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ABSTRACT

Our aim is to show that the usual product of continuous functions
can not be extended on the whole field M (the field of Mikusifiski ope-
rators) or on some special subsets of M, as an inner operation, if we re-
quire the extended operation to preserve some natural properties .of :the

product of continuous functions.

INTRODUCTION

The field M of Mikusiriski operatars |1| was constructed by the
extension of the ring C of continuous functions £ ={f(t)} de-
fined -on the interval [0,=) and provided with two operations:
sum and convolution (fg = fg f(t-u) -g(u)du). In C we have the
countable and saturated family of semi-norms: | £}l n =°r<nta:)<crlf(t)l
and in this way a topology. In M we define a convergence class
too. Usually we work with the following one (called type I) :
the sequence {an}==M converges in M to a if and only if there
exists g €M such that qa,eC and qa, converges t_o ga in C.This
class is not topological. ’

The field M contains the ring L of local integrable fun-
ctions defined on the interval [0, =).

The default of an inner operation in M (let‘ﬁs denote
it by .. ), with the restriction on C as the usual product, di-
minishes the possibility of applying operators, especially in
the theory of differential equations. This is the reason to ask
the following gquestion: Is 1t possible to define in M such an
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operation .. which preserves some natural properties of the
product of continuous functions? The answer to this question
is the subject of discussion of this paper. )

1. EXTENSION OF THE CLASSICAL DERIVATIVE TO THE ELEMENTS OF C

In the field M, the element £ (the integral operator which is from
C) has, in M, the inverse element s (which is not from C).Using
the operator s, we can enlarge the classical derivative to every
continuous function f €C: Df =sf -f(0)I ; I is the unit element
in the field M. This derivative D has the two following proper-
ties:

- If the function f €C has the usual derivative f~ €L,
then Df =f7. This follows from the fact that in this case sf =
= {£7(t)} +£(0) I.

- If the functions f and g from C have as their deriva-
tives £ and g~ belonging to L, then in M there is:

(1) D{f(t)-g(t)} = {g(t)-DE()} +{f(t)-Dg(t)} .
2. THE SET P

By P we denote every subset from M which contains at
least the ring C and elements of the form.Df, f eC. Let us su-
ppose that in P is defined an inner operation .. which is as -
sociative, and has the unit element {1} and the restriction of
which on C is the usual product. For this new operation we su-
ppose something more: If f and g belong to C and their deri-
vatives belong to L, then:

(2) D(f..g) =Df. g+f . Dg

In P we induce the convergence class from M.,

PROPOSITION. The mapping P into P :a~>ag.. a, where

a, 18 any element from P, 18 not sequentially continuous.

The proof of this proposition is based on two lemmas.

LEMMA 1. The inverse element of {qtp} €C, g#0, 0«

<p <l, exists in P for the operation - and it is8 just

p{rt'™P}, q.r = = -
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Proof of lemma 1. - Let h be an element of P
such that:

L3

D{r tl-p}--{q tP} = h .

Because of the associativity of the operation .. :

tp+l

p{r t!"P} . (g } =h . {t} .

Using relation (2) and the properties of D we have:

D[{rt' P}« {qtP*1)] - [rt'™Ph. DiatP*'] =n . (&},
respectively:

{t} =h -~ {t} , which gives h = {1}.
In a like manner we can prove that:

{qtP} . D{rt!™P} = {1} .

LEMMA 2. lim T(x)2%, x>0, does not exist in M .
b age)

Proof of lemma 2. - Let us suppose that such a 1li-
mit exists; then there exists a g€M such that F(k)lxq belongs
to C and converges in C. From the continuity of the second ope-
ration in M it follows that there exists an element w € C such
that tF(x)£2+xF(2+x)w belongs to C converges in C too.

