVALENCES CONTAINED IN $(2, n\bar{A}_1)$ - RT RELATIONS

Branimir Šešelja, Janez Ušan Prirodno-matematički fakultet. Institut za matematiku 21000 Novi Sad, ul. dr Ilije Djuričića 4, Jugoslavija

It is well-known that if ρ is a binary reflexive and transitive relation on S, then $\sigma=\rho \bigcap \rho^{-1}$ is an equivalence on S, and that an ordering χ can be defined on S/ σ by: (X,Y) e χ iff (x,y) e ρ for any x e X, y e Y. Binary relation σ is a maximal (in regard to the set inclusion) equivalence relation contained in ρ , and morever, the set of all equivalences in ρ is a complete lattice.

The class of binary reflexive and transitive relations is uniquely determined. In |3| it is shown that this is not the case with (n+1)-ary relations, when $n\geq 2$. Here we consider 2-reflexive, $n\overline{A}_1$ -transitive, (n+1)-ary relations on the given set S, denoted as $(2,n\overline{A}_1)$ -RT relations, induced among some other classes of (n+1)-ary relations in |3|. The structure of generalized equivalences (defined in |1|) included in such an generalized quasi-order is the subject of this article. We show that this poset always has the maximal elements, and we give the necessary and sufficent conditions under which it is a complete lattice. Finally, we describe two generalized orderings induced on the corresponding partition of type n (Hartmanis, see |1|) by one class of $(2,n\overline{A}_1)$ -RT relations. We note that the considerations of some of these problems, we started in |2|.

1. (n+1)-ary relation ρ on S is (i_1^t) -reflexive, i_1, \ldots, i_+ $\epsilon\{2, \ldots, n+1\}$, iff

$$(a_1^{i_1-1}, a, a_{i_1+1}^{i_2-1}, \dots, a_{i_{t-1}+1}^{i_{t-1}}, a, a_{i_t+1}^{n+1}) \in \rho$$

for all $a_1, \dots, a_{i_1-1}, a_{i_1+1}, \dots, a_{i_t-1}, a_{i_t+1}, \dots, a_{n+1}, a_{\varepsilon} s^1$.

 ρ is t-reflexive, te{2,...,n+1}, iff it is (i_1^t) -reflexive for all different i_1,\ldots,i_t e{1,...,n+1}^2. An (i_1^{n+1}) -reflexive relation ρ is (trivialy) (n+1)-reflexive, and it is described by the formula:

$$(\forall a \in S)((\begin{array}{c} n+1 \\ a \end{array}) \in \rho)$$
.

2. (n+1)-ary relation ρ on S is k-antisymmetric, k \in {2, ...,n+1)}, iff for all $a_1,\ldots,a_k\in S$ the following is satisfied:

If all permutations of a_1,\dots,a_k are included in (n+1) -tuples of ϱ , then a_1 =...= a_k .

3. (n+1)-ary relation ρ on S is $n\overline{A}_1$ -transitive iff from $(a_0^n) \in \rho$, $(a_1^{n+1}) \in \rho$, and $a_i \neq a_j$ for $i \neq j$, $i, j \in \{1, \ldots, n\}$, it follows that $(a_0^{n-1}, a_{n+1}) \in \rho$, for all $a_0, \ldots, a_{n+1} \in S$.

REMARK:

Some other generalizations of the antisymmetric and transitive relations are given in |3|, |4| and |5|.

4. (n+1)-ary relation ρ on S is symmetric, iff for all a_1,\ldots,a_{n+1} ϵ S, the following is satisfied: (a_1^{n+1}) ϵ ρ implies $(a_{\pi(1)},\ldots,a_{\pi(n+1)})$ ϵ ρ , for each π ϵ {1,...,n+1}!.

¹⁾ For t=2, this is (i,j)-reflexivity from |5|.

^{2) &}quot;Reflexive" in |5| is 2-reflexive here.

