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ABSTRACT

The pager deals with the oscillatery and asymptotic behaviour
of solutions of the nmlineér second order difference equation'ana gives
the characterization of oscillation and its ettr&nc solytions.Also, so-
me specific results for the Emden-Fowler equation and some stability re=
sults for the linesr equation are given. 7

1. INTRODUCTION . .

This paper deals with" the oscillatory and asymptotic
behaviour of solutions of the second order nonlinear diffe-
rence equatlon of the form

(E) A(r(n)Ay(n)) +p(n+l)f(y(n+l)) =0, n=0,1,...

r

where {r(n)}: and {p(n)}: are the given real 'sequences amd

r(n) >0 for n=0,1,... , and A is the forward difference ope-
rator defined by Ay(n) =y (n+l)-y(n).

Moreover, the function f is considered subject to con-
dition

(0) f is nondecreasing and uf(u) >0 for u #0.

It is known (see [2]) that the general linear diffe-
rence operator of the second order can be presented as the
first term of (E).
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By a solution of (E) we mean a real sequence {y(n)}:

satisfying (E). Obviously, the solution {y(n)}z of (E) is
uniquely determined by the initial values y(0) and y (1) or
equivalently by any two successive values y (k) and y(k+1l) and
can be defined for all n=0,1,... .

The following notions will be used in the sequel.

A real sequence {g(n)}: eventually has some property
if there exists N >0 such that g(n) has this property for
n=N,N+1,... . Throughout this paper, we shall usually refer
to a solution {y(n)}: of (E) simply as a solution y and con-
sidered only the nontrivial solutions .y. A nontrivial solution
y of (E) is said to be oscillatory if y(n) changes the sign
infinitely many times. Otherwise, y is said to be nonoscil-
latory.

Equation (E) is called oscillatory if each of its so-
lution is oscillatory. Otherwise, it is called nonoscillatory.

The detailed discussion on various problems of the qu-
alitative theory of the difference equation, including the os-
cillation and stability problems, can be found in [1] and [8].
We also cite papers [2],[3] and [4] for some further study on
the problems of oscillation and asymptotic behaviour of solu-
tions of (E). ’

Section 2. contains a fixed point theorem according
to Knaster and a useful estimate for nonoscillatory solutions
of (E). In Section 3., assuming that p(n) 20 for n>0, we ob-
tain the characterization of some extreme types of nonoscil-
latory solutions. In Section 4. We give some oscillation re-
sults for (E), under the condition g (r(n))-1< o and we ob-
tain the characterization of oscillation of (E).

Section 5. contains some specific results for the
Emden-Fowler difference equation concerning the asymptotic be-
haviour of nonoscillétory solutions as well as some stability
results for the linear equation (E) i.e. for the case where
f(u) =u. The last section contains some extensions of the pre-
sented results.
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The results of this paper are a continuation of our
previous results obtained in |7| which hold in the case

% rm) ! = w,

Throughout this paper, the phrase without loss of ge-
nerality 1is abbreviated as WLOG.

2, PRELIMINARIES

In what follows, we shall use the following simple
fixed point theorem according to Knaster. ’

THEQREM 2. 1. ([9]) Let Lbe a partial ordering with
field A , and suppose that every B <A haes a least upper bound.
Suppose that F maps A into A in such a way that for all Xx,y

in A x <y <1implies that Fx <Fy. Then Fx =x for some x €A .

The following result gives useful information about
the bounds for nonoscillatory solution of (E).

LEMMA 2. 1. Congider (E) subjeet to the conditions
(Cl) p(n) >0 for n=0,1,... and p(n) <8 not eventually zero,
and o
(c,) J <o

n=o r(n)

Then, every nonoscillatory solution y of (E) satisfies even-

tually the following estimate
(v ap(n) <]y(n)} <a,

for some positive constants a and A (depending on y) where
e 1
p(n) = )} —— .
i=n r(i)
Proof. WLOG we suppose that y> 0 eventually,
which implies that A(r(n)Ay(n)) <0 eventually, which gives
that Ay (n) is eventually of constant sign.
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First, we suppose that Ay(n) >0 eventually, i.e.
Ay (n) >0 for n>N>0. Then, obviously y (n) >y(N) for n>N and
morecver for nzN

n-1
0 <r(n)Ay(n) <C => y(n) <y(N) + C ] 1 <
- i=N r (i)