“We know that fg u1+x-w(t-u)du converges uniformly to
t
é u'w(t-u)du in every interval [p,f], T <w, as x +04. Because
2f the Titchmarsh theorem |2| there exists t e (0,T ) such that

i)

o

o u'w(to-u)du =r #0. We can suppose that r >0 (without any res-

triction). Then we also have an interval Eto-n, to+n] = LO,To]
such that the continuous function fo u'w(t-u)du>r” >0. Let us

chosse an ¢ in such a way that 0 <e <r”. For this e there exi-
sts §(e) such that:

t 1+x t
fu T w(t-u)du > [ urw(t-u)du-e, 0 <x<§(e) ,
o o
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for every te ['O,Toj and also for t e [to—n, t°+n] .
We know that I'(x) >0, x>0 and I'(x) +» for x+0, x>0.
Consequently:

t
r(x) | u1+x-w(t-u)du_i (r"-e)T(x)
)

for te[t_-ny t +n] and r(x)T(2+x)2°**  cannot converge in C.

Pr oo f of the proposition. - Let us start from the
sequence {a } <P:

a = (tVy . D{ntl/n}, 0<v<l .,

First we shall find an other analytical expression for
it. For this aim let us "multiply" a, by

1 l1-v-1/n o .
{F_—lt }€C, nzno>l, lvl/n°>0 H
1-1/n
1 . 1-v-1/n, -t - 1/n
=t } ay, = =571 D{nt" "}
1-1/n
= p{-2 Tt . 1/n
=Dl t} » D1~ {at?/7}.
By lemma 1 we have:
' {25 - () = (7).
Now we can conclude that:
{tl-v_l/n} o an = {1}

and a,, nxng >1, l-v—l/no >0 is the inverse element to

{tliv-l/n}. Lemma 1 says that:

v+l/n

_ ~rt _ v+1l/n
an =D {m } = I‘(V"’l/n)l -
eV
Now we shall prove that a, converges in P to D {?7 } .
v _ r v’ =

a belongs to C and converges in C to T(v)4
n

v
= wp{E ).

v L1-v

The element D {—T:;-}_eP cdn be our a  from. the proro-

sition. "Multiplying" a by the so defined a, and taking care

of lemma 1 we have:
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tl—v

I-v

1/n

D { }ow () .« D{nt!’™} = p{nt!’/®} = ri/myet/®

and this sequence does not converge in P (by lemma 2).

CONSEQUENCE OF THE PROPOSITION. The. consequence of
our proposition is that the usual product of continuous
functions canmot be extended to a set of the form P (as well
as M) as an inner operation, if we require of the extended ope-
ration: to be associative; to have the unit element |1| ; for
f,9 €C with derivatives f~,g” € L, the relation (2) to be sati-
sfied and the application a-a, .. a, P into P, to be sequen-
tially continuous for every a, €P.

REMARK . Our proposition remains true if we change
the convergence class in M and consequently in P under only
one condition: that I‘(x)lx does not converge when x -0, in
this new convergence class. This is the case if we replace the
defined convergence class by the so-called convergence class

type II.

REFERENCES

1| Mikusinski J.: Sur les fondements du caleul opératoire, Studia Math.
XI (1950), 41-47.

|2] Titchmarsh E.: The seros of certain integral functioms, Proceedings
of the London Math. Soc. XXV (1926}, 283-302.

Received by the editors December 20,1982.
REZIME

O NEMOGUCNOSTI PROSIRENJA NEPREKIDNIH
FUNKCIJA NA POLJE OPERATORA MIKUS INSKOG

ObeleZifemo sa C prsten neprekidnih funkcija, a sa L
prsten lokalno integrabilnih funkcija definisanih nad [0,%). I
je polje operatora Mikusifskog !1|, a D operacija koja presli
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kava C u M i koja uop3tava klasi&ni izvod: Df =sf - £(0) I gde
sus 1 I elementi iz M (s operator diferenciranja, a I jedini-
&ni elemenat). P ¢€e biti svaki podskup od M koji sadr¥i bar C
i elemente oblika Df, f e€C.

Pokazano je da se u P (pa time i u M) ne mo%e defini-
sati unutra3nja operacija .+ ako.se od nje zahteva da je nje-
na restrikcija nad C obi&no mnoZenje, da je asocijativna, da
ima jediniéni elemenat {1}, da za £ i g iz C koje imaju izvo-
de £° 1 g” iz L bude zadovoljena relacija (2) i da je presli-
kavanje a+a, a sekvencijalno neprekidno za svako a, €EP .
Sekvencijalna neprekidnost se odnosi na konvergentnu klasu ti-

pa I i II kao i svaku drugu u kojoj ne postoji 1lim r(x)*.
X+0