- 5. (n+1)-ary relation ρ on S is generalized equivalence, iff it is (1,n+1)-reflexive, symmetric, and $n\overline{A}_1$ -transitive (|1|).
- 6. We denote by d_2 the intersection of all 2-reflexive (n+1)-ary relations on S, i.e.

$$d_2 = \{ (a_0^n) | a_0, \dots, a_n \in S, a_i = a_j \text{ for some i,j } \in \{0, \dots, n\} \}.$$

$$(d_2 \text{ is } n\overline{A}_1 - \text{transitive too, see } |3|).$$

In the following, we assume that |S| > n.

* *

To illustrate the problems that arise in considering the structure of equvalences contained in generalized quasi-order , we start with one example.

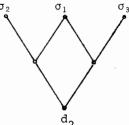
EXAMPLE 1.
$$S = \{a,b,c,d,e\}$$
, $n=2$.

1)

 $p = \pi (a,b,c)$ $U \pi (b,c,d)$ $U \pi (b,c,e)$ $U \pi (a,b,e)$ $U \pi (a,c,e)$ $U \pi (a,b,d)$, (d,b,a) , (a,c,d) , (d,c,a) , (b,a,d) , (b,d,a) , (c,a,d) , (c,d,a) , (e,a,d) , (e,b,d) , (e,c,d) , (a,e,d) , (b,e,d) , (c,e,d) , (d,b,e) , (d,c,e) , (b,d,e) , (c,d,e) .

 ρ is (2,2\$\bar{A}_1\$)-RT relation on S. The following relations are maximal terrary equivalences contained in ρ .

Hasse diagram of the partialy order set of equivalences in ρ illustrates the situation.



¹⁾ π (a,b,c) denotes {(a,b,c),(a,c,b),(b,a,c),(b,c,a),(c,a,b),(c,b,a)}

THEOREM 1. Let ρ be $(2,n\overline{A}_1)$ -RT relation on S. Now, if E. denotes the set of all equivalence relations σ on S, such that $\sigma\subseteq\rho$, then the partially ordered set $\langle E,\subseteq \rangle$ contains at least one maximal equivalence relation.

Proof. $E \neq \emptyset$, since $d_2 \subseteq E$ (see |3|). Let $\{\sigma_i; i \in I\}$ be a chain in $\langle E, \subseteq \rangle$. $\overline{\sigma} = \bigcup_{i \in I} \sigma_i$ is an upper bound for that ield chain. Realy, $\overline{\sigma}$ is 2-reflexive, since $d_2 \subseteq \overline{\sigma}$. $\overline{\sigma}$ is symmetric: if $(a_1^{n+1}) \in \overline{\sigma}$ then $(a_1^{n+1}) \in \sigma_i$, for some $i \in I$, and since σ_i is symmetric, $(a_{\pi(1)}, \ldots, a_{\pi(n+1)}) \in \sigma_i$, for every $\pi \in \{1, \ldots, n+1\}!$, and thus $(a_{\pi(1)}, \ldots, a_{\pi(n+1)}) \in \overline{\sigma}$, for every π . $\overline{\sigma}$ is $n\overline{A}_1$ -transitive: suppose that $(a_0^n) \in \overline{\sigma}$ and $(a_1^{n+1}) \in \overline{\sigma}$, and a_1, \ldots, a_n are different. Then $(a_0^n) \in \sigma_i$ and $(a_1^{n+1}) \in \overline{\sigma}_i$, for some $i, j \in I$. Let $\sigma_i \subseteq \sigma_j$. Then both (n+1)-tuples belong to σ_j and σ_i and σ_i and σ_i and σ_i and thus $(a_0^{n-1}, a_{n+1}) \in \overline{\sigma}_i$. By Zorn's Lemma we conclude that $(a_0^n, a_{n+1}) \in \overline{\sigma}_i$ has a maximal element.

Generalizing binary case for $(2,n\overline{A}_1)$ -RT relation ρ on S, we get the following definition of the relation σ_{ρ} :

(1)
$$(a_1^{n+1}) \in \sigma_{\rho}$$
 iff $(a_{\pi(1)}, \dots, a_{\pi(n+1)}) \in \rho$, for every $\pi \in \{1, \dots, n+1\}$!.

It is obvious that the following proposition holds.