<y(N) +C ) 1 -¢c .
i=o r(i)

Secondly, we assume that Ay(n) <0 eventually, i.e.
Ay (n) <0 for n>N>0. Obviously, we may suppose that y(n) >0
for n>N. Thus, we get y(n) <y(N), n>N and r(n)Ay(n) <-C for
some constant C >0 and n >N. Now, we have for n>N

k-1 k-1
y(k) ~y(n) <-C } => y(n) >y(k) +C J >
. - i=n r (i) i=n r (i)

k=1 |
2y(=) +C ] !
i=n r (i)

which by k +«, yields y(n) 3C1 >0 1if y(«) >0 and y(n) >ap(n)
if y(«) = 0.

Taking into account Lemma 2.1., it is natural to in-
troduce the following terminology: a (noncscillatory) soluti-
on asymptotically equivalent to ap(n) (n +=) will be called
the solution of the minimal type, while the solution which is
asymptotic to a nonzero constant will be called the solution
of the maximal type.

3. CHARACTERIZATION OF THE MINIMAL AND MAXIMAL TYPE SOLUTIONS

In this section we shall give the necessary and suf-
ficent conditions which provide the existence of the minimal
and maximal types solutions.

THEOREM 3. 1. Consider the equation (E) subject to
conditions (Cl) and (C2). Then (E)} has a nonoscillatory so-

lution of the maximal type Iff the following condition holds

(cy) } p(n)p(n) <= .
n=o
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Proof. First, we suppose that (C3) holds. Then,
there exist N >0 such that

oo

£(2K) ] op(n)p(n) <K ,
n=N

where K >0 is some arbitrary constant.

Let 8§ be the set of all nonincreasing sequences x
with the property .

K<x(n) <2 for n>N .

The set S is considered endowed with the usual point-wise or-

dering < :

X, <X, <=> (¥n 2N) xl(n) <x,(n) .

1-72 2

Moreover, we consider the mapping F on S defined as

follows:
n-1
(Fx) (n) =K +p(n) } pi+l)f(x(i+l)) +
i=N

+ ) p(i+l)p(i+1)f(x(i+l1)), n=N,N+1,... .
i=n

Obviously, all conditions of Theorem 2.1. are satis-
fied, which implies that there exists wé S such that Fw=w,
i.e.

n-1
w(n) =K +p(n) [ p(i+l)f(x(i+1)) +
i=N
+ J p(i+l)p(i+1)f(x(i+l)), n>N.
i=n
Now, it is easy to see that w 1is a required nonoscillatory
solution of (E). Next, we suppose that (E) has a nonoscilla-

tory solution y such that lim y(n) =A >0. Then, by Lemma

n-re
2.1., we conclude that Ay(n) is eventually of constant sign.

Hence, there exists N >0 such that

nzN==>yhn_Z% and Ay(n) >0 or tv(n) <0,
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If Ay(n) >0, then we introduce the sequence U(n) =p(n)r(n)Ay(n)
and get

AU (n)

p(n+tl)A(r(n)Ay(n)) - Ay(n)

-p(n+l)p(ntl) f(y(n+l)) - Ay(n)
which by

14

summation fram N to k-1, k >N, yields

k-1
0 <U(K) <UM) +y(N) -y(k) -

I p(n+l)p(m+1)£(y(ntl)) <
n=N
k-1
c- 1

p(ntl)p(n+l1) £(y(n+l)) ,
n=N

where C=U(N) + % . Thus, we obtain

£C5) ] prlpm+1) < ] o(ml)p(n+ ) £(y(n+1)) <C
n=N n=N -

k-1
U(k) <C - J

In the case where Ay(n) <( we again obtain the relation
p(n+l)p(n+l) f(y(n+l)),
n=N

k >N,
which implies

k-1
U(k) <C-£(n) ]|

p(n+l)p(n+l),
n=N

k >N.

