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ABSTRACT

In this note, we first generalize Minh“s theorem for spaces with a
family of pseudo-metrics, next we introduce the notion of the probabilistic
largest distance between two sets and establish some of its simple proper-
ties, and fanally, we prove an analogue to Minh“s theorem for PM-spaces.

1. INTRODUCTION

In |1| €irié has proved a fixed point theorem for multivalued quasi-
contractions, i.e. for mappings satisfying the following con-
dition

(1)  o(Tx,Ty) <k.max{d(x,y), o(x,Tx), p(y,Ty), d(x,Ty),
d(y,Tx)}

where k <1, d is a metricdefined in X,p stands for the largest
distance between two sets defined by

p(A,B) = sup {d(x,y): x €A, y ¢ B}
and finally, as usual,
d(x,A) = inf {d(x,y): y €Al}.

Then, in |2| W.A. Minh generalized C€irié~°s result by
showing that in (1) all the d°s can be replaced by p .

Note that up to now there have been a lot of fixed po-
int theorems concerning multivalued mappings of the contractiw:
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type in metric spaces, but none of their analogues in probabi-
listic matric spaces (in abbreviation, PM-spaces) has appe ared
even for the simplest case such as for Nadler’s theorem |[3].
The main difficulty is that the topology in a PM-space depends
on a parameter A € (0,1), so we cannot choose an iterative se-
quence independent of A without additional assumptions. Re-
cently on the way to getting an analogue to Nadler s theorem
in PM-spaces Had¥ié proved a theorem whose assumptions assure
the existence of such a sequence |4].

2. MULTIVALUED QUASI-CONTRACTIONS IN SPACES WITH A FAMILY
OF PSEUDO-MEXKRICS

First let us recall the following definition. Let X be
an arbitrary set, a mapping d :X xX+R, (the set of all non-
negative numbers) is called a pseudo-metric if it satisfies
the following conditions

d (x,x) o,
d(XIY)‘ d(YIx)I
d(x,y) id(XIZ) + d(z,y)

for every x,y,z in X.

Let A be an index set. A pair (x,dx), AeA, 1s called
a space with a family of pseudo-metrics if dk is a pseudo-me-
tric for each X €A . In the sequel we always assume that the
family'{dx} satisfies the following "separation céndition™

dx(x,y)_=0 (Vied) = x=y.

In |8]| such a space is called uniformizable and same fixed po-
int theorems for singlevalued mappings of the contractive type
in these spaces are established.

The notions and results in this section mostly repeat
that of |2| for each fixed A , but for converience to readers
we shall develop them here briefly (the proof is partially si-
milar to that of [1]).

DEFINITION 2 . Let Y be an arbitrary set. A mapping
p:XxX+R _1is called a semimetric if it satisfées the follo-

wing conditions -
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p (x,¥y) =p(y,x),
p(x,¥) <p(x,2) + p(z,y)

for every x,y,z in Y.

Let (¥,p,) be a space with a family 6f semimetrics
{px :Ae ). A sequence {xn} cY is called a Cauchy sequence if

1im p, (x_,x_) = 0 for each A . A sequence {x.} is said to be
n, ATn" m n
convergent to x €Y (symbolically, xn+x) if 1im oy (xn,x) = 0 for

nr<o

each ). The space Y 1s sald to be complete if every Cauchy
sequence is convergent. Note that these notions are formal be-
cause a semimetric does not generate any topology, this is
easily seen when we consider a stationary sequence X, X with
p(x,x) >0.

In what follows we assume that the family of semime-
trics {pk} has the following property

p)‘(x,y) =0 (¥Xed) = x=y.
Obviously each pseudo-metric is a semimetric. The largest di-

stance between two bounded sets in a metric space is a nontri-
vial example of semimetrics.

LEMMA 1. Let (Y,px) be a eomplete 8space with a fami-
ly of semimetrics, T : Y +»Y a mapping satisfying the following
~condition: for each ) €A there is a q, <1 such that
(2) pA(Tx.Ty) £q, rmax {"x(x'Y)' px(x.Tx).

0y (YsT¥) s py (X, Ty) 0y (¥, TX)) |
for every x,y in Y.

Then there exists a unique fizxed point x* of T . More-~
over, we have pk(x*,x*) =0 for each X €A and % + x* for

every x in Y.

Proof€t. We shall use the following notations

(T'x% : i ¢,1,...,n}, where T°x=x,
{r"x:1=0,1,2,... } ,

3] (Xr n)

e(x'm’
8, (n) = sup {p, (x,¥) : x,y €A} .