Lemma 2. If $\sigma \in E$, then

a)
$$(a_1^{n+1}) \in \sigma$$
 implies $(a_{\pi(1)}, \dots, a_{\pi(n+1)}) \in \rho$, for every $\pi \in \{1, \dots, n+1\}!$

b) $d_2 \subseteq \sigma \subseteq \sigma_0$.

Up to now we have found that for n > 1

- i) σ_0 is not always transitive;
- ii) <E, ⊂ > can have more than one maximal equivalence; and

thus iii) $\langle E, \subset \rangle$ is not always a lattice.

If the following we discuss some of these problems.

THEOREM 3. $\sigma_{\rho} = UE(union\ of\ all\ (n+1)-ary\ equivalences$ in E).

Proof. 1) $U^E = \sigma_\rho$. Realy, if $(a_1^{n+1}) \in \sigma$, $\sigma \in E$, then by a), Lemma 2, $(a_1^{n+1}) \in \sigma_\rho$.

 $2 \qquad \sigma_{\rho} = \text{U} \textit{E} \text{ . Indeed, if } (a_1^{n+1}) \in \sigma_{\rho} \text{, then for every } \pi \in \{1, \dots, n+1\}! \qquad (a_{\pi(1)}, \dots, a_{\pi(n+1)}) \in \sigma_{\rho} \text{, and } (a_1^{n+1}) \text{ belongs at least to equivalence relation } \sigma = d_2 \text{ U} \{ (a_{\pi(1)}, \dots, a_{\pi(n+1)}); \pi \in \{1, \dots, n+1\}! \} \text{ . Thus, } (a_1^{n+1}) \in \text{U} \textit{E} \text{ .}$

It follows from 1) and 2) that $\sigma_0 = UE$.

It is obvious that $\langle E, \subseteq \rangle$ is a meet semilattice with zero d_2 . Now we can give the necessary and sufficent conditions under which it is a lattice.

We start with the following definition of a special (n+1)-ary quasiorder.

(n+1)-ary relation ρ on S is $(2,n\overline{A}_1)^{\frac{1}{2}}$ RT relation iff it is $(2,n\overline{A}_1)$ -RT relation and the following is satisfied:

- (*) If
- (a) $(a_{\alpha(0)}, \dots, a_{\alpha(n)}) \in \rho$ and $(a_{\beta(1)}, \dots, a_{\beta(n+1)}) \in \rho$,

for each $\alpha \in \{0,...,n\}!$ and for each $\beta \in \{1,...,n+1\}!$, and $a_0,...$..., a_{n+1} are different elements of S, then, with each cosequence

(b)
$$(b_1, \ldots, b_{n+1}) \in \rho$$
, $(b_1, \ldots, b_{n+1}) \in (a_0, \ldots, a_{n+1})$,

for the corresponding premises of (a) by $n\overline{A}_1\text{-transitivity, in }\rho$ is also

$$(\bar{b})$$
 $(b_1, \dots, b_{n-1}, b_{n+1}, b_n)$,

for all $a_0, \ldots, a_{n+1} \in S$.

THEOREM 4. If ρ is $(2,n\overline{A}_1)^{\frac{1}{2}}$ RT ralation, then UE is (n+1)-ary equivalence relation on S.

Proof.

- a) UE is (by definition) 2-reflexive and symmetric.
- b) UE ia $n\bar{A}_1$ transitive:

Let $(a_0^n) \in UE$ and $(a_1^{n+1}) \in UE$, $a_i \neq a_j$, for $i \neq j$, $i, j \in \{1, ..., n\}$. By $(\overline{1})$ this is equivalent to (a) in (*).

 b_1) If a_0,\ldots,a_{n+1} are not all different, and the conditions for the application of $n\bar{A}_1$ -transitivity are satisfied, then $(a_{\gamma(0)},\ldots,a_{\gamma(n-1)},a_{\gamma(n+1)})\in\rho$, for each $\gamma\in\{0,\ldots,n-1,n+1\}!$, because of

- 1) 2-reflexivity of ρ ; or
- 2) the consequence becomes one of the premises in (a). Thus, $(a_0,\ldots,a_{n-1},a_{n+1})\in UE$.