If (C3) fails, the last relation gives U(k) <-1 for
k >M >N, which immediately implies

‘

Ay (k) < - —1 r k>M,
rk)p (k)
and summing from M to n >M we have
n-1 1
y(n) <yM) - J

—_— =y (M) +

k=M r(k)p(k)

neloap (k)

+ 7 vy (M) + 1n p{n-1)
k=M p (k)

as n-»w ,
So,

n-+o

lim y(n) =- =, which is an immediate contradiction.
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THEOREM 3.2. Consider the difference equation (E)
subject to the conditions (Cl) and (Cz). Then (B) has a non-
oseillatory solution of the minimal type iff

) I pm)ff(apn))| <= , for somé constant o #£0,

Proof. First, we assume that (C4) holds. Then,
there exists N >0 such that

J pnf(apin)) < § .
n=N

Let S be the set of all nonincreasing sequences x such that

3 o(n) <x(n) <ap(n), n>N.

S is considered endowed with the usual point-wise or-
dering < as in the proof of Theorem 3.1. Moreover, we consi-
der the mapping G on S defined in the following way:

© i-1

(Gx) (n) =3 p(n) + | J op(H#DE(x(+1)), n=N+1,... .
i=n j=N

r(i)

Obviously, all conditions of Theorem 2.1. are satis-
fied, which implies that G has a fixed point z i.e. Gz =2
and it is clear that =z is required solution of (E).

Next, suppose that ¥y 1is a nonoscillatory solution
of the minimal type. Taking into account Lemma 2.1. we con-
clude that y 1is a nonincreasihg sequence for which there
exists M >0 such that

n>M => y{(n) >ap(n) and Ay(n) <0 where o >C is constant.

Now, (E) implies

n-1
r(n)Ay(n) + § p(i+1)f(y(i+1)) =r(N)Ay(N) for n >N.
i=N :

On the other hand, in |7! the following identity was obtained
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N
(2) y(k+l) =y(N) ~r M)Ay M) ]
i=k

r(i)

N 1 k

p(i+l) f(y(i+1)) +

—

)
1) 1i=M-1
‘; 1

— Jp(n+1) f(y(n+l)), N>k >M,
-1 i=n r<(l) '

which immediately implies

N k
y(k+1) > ( ] %) T pU+1)E(y(i+l)), N>k o>M
i=k ¥ i=M-1
and so
k
(3) y(k+l) >p(k) } pli+t1)f(y(i+1)) >
i=M-1
k
> p(k+1l) §  p(i+l)£(y(i+1))
- i=M-1

Hence, we get

o0

I p(Elap(i)) < §J p)f(y(d)) <1
i=M T i=M T ko

which completes the proof of the theorem,

oy
2

4, OSCILLATION THEOREMS

In this section we shall present some oscillation re-
sults for (E) which are the complements to the results of the

preceding section.

THEOREM 4. 1. Consider the difference equation (E)
subject to condition (Cl)’ (C2),

o0

(Cg) ! p(n)p(n) =« ,
n=o
and
[ 1 m
(Cg) ] ————— } p(i)pd) == .

m=0 p(m)r(m) i=o

If the following condition holds
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8
(c;) (j)f(u) <e , &§>0,

then (E) s oscillatory.

Proof, Let x be a nonoscillatory solution of
(E) . Then, x 1is of constant sign eventually, say for n >N.

Let
r(n)Ax(n)

win) = Fxm)) p(n}), n>N,
then we have
aw(n) =p(n+1)a( HRIGEIR) o rnIAein) o -
= (n+1)[ Ar(n)dx(n)) _ r(n)dx(n)Af(x(n)) ]_ _Ax(n) _
P f(x(n+l1)) f(x(n))f(x(n+l)) f(x(n))

- - r{n)x(n)Af(x(n)) _ Ax(n)
=-p(ntl)p(ntl) -o(n+]) ¥Ry TE(xmr D) ~ Fx(n)) '

which implies

Aw(n) <-p(n+l)p(n+l) - %%%%%7) ’ n>N,

and by summation from N to m-1, m >N, we get

(4) wim) <w(N) - mil p(n+1)§(n+1) -“‘51 Lxln) __ psy
- N neny Elx(n)) 7

Now, taking into account conditions (C5) and (C7),

we conclude that 1lim w(m) =-« and consequently there exists
m-oe

M >N such that x(n)Ax(n) <0 for every n>M and so lim |x (n)|=6,
n-ro

§ >0.
Hence, using (CS) and (C7), (4) implies
m

J e(mpm) for m>N
n=N+1

where N is chosen appropriately. Thus, we have

N =

w(m) <-

Ax(m) _ _1 1 T -
fxm) = "2 p@mrm n=r;i+1 p(n)p(n), m>N,

which gives
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; Ax(m) < _1 ]}{‘ 1 I}‘l p(n)p(n), k> i:]
meN Tlxm)) — 2 mey P@Irim) o1

Taking k*~ and using conditions (CG) and (C7) we

obtain an immediate contradiction, which campletes the proof
the theorem.