Fixing A eA we have
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a) if 1<1,j <n then p, (T'x,T9x) <q,5, (8(x,n)). From

this it follows that 5A(e(x,n)) = px(x,T X) with some k< n.
b) pl(X.Tx)
8y (6 (x,n)) <max {—~—— , p.  (x,x)} .
- A
1—qx

Indeed, fixing n, by a) we have GA(B(x,n)) = px(x,Tkx) with
some k:n. If kzl then

Gx(e(x,n)) = pX(X,Tkxﬂ_ipx(x,Tx) +pA(Tx,Tkx) <

<0, (X, Tx) + g8, (6 (x,n)) .

From this b) follows.

c)
- p, (x,Tx)
p)\(Tnx,Tm’mx):q;l ‘max{ 2 ¢ 0y (X))
1-qA
Indeed, from a) and b) we get
oy (T, T M) 2 qy6, (0 (T x,mi1)) = qpp, (177 1k, Ty,

IA

aje, (6 (T xum 1)) =L < s, (8 0em_+1)) <

o, (x,Tx)
q;lGA (6 (x,-ao))_<_q;1 max {A —— Py (x,x)} .
1-q,

[

This implies that {T"x} is a Cauchy sequence and hence ™% + x*,

Since pA(x*,x*)_ipA(x*,Tnx) +pl(tnx,x*), we get pA(x*,x*) =0.
d) We have
. ‘
P,y (x*, Tx*) gpl(>t*,Tn ) +pA(Tn+lx,Tx*) Y (%, T yy +

+ q’\max{px (Tnx,x*) TN (Tnx,Tnﬂx) 0y (x*,Tx*),
o, (T7x,Tx*) 0, G, T 1)}
Letting n +« we obtain
px(x*,Tx*)' < qxpx(x*,Tx*) R
from this 3 (x*,Tx*) = 0 for each A and hence x® = Tx*, The uni-
queness of x* is proved in the usual way and the lemma follows.
Let (X,dx) be a space with a family pseudo-metrics. By

Py we denote the largest distance between two sets generated
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by d)‘, GA(A) =pA(A,A) - the A-diameter of A, B(X) - the class
of all non-- empty subsets of X with " finite A-diameter for
each A (these subsets are said to be: bounded).

LEMMA 2. If (x,d.A) i8 a space with a family of‘ peeu-
do-metrics then (B(X),p,) <& a space with a family of semime-
trice. Moreover, ©f X ig complete, so 718 B(X).

Proof. The symmetry and the triangle inhequality
of Py follow immediately from the corresponding properties of
d)‘. Further, if Py (A,B) = 0 for each X then we have d, (x,y)=0
for each X and for every xeA, yeB, it, in turn, implies that
x=y =A =B, Now, let {An} be a Cauchy sequence in B(X). Taking
Xn eAn for each n we obtain a Cauchy sequence {xn} in X. By
the completeness of X, X, > X. Fixing A e A we get

2N (x,An) 20 (x,xn) +va (xn,An) idA (x,xn) +p)‘ (An,An) .

Letting n+= we get 1lim p)‘(x,An) =0 for each A , 1.e. by de~-
N+

finition An-v{x} in B(X). So B(X) 1is complete and the lemma
follows.

THEOREM 1. Let (x,d)‘) be a complete space with a fa-
mily of peeudo-metrice, T :X+B(X) be a mapping satiefying
the following comdition: for each A e\ there is a q, <1 such
that

(3) p,(Tx,Ty) < qmax{d, (x,¥),p, (x,Tx),0, (¥,T¥),
Py (X, Ty) ,0, (y,Tx)}
for every x,y 1in X .
Then T has a unique fixed point x*. Moreover, in fact,

it 18 a stationary point (i.e. Tx* = {x*}).

Proof£f. First we show that T maps B(X) into B(X).
Indeed, let A@ B(X) fix X, €A and take an arbitrary x in A.
Then we have

Py (Tx,Tx,) < q,max{d, (x,x),p, &x,Tx),p, (x,,TX,),
p,‘(x,Txo),p)‘(xo,Tx)} .

Suppose for exampple, the maximum is attained at Py (x,Tx). Then
we have '
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DA(TX'Txo’.5qx°A(x'TX).5qx9x(x'Txo)'*qxpx(Tx'T“o) .

Consequently

Similarly for the case when the maximum is attained at pA(xo,Tx)
and thus we get

P (TA,Tx,) :max{q)‘s)‘ (pr), Py (A,Tx,)} .

1-q,
From this TAeB(X) .

Obviously, from (3) we have for every A,B in B(X)

Py (TA,TB) 5q)‘maxlp)‘ (A,B) Py (A, TA) Py (B,TB),
pA(A,TB):D)‘(B,TA)} .

From Lemmas 1 and 2 it follows that there is a unique Ao € B (X)
such that TA, = Ao, moreover p)\(Ao"Ao) =0 for each A , i.e.
A, 1is a singleton {x*}.