 b_2) Suppose now that a_0,\dots,a_{n+1} are all different. Then, starting with (a), we get that with $(a_0,\dots,a_{n-1},a_{n+1})$, all (n+1) tuples of the form

$$(a_0, a_{n(1)}, \dots, a_{n(n-1)}, a_{n+1}), \quad n \in \{1, \dots, n-1\}!$$

also belong to ρ . Since 2-reflexive and $n\overline{A}_1$ -transitive relation admits all cyclic permutations of first n coordinates of it's elements, and by (*), it follows that for each

$$\gamma \in \{0, ..., n-1, n+1\}!, (a_{\gamma(0)}, ..., a_{\gamma(n-1)}, a_{\gamma(n+1)}) \in \rho$$
.

Thus, $(a_0, \ldots, a_{n-1}, a_{n+1}) \in U^E$, completing the proof of the proposition.

THEOREM 5. <E, \subset > is a complete lattice iff ρ is (2, $n\bar{A}_1$) * RT relation.

Proof.

- a) Let ρ be $(2,n\overline{A}_1)^{\pm}RT$ relation on S. Then by Theorem 4., UE ϵE . That is why UE is the only maximal element in $\langle E, \subseteq \rangle$. and clearly, the gratest one. E is closed under arbitrary intersections, and thus, it is a complete lattice.
- b) Let now $\langle E, \subset \rangle$ be a complete lattice. Then it has a unit element UE. UE is thus $(2, n\bar{A}_1)^{\frac{1}{2}}$ RT relation. Indeed, let

(o)
$$(a_0^n) \in UE \text{ and } (a_1^{n+1}) \in UE \text{ imply } (a_0^{n-1}, a_{n+1}) \in UE$$
.

Then by $(\overline{1})$

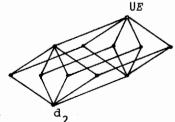
$$\begin{array}{l} (a_0^n) \in UE \ \ \text{iff} \ \ (a_{\alpha(0)}, \ldots, a_{\alpha(n)}) \in \rho, \ \ \text{for every } \alpha \in \{0, \ldots, n\}! \ ; \\ (a_1^{n+1}) \in UE \ \ \text{iff} \ \ (a_{\beta(1)}, \ldots, a_{\beta(n+1)}) \in \rho, \ \ \text{for every } \beta \in \{1, \ldots, n+1\}! \\ (a_0^{n-1}, a_{n+1}) \in UE \ \ \text{iff} \ \ (a_{\gamma(0)}, \ldots, a_{\gamma(n-1)}, a_{\gamma(n+1)}) \in \rho \ , \ \ \text{for every} \\ \gamma \in \{0, \ldots, n-1, n+1\}! \ . \end{array}$$

In this way it is shown that ρ satisfies (*), and thus it is $(2,n\overline{A}_1)^{\frac{1}{n}}RT$ relation.

EXAMPLE 2. $S = \{a,b,c,d,e,f\}$, n = 2.

$$\rho = d_2 \ U \pi (a,b,c) \ U \pi (a,b,d) \ U \pi (a,c,d) \ U \pi (b,c,d) \ U \pi (d,e,f)$$
(1)
$$U \{ (a,b,e), (b,a,e), (a,c,e), (c,a,e), (a,b,e), (d,a,e), (b,c,e), (c,b,e), (b,d,e), (d,b,e), (d,c,e), (a,d,f), (b,a,f), (a,c,f), (c,a,f), (a,d,f), (d,a,f), (b,c,f), (c,b,f), (b,d,f), (d,b,f), (c,d,f), (c,d,f), (d,c,f) \}.$$

 ρ is $(2, n\overline{A}_1)^{\frac{1}{n}}$ RT relation. The lattice $\langle E, \subset \rangle$ is given by it's Hasse diagram, where zero is d_2 , and unit is UE, described by (i) in ρ .



Since in binary case there is only one class of RT relations, and it satisfies (*), the fact that for n=1 $\langle E, \subseteq \rangle$ is a lattice is a direct consequence of Theorem 5.

* * *

Consider now the binary relation χ , defined at the beginning of the article, concerning the induced order on the partition. The following two theorems deal with the same problems for (n+1)-ary relations.