THEOREM 4. 2. Coneider the difference equation (E)
subject to conditions (Cl), (Cz) and

L= -]

) J p)pn)|flap(n))| =%, for all o # O.
n=o

(C8

Then (E) is oseillatory.

Proof. Let y Dbe a nonoscillatory solution of
(E). Then, y is of constant sign eventually &nd estimate (1)
holds, which means that there exists N >0 such that
n>N=> ap(n) <|y(n)| <A and Ay(n) is of a constant sign.

WLOG we may suppose that y > 0. Thus, by (C8) , wWe

conclude
(5) Z pn)p(n)f(y(n)) = Z p(n)p{n) = » ,
n=o n=o0 '

and summing (E) from N to n-1, we obtain

n-1
r(n)Ay(n) -r(N)Ay (N) + } p(i+1)f(y(i+1)) =0,
i=N
which by (5) implies lim r(n)Ay(n) =-e. So, Ay(n) <0 even-

n+w

tually. WLOG we may suppose that Af(n) <0 for n >N. Introdu-
cing the sequence U(n) as in the vroofof Theorem 3.1., we ob-
tain the relation : '

; k-1
U(k) +y(k) <C = } p(n+l)p(n+l)£(y(n+l)) ,
n=N

where C =U(N) +y(N).
Now it is easy to show that U(k) +y(k) >0 eventually,
in which case the last inequality implies the required con -

clusion.
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k
Actually, multiplying (E) by } :') and then
) i=n+1 T
summing from m-1 to k-1 we get
k-1 k 1
T« ) — ) A(r(n}Ay(n)) +
n=m-1 i=n+1'r(l)
k-1 k-
+ 7 (] =—f=)pm+l)f(y(n+l)) = 0,
n=m- L r(i)
=m-1 i=n+1
which by the summation by parts formula, implies
o Kk .
(6) y(m) +(_Z 0 ) r(m)Ay (m) =y (k+1) +
i=m
k-1 k 1
+ z (._2 ;—(ﬁ)p(nﬂ)f(y(nﬂ))zo .
n=m-1 i=n+1
Thus, we obtain
‘YM)+DUMrhmAym)30,
which completes the proof of the theorem.
COROLLARY 4.171. Consider the difference equation

(BE) subject to conditions(ci), (C2) and (C7). Then, (E) <Zs
oscillatory Zff condition (C5) holds.

Proof. It follows immediately from Theorem 3.1.
and 4.1., taking into account the fact that (C2) and (CS)
imply (Cs) and (CG)'

REMARK 4.1. Theorem 4.1. can be considered a par-
tial discrete analogue of a result of Kulenovi¢ and Gramma-
tikopoulos [5] pertaining to the corresponding differential
equation. Furthermore, Theorem 4.2. is.a dicsrete analogue

of a result of Kulenovié [6].
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5. APPLICATION TO THE -EMDEN-FOWLER EQUATION

In this section we shall consider the Emden-Fowler
difference equation '

(EF). A(r(n)ay(n)) +p(n+1) |y (n+1) [Vsgny (n+1) =0, v >0,
n=0,1,..., .

and obtain some on the global asymptotic behaviour of its

oscillatory and nonoscillatory solutions.

THEOREM 5.1. Conagider the difference equation (EF)
subject to the conditions (Cl) and (C2). If (C3) holds and
vV >1, then every nonoscillatory solution of (EF) is elther

of the minimal or of the mazximal type.

Proof. Since v >1, condition (C;) implies (C,)
and by Theorem 3.1. and 3.2. the equation (EF) has both types
of solutions. Now, we shall prove that (EF) has no other ty-

pes of solutions.

let y be an arbitrary nonoscillatory solution of
(EF). WLOG we can suppose that y >0 eventually, which implies
that Ay (n) 1is eventually of constant sign. If Ay(n) >0 even-
tually, we have the conclusion of the theorem.Otherwise
Ay (n) <0 eventually and we can suppose that lim y(n) =0. Thus

n-eo
.

there exists N >0 such that
n>N => y(n) >0 and Ay(n) <0 and the estimate (1) holds.