The uniqueness of x* is proved as follows. Let y* be

another fixed point of T, i.e. y* eTy* , By (3) we have
py (Ty*,Ty*) <qymax{d, (y*,y*),0, (v*/Ty*) } <q,p, (Ty*,Ty*).

From this p)‘(';‘y*,Ty*) = 0, it implies that Ty* = {y*} and
p)‘(y*,y*) = 0. Now again by (3) we get

dk (x*,y*) = dl (Tx*,Ty*) iqxdx (x* Iy*)
for each A , hence x* =y*. The proof of the theorem is comple-

te.

3. THE PROBABILISTIC LARGEST DISTANCE BETWEEN TWO SETS.

Let us recall some definitions. A function F : R~ [0, 1]
(here R denotes the set of all real numbers) is called a dis-
tribution function if it is non-decreasing, left-continuous,
inf F = 0 and sup F = 1, The family of all distribution func-
tions is denote by P . A PM-space is a pair (X,F), where X is
a certain set and F : X' xX +7 satisfying the following conditions
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(here instead of F(x,y) we write ny for simplicity of notati-

on)
ny(t) =1 (¥t >0) <=>x =y ,
ny(O) =0,
Fay = Fyx
ny(t+s) >min {sz(t) . Fzy(s)}

for every x,y,z in X and t,s >0 (see |7| for details).
Similarly to the notion of probabilistic diameter in-
troduced in |6|, here we define

SAB(t) = sup inf F__(s) ,
s<t xglA,yeB

where A and B are probabilistic bounded sets, i.e. they satis-

fy the condition sup Dc(t) =1 with Dc(t)_ = écc(t).
t>o

Here are some simple properties of § AB"

1. GAB is a distribution function.
Evidently, 6AB
GAB(O) = 0. To prove squAB = 1 we now show that it satisfies

the probabilistic triangle inequality, i.e.

is non-decreasing and left-continuous, ’

GAB(t+s) > min{GAC(t)', GCB(s)}

~ for every A,B,C probabilistic bounded and t,s >0,

Suppose on the contrary that there are A,B,C,t,s such
that
(4) a = §p(t+s) <b <min{§p.(t), 8.5(s)} .

Since b <sup inf Foz (v), there is vy <t such that
v<t x€A,y€B _
inf F z(vo) >b. Analogously, there exists LA such that
xehA,zeC - ‘
inf F, (wo) >b, By the probabilistic triangle inequality
z¢C,y€B Y -

for ny we have
ny (vo+w°) >min {sz (vo) R Fzy (wo)}

for every x,y,z in X. In particular, fixing x €A, y €B in the
left side of the above inequality we obtain
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F (v°+wo) >min{ inf F__(v ), inf

F__(w.)}>b.
Xy xeA,zeC *%Z ©  zec,yeB ¥ ©° ~

Fram this

a = sup inf  F__(u) >b
u<s+t x€A,yeB
ahd we get a contradiction to (4) , so the probabilistic tria-
ngle inequality for § AB is proved.
Now fixing Xq eA, Yo e B we have
t
B( '3-)}_>_

t t
Sap(t) 2minday, (3008, 4 (308,

> min{ Dy (), B, (5), Dyl )1 .
[~ e}

Since DA, DB and Fxoy are distribution functions, from this
el

we get the desired result.
2, SAB(t) =1 (¥t>0) => A = B_.
Indeed, since sup inf F__(8) = 1 for each t>0 then

s<t x€A,yeB
for every A e (0,1) and t >0 there exists s <t such that

Fxf('o_) >1 - Afor every xeA, y eB. It follows that ny(t) =1

for every x edA, yeB and £t >0, it in tnrn implies A =B and mo-
reover, they are a singleton.

By the factsindicated in 1. and 2. and the obvious pro-
perty GAB = GBA’ we can call 6AB a probabilistic semimetric in

the space of all probabilistic bounded subsets of X.
3. It is well-known that the (g,8)-topology in a PM-
space can be described by a family of pseudo-metrics
d, (x,y) = sup{t Py () <1 -2}, (e(0,1)).
The A -larges distance between two bounded sets is defined as
usual
py (A,B) = sup{dl (x,y): xeA, y eB} .

Now we are interested in the following problem: In which case
have we

(5) 0, (A,B) = sup{t : aAB(t) <1 -a}? .
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First we show that

sup{t;. : 6, (t) <1-2}=sup{t: inf F__(t) <1-2} .
AB ' X€EA,vEB Xy -

For simplicity of notation we denote for the moment

G = inf ny, z,={t :G(t) <1-1}, Z, ={t :sup G(s)21 -2},
XCAIYGB ) s<t

So we must prove that sup Zl =sup Z2.