THEOREM 6. Let ρ be $(2,n\overline{A}_1)^{\frac{1}{n}}RT$ relation on S, and denote UE by σ . Let S/σ be the corresponding partition of type n. Now, if χ is (n+1)-ary relation on S/σ , defined by

$$\begin{array}{lll} (x) & & (\mathbf{Q}_1^{n+1}) \ \epsilon \ \chi \ \textit{iff} \ (\mathbf{x_{i_1}}, \dots, \mathbf{x_{i_{n+1}}}) \ \epsilon \ \mathsf{p}, \ \textit{for all} \\ \\ & & (\mathbf{x_{i_1}}, \dots, \mathbf{x_{i_{n+1}}}) \ \epsilon \ \mathsf{Q}_1 \ \mathbf{x} \dots \ \mathbf{x} \ \mathsf{Q}_{n+1}, \mathsf{Q}_1, \dots, \mathsf{Q}_{n+1} \ \epsilon \ \mathsf{S}/\sigma \ , \end{array}$$

then in this way induced (by ρ) relation χ is (n+1)-reflexive, (n+1) -antisymmetric, and $n\bar{A}_1$ -transitive.

Proof.
$$\begin{array}{c} \text{Proof.} \\ \text{n+1} \\ \text{a)} & \text{(Q)} \in \chi \text{ iff } (x_{i_1}, \dots, x_{i_{n+1}}) \in \rho \text{, for all} \\ \\ x_{i_1}, \dots, x_{i_{n+1}} \in Q \text{, and this is true since } (x_{i_1}, \dots, x_{i_{n+1}}) \in \\ & \text{ε σ $\subseteq ρ .} \end{array}$$

Thus χ is (n+1)-reflexive.

b) χ is (n+1)-antisymmetric:

Let
$$(Q_{\pi(1)}, \dots, Q_{\pi(n+1)}) \in \chi$$
, for each $\pi \in \{1, \dots, n+1\}!$. Then
$$(\mathbf{x}_{\pi(\mathbf{i}_1)}, \dots, \mathbf{x}_{\pi(\mathbf{i}_{n+1})}) \in \rho$$
, whenever this $(n+1)$ -tuple belongs to $Q_{\pi(1)} \times \dots \times Q_{\pi(n+1)}$, i.e. when

¹⁾ These properties are consistent as shown in [3].

$$(x_{i_1}, \dots, x_{i_{n+1}}) \in \sigma$$
. But this means that $x_{i_1}, \dots, x_{i_{n+1}}$

belong to the same class, i.e. $Q_1 = ... = Q_{n+1}$.

c) χ is $n\overline{A}_1$ -transitive:

Let $(Q_0^n) \in \chi$, $(Q_1^{n+1}) \in \chi$, $Q_i \neq Q_j$, for $i \neq j$, $i, j \in \{1, ..., n\}$. This holds if and only if

$$(x_{i_0}, \dots, x_{i_n}) \in \rho$$
, $(x_{i_1}, \dots, x_{i_{n+1}}) \in \rho$, whenever $x_{i_j} \in Q_j$
 $(j \in \{0, \dots, n+1\})$.

Then
$$(x_{i_0}, ..., x_{i_{n-1}}, x_{i_{n+1}}) \in \rho$$
, $x_{i_j} \in Q_j$, $j \in \{0, ..., n-1, n+1\}$,

since : a) ρ is 2-reflexive (if x_1, \dots, x_n are not all different) or b) ρ is $n\overline{A}_1$ -transitive (otherwise).

By a), b) and c), the proof is complete.

Generalized ordering relation χ , defined in the preceding proposition, in binary case reduces to the usual one. The same is with the relation ψ , given in the following proposition. This one has already been defined in |3|, but with some unpreciseness included. That is why we repeat it here, together with one example, illustrating both, χ and ψ .