Starting from relation (6) and taking k +=, we obtain

oo

ym) = §  p(n+l)p(n+1) (y(n+1))Y -p@m)r(m)Ay (m), m >N,
" n=m-1 -

which by estimate (1) and condition (C3) yields

oo

ym) <y(m) J p(n)p(n) (y(n))v—l-p(m)r(m)Ay(m) <
- n=m
<2 lym § pmipin) -pmr(may (m) <
n=N

< ey(m) —pm)rm)ay(m), m>N,
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<o

if N is large enough to provide av~! ) p(n)p(n) <e, for an
n=N .

arbitrary e >0.
Thus, we obtain
-p(m)r(m)dy (m) > (l-e)y(m), m>N.

Now, taking into account this relation, estimate (1) and (C3),

we get
} n-1 v
(1-€) [r (N)Ay (N) ~r(n)Ay(n)] =(1-€) ] p(m+l) (y@m+l)) <
=N

n-1 v-1
< - ¥ pm+l)(y(m+1)) p(m+1)r (m+1) Ay (m+1) <

m=N

v=1 B
<-a r(n) Ay (n) Z p(m)p(m) <
m=N

< - 2" !r (n) oy (n) ] e(m)pm)<-er(n)Ay(n) .
m=N

Thus, we conclude
(l—e)[f(N)Ay(N) —r(n)Ay(n)]_i— er(n)Ay(n) ,

which implies
1-¢
r (n) Ay (n) > =3¢ r(N)ay(N),

and so lim r(n)Ay(n) =6 € (-=,0], which by the discrete L~
nm

"Hospital rule gives

lim Y‘% = - lim r(n)Ay(n) = -6 ,
o P n-+eo

which completes the proof of the theorem.
Similar arguments lead to the corresponding result
for the sublinear (v <1) difference equation (EF).

THEQREN 5.2. Congider the difference equation (EF)
subjeet to conditions (Cl) and (C2). If v <1 and condition
(C4) holds, then every nonoseillatory solution of (EF) is

eitther of the minimal or of the maximal type.
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Now, we shall discuss the solutions of intermediate

types and we shall get some sharper estimates than (1).

THEOREM 5. 3. Congider the difference equation (EF)
subject to conditions (Cl) and (C2). If the following condi-
tion holds

n
(Cg)  lim inf(pm)* § p(k) >0
> k=0
then, for every nonoscillatory solution of (EF) the following

estimate holds
1-A
a(p(n))l—v < }y(n)]iA, eventually, 0 <v<)x<l,

and, tf the additional condition

by n
(c.,) lim sup(p(n)) ] ptk) =

10 n+o k=0

holds, then - the following estimate holds:

>

-1

—

(7) ap(n) i[y(n)[_gA(p(n))v- , eventually , 1 <i <v ,

for some appropriate constants a and A depending on the solu-

tion y .

Prooft. Assume that y 1s a nonoscillatory so-
lution of (EF). WLOG we suppose that y >0 eventually. Then,
it is easy to conclude that Ay (n) <0 eventually.

Actually, if Ay(n) >0, in the first case, then we
have the required conclusion. In the second case, using (Clo)
we have

n n n
A A
I p(k)p(k) > I (p(k))"p(k) > (p(n)) I pk) =
k=N k=N k=N
which by Theorem 3.1. implies that 1lim y{(n) =0andsc ay(n) <0

eventually. n>e

Let M >0 be such that

n>M => y(n) >0 and Ay (n) <0.
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Starting from identity (2), we get inequality (3) which imp-
lies '

kK S
y(k+1) >p(k+1) [  pli*1) (y(i+1))Y >
= i=M-1 ' -
’ v k+1 :
> pk+) (yk+1))Y T pd)
' 12M

and by condition (Cg) we‘gé;

v-1 KL
1> p(k+1) (y (k+1)) Y opla) =
i=M
v-1 k+1 ) . v-1
(p(k+1)) i=M T (p(k+1)) "

for some C >0, which immediately implies  the fequired,ésti—

mate.

REMARK 5.1. Since condition ‘Cio) implies condition
(Cs), the second part of Theorem 5.3. can be understood as fol-
lows: 1if there exists a nonoscillatory solution of (EF) then
estimate (7) holds.