Since sup G(s) <G(t), we have sup Z, <sup Z, . In order
s<t - -
to prove the converse inequality, we take arbitrary te 22 and

note that if s <t then G(s) <1 -1 and hence s € Z,. This means
that t <sup Zys consequently, sup Zzisup z, as desired.

Thus we now must only answer the question: When does
the equality
(6) sup sup{t:ny(t)il-)\} =gup{t : inf ny(t)_<_1—)\}
xeA,yeB xeA,yeB
hold ?
Note that the inequality " <" always holds since

inf F <F for every x e, vy € B. The equality is not true
xe€A,y B

in general, so we must restrict ourselves to a certain sub-
class of B(X), namely the class of all nonempty compact ( in
the (e,68)-topology) subsets'of X, denoted by K(X).

First we claim that if A,B e K(X) then inf F _(t) =
x€A,yeB X

= min F.__(t), i.e. for each t there are x, €A, yteB such

xeA,yeB XY

that inf F__(t) =F
xeA,yeB ¥ XY

the lower semi-continuity of ny(t) considered as a function

t

(t). For this it suffices to verify

from X xX into [0,1] for fixed t. Thus, fixing (x,,Y,) €XxX
we have to show that for any e >0 there exist a neighbourhood
UX (a,8) of Xq aud a neighbourhood Uy (R,8) of Yo such that

o o
F (t) = ¢ < F__ (t)
XY - xy
for every x€ Ux (a,8) and yeUy (B,8). Obviously, we may assuie
o o
e <F (t), so a=F ¢) - >0 .

Yo Xo¥o
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‘ Suppose on the contrary that for any neighbourhood U
of x, and any neighbourhood V of y_ there exist xeU and y €V
such that a >Fﬁ(t). Letting &= 1 -a, by the left-continuity
of F there is s <t such that F (s) >a=1-~68. Taking r so

¥ o *o¥o
that s <r <t we have

ny(t)_?_min{Fxx (t-r), FX (s), Fy y(r—s)}

(] oo o
for every x,y ¢ X. Put
Uxo(t—r,d) = {x 6X; Fxxo(t—r) >1 -8},
U r-s,§) = X; F r-s) >1 -6
Yo( '8) {y eX; Yyo( ) } |
and xe¢U_ , YeU such that F__(t) <a=1-8. On the other
) Yo Xy
hand, from the above arguments we get F__(t) > 1 - &§. This con-
xy

tradiction proves our assertion.
Now we are in a situation to prove equality (6). Supp-
ose on the contrary that there exists s such that

sup sup{t :F__(t) <l1-A}<s<sup{t: min F__(t) <1-2A} .
xeA,yeB Xy X€A,yeEB Xy

The first inequality shows that ny(s) >1~-) for every x €A,

Yy ¢ B, but this contradicts the second inequality showing that
F (s) <1 -A for some Xg e A, Yg € B. Thus, (6) is proved and

Xg¥g
from this (5) follows.
From (5) and the left-continuity of GAB(t) we get an im-

portant inequality for our purpose

(7 8up (0y (BB)) <1 - A

for every A,B e€K(x).
L. MULTIVALUED QUASI-CONTRACTIONS .IN PM-SPACES

Now we can state the main result of this paper.

THEOREM 2. Let (X,F) be a complete PM—spdce,
T : X >K(X) a mapping satisfying the following condition: there

exitats k <1 such that

(8) (kt) >min{F (), 8, q, (£),8 o (£) /8 0 (B 46 (8]

Soxry yTy Ty
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for every x,y n X, t>0 .
Then- there is a unique fized point of T , moreover it
18 a -statitonary point.

Proof. Put

dxbgy)=mm{t:FmJt):l4A}, (A € (0,1)).

Then (x,dx) is a complete space with a family of pseudo-metrics.
We have only to show that T satisfies the conditions in Theorem
1. '
Suppose the contrary that there are x,y €¢X and X e (0,1)
such that /

Py (Tx, Ty) >k max{d, (x,y),py&,Tx),p, (¥, Ty)p, (XTy),p, (y,Tx)}.

p, (Tx,Ty) ‘
Put t = —A—ff——— . Then t >max{dA(x,y),...,pA(y,Tx)} and by

(7) we obtain
min{ny(t), 6xTx(t),..., 6yTx(t)} >1 =) .
But then from (8) we get

(py (Bx,Ty)) = (kt) >1 -2

5TxTy deTy

a contradiction to (7).
Applying Theorem 1, Theorem 2 follows.

Remark that this theorem is a partial analogue of Minh s

theorem in |2
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REZIME

TEOREMA O NEPOKRETNOJ TACKI ZA VISEZNAGNE
KVAZIKONTRAKCIJE U VEROVATNOSNIM METRICKIM PROSTORIMA

U ovom radu dokazano je uop¥tenje teoreme Minha [2]| u

verovatnosnim metri&kim prostorima.