THEOREM 7. Let |S| > n, $n \ne 2$ and ρ , σ , and S/σ be as in Theorem 6. Define (n+1)-ary relation ψ on S/σ in the following way:

For
$$Q_1, \dots, Q_{n+1}$$
 $\in S/\sigma$, if a) $|\{Q_1, \dots, Q_{n+1}\}| \neq 2$, then

 $(Q_1^{n+1}) \in \psi$ if and only if there are $x_1, \dots, x_{n+1} \in S$, $x_i \neq x_j$, for $i \neq j$, $i, j \in \{1, \dots, n+1\}$, such that

$$I \quad \mathbf{A_i} = \{\mathbf{x_1, \dots, x_{n+1}}\} \setminus \{\mathbf{x_i}\} \subseteq \mathbf{Q_i}, \ \mathbf{i=1, \dots, n+1}, \ and \ that$$

$$II \quad (\mathbf{x_i}, \dots, \mathbf{x_i}_{n+1}) \in \rho \ \textit{when} \ (\mathbf{x_i}, \dots, \mathbf{x_i}_{n+1}) \in \mathbf{A_1} \mathbf{x} \dots \mathbf{xA_{n+1}};$$
 and if

b) $|\{Q_1,\ldots,Q_{n+1}\}|=2$, then $(Q_1^{n+1}) \in \psi$ iff there is exactly one set with n+1 element $\{x_1,\ldots,x_{n+1}\} \in S$, $x_i \neq x_j$, for $i\neq j$, $i,j \in \{1,\ldots,n+1\}$, such that I and II hold.

Then ψ is (n+1)-reflexive, (n+1)-antisymmetric, and $n\bar{A}_1^-$ transitive relation on S/s.

Proof.

..., n+1} \{i}, $Q_r \neq Q_e$, we have

a) $(Q_1^{n+1}) \in \psi$ if and only if there are $x_1, \ldots, x_{n+1}, x_i \neq x_j$, such that A_1 defined in I is a subset of Q_1 , and that II is satisfied for $A_i = A_1$, $i=1,\ldots,n+1$. Since each class contains at least n elements, A_1 always exists, and II is a consequence of the definition of S/σ . Thus, ψ is (n+1)-reflexive.

Let $(Q_{\pi(1)}, \ldots, Q_{\pi(n+1)}) \in \psi$, for each $\pi \in \{1, \ldots, n+1\}!$.

Then for each such π , there is exactly n+1 element x_1,\ldots,x_{n+1} such that I and II are satisfied, provided that $\Omega_1,\ldots,\Omega_{n+1}$ are not all equal. Realy, if $\{Q_1,\ldots,Q_{n+1}\}$ consists of only two different classes, then this uniqueness is postulated. Otherwise, suppose that for some $\alpha,\beta\in\{1,\ldots,n+1\}$! $Q_{\alpha(1)},\ldots,Q_{\alpha(n+1)}$ determines $x_1,\ldots,x_{i-1},x_i,\ldots,x_{n+1}$, and $Q_{\beta(1)},\ldots,Q_{\beta(n+1)}$ determines $x_1,\ldots,x_{i-1},x_i,\ldots,x_{n+1}$. Now, for Q_r and Q_s , r, $s\in\{1,\ldots$

$$|Q_r \cap Q_s| = |\{x_1, \dots, x_i, x_i', \dots, x_{n+1}\} \setminus \{x_r, x_s\}| = n$$
 which

means that $Q_r = Q_s$, contrary to our assumption. So we can consider x_1, \ldots, x_{n+1} . Each of this elements is in at least one class and thus all permutations of (x_1^{n+1}) are in ρ , i.e. all those classes are equal, proving (n+1)-antisymmetry for ψ .

c) ψ is $n\overline{A}_{\underline{1}}$ -transitive: Let (Q_0^n) $\epsilon\psi$, (Q_1^{n+1}) $\epsilon\psi$ satisfy the conditions of $n\overline{A}_{\underline{1}}$ -transitivity. It means that there are x_0,\ldots,x_n

and y_1,\ldots,y_{n+1} , satisfying I and II. By the definition of the sets A_i , $\{x_0,\ldots,x_n\}=\{y_1,\ldots,y_{n+1}\}$, and we can deduce that $x_i=y_i$ for $i=1,\ldots,n$, and $x_0=y_{n+1}^{-1}$. Now, $n\bar{A}_1$ -transitivity for ψ follows directly from the same property of ρ .

EXAMPLE 3.
$$S = \{1,2,3,4\}, n=2$$
.
$$\rho = d_2 U \pi (1,2,3) U \{(1,2,4),(2,1,4),(1,3,4),(3,1,4),(3,4,1),(4,3,1),(2,3,4),(3,2,4),(3,4,2),(4,3,2)\}.$$

 ρ is $(2,2\overline{A}_1)^{+}$ RT relation on S.

$$\sigma = d_2 U \pi (1,2,3)$$
.

$$S/\sigma$$
: $Q_1 = \{1,2,3\}, Q_2 = \{1,4\}, Q_3 = \{2,4\}, Q_4 = \{3,4\}$.

3-reflexive, 3-antisymmetric and $2\bar{A}_1^-$ transitive relation χ , defined in Theorem 6, is given by:

$$\chi = \{ (Q_1, Q_1, Q_1), (Q_2, Q_2, Q_2), (Q_3, Q_3, Q_3), (Q_4, Q_4, Q_4), \\ (Q_1, Q_1, Q_2), (Q_1, Q_1, Q_3), (Q_1, Q_1, Q_4), (Q_3Q_4Q_3), \\ (Q_4, Q_3, Q_3), (Q_4, Q_4, Q_2), (Q_4, Q_2, Q_2), (Q_2, Q_4, Q_2), (Q_4, Q_4, Q_3) \}.$$

3-reflexive, 3-antisymmetric and $2\bar{A}_1$ -transitive relation ψ , defined in Theorem 7., is given by:

$$\psi = \{ \{ (Q_1^3)_{1=1,2,3,4} \} \cup \{ (Q_1,Q_2,Q_2), (Q_2,Q_1,Q_2), (Q_1,Q_3,Q_3), (Q_3,Q_1,Q_3), \\ (Q_4,Q_4,Q_1), (Q_1,Q_1,Q_2), (Q_1,Q_1,Q_3), (Q_1,Q_1,Q_4), (Q_4,Q_4,Q_2), \\ (Q_4,Q_2,Q_2), (Q_2,Q_4,Q_2), (Q_4,Q_4,Q_3), (Q_4,Q_3,Q_3), (Q_3,Q_4,Q_3), \\ (Q_4,Q_1,Q_3), (Q_1,Q_4,Q_3), (Q_1,Q_4,Q_2), (Q_4,Q_1,Q_2), \\ (Q_4,Q_1,Q_3), (Q_1,Q_4,Q_3), (Q_1,Q_4,Q_2), (Q_4,Q_1,Q_2) \}.$$

¹⁾ The statement holds in ternary case also if we require that $x_1 = y_1$ and $x_2 = y_2$.

REFERENCES

- | 1 | Pickett, H.E., A note on Generalized Equivalence Relations, Amer.Math.

 Manthly, 1966, 73, No. 8, 860-861.
- |2| Ušan, J., Šešelja, B., Vojvodić, G., Generalized Ordering and Partitions,

 Matematički Vesnik, 3 (16), (31), 1979, 241-247.
- |3| Ušan, J., Šešelja, B., On Some Generalizations of RAT Relations, Proceedings of the Symposium n-ARY STRUCTURES, Skoplje 1982, (to appear).
- |4| Ušan, J., Šešelja, B., On Generalized Implication Algebras, Zbornik radova PMF u Novom Sadu, 10 (1980), 209-213.
- |5| Ušan, J., Šešelja, B., Transitive n-ary relations and Characterizations of Generalized Equivalences, Zbornik radova PMF u Novom Sadu 11 (1981), 231-246.

REZIME

STRUKTURA UOPŠTENIH EKVIVALENCIJA SADRŽANIH U (2,nĀ,)-RT RELACIJAMA

U radu se razmatra jedna klasa generalisanih relacija pretporetka $((2,n\overline{\mathbb{A}}_1)-RT$ relacija) i ispituje se struktura u njima sadržanih ekvivalencija. Daju se potrebni i dovoljni uslovi pod kojima je taj parcijalno uredjen skup kompletna mreža. Takodje se pokazuje da se na odgovarajućim particijama tipa n može posmatrati uopšteni poredak, indukovan spomenutim generalisanim pretporetkom.