COROLLARY 5.1. Consider the differenée equation (EF)
subject to conditions (Cl) and (Cz). If v >1, then (EF) <8
oscillatory iff the following conditien holds ‘

(€yy) I pm)(p(n)’ = =, -
n=o

Proof. The necessery part follows from Theorem
3.2., while the sufficient part can be obtained following si-
milar steps as in the proofs of Theorems 4.1. and 4.2..

Now, we shall give the result concerning the global

behaviour of oscillatory solutions of (E).

THEOREM 5.4, Consider the difference equation (E)
subject to conditions(cl), (CZ) and
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oo l o
(c..) ) Jop(k) <o .
12 2o TM) yann

If £ 728 weakly sublinear Z.e. lim sup g—%ﬂ <w, then all ceg-

|ule
eillatory scolutione of (E) tend to zero.

Proof¢€E. If our assertion is not true, then there
exist sequences of natural numbers {t(n)}z and {v(n)}z and
the oscillatory solution x, such that 1lim t(n) =lim 7 (n) =,

n+e n+wo
t(n+l) >t(n) +1 and n(n) € {t(n-1),t(n)) with the properties
x(t(n))x(r(n)) <0 and |x(t(n))| >6§ >0. WLOG we cah suppose
that x(n(n)) <0 and x(t(n)) =max{x(m) : t(n-1) <m < t(m+1)}
‘Now, summing (E) from k to t(n) -1, we obtain
t(n)-1
r(t(n))ax(t(n)) =r(k)ax(k) - ] p(i+l)f(x(i+l)),
i=k :
.n':llzlooa

Now, taking into account the fact that Ax(t(n)) =

= x(t(n) +1) -x(t(n)) <0, the last relation implies

t(n)-1
r(k)Ax (k) < Y p(it+l)f(x(i+1), n=1,2,...,t(n-1) <k <t(n)
i=k
which yields
1 t(n)~-1 ‘
ax (k) <=+ ¥ p(i+1) £ (x(i+1))}, n=1,2,...,t(n-1) <k <t(n)
—r (k) 1Zx —_

and summing from 7w (n) to t(n)-1, we have

t(n)-1 1 t(n)-1
x(t(n)) <x(m(n)) + i ) I pU+1)f(x(i+1)) <
k=mn(n) T i=k
t(lg)—l 1 t(n%-l
< f(x(t(n))) p(i+l) <
- k=n(n) T& 52y -
ps 1 b o
< £(x(t(n))) I p(i)
- k=1r2(n) rk) ok
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Thus, we obtain

1 < £(x(t(n))) Z 1 )‘ p(i) ,

S TxE@D b

which is, by (C12) and the conditions imposed on the functi-
on f, an immediate contradiction.

REMARK 5.2. Obviously condition (C12) is implied by

condition

o 1 ©
) <o 7 p) <o,
nto T (M) ! n=o

(C‘12)

as well as by condition
(=]

[ 1 n-1
) y = , J R(np(n) <=, where R(n) = §
=0 n=o i=o

1
r(i) °

(€2
Since (Ciz) implies conditions (C3) and (C4) we can
get the following result. ’

COROLLARY 5.2. Cons ider the difference equation (EF)
subject to conditions (Cl) and (C£2) . If v <1, then every
nonoscillatory solution s either of the minimal or of the
maximal type and every oscillatory solution tends to ‘sero.
If v=1, it means that all solutions of (EF) are stable.

Also, in the light of Theorem 5.4., we can get the
following result.

COROQOLLARY 5.3, Consider the difference equation (EF)
subject to conditions (Cl) and (C;z). If v <1, then every
nonoscillatory solution is either asymptotic to nonzero con-
stant or to AR(n) (A #0) and every oscillatory solution tends

to zero.

Proof. It follows immediately from Theorem 5.4.
and |7!.

REMARK 5.3. Some further results on stability and
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asymptotic stability of the linear equation (EF) (v =1) can
be obtained by comparing the conditions of our results with
the previous results of Hooker and- Patula (3], where some sta-
bility ‘results. are given. We nbte that the linear second order
differehce equatiqh' '

c(n+l)y (n+2) +e(n)y(n) =b(n+l)y(n+1), n=0,1,... ,

where c(n) >0, n=0,1,..., can always be reduced to the equa-
tion (EF) with v =1

A(c(n)Axfn)) +a(n+l) x(n+l) =0, n=0,1,... ,

where a(n) =c(n) +c(n-1) -b(n), n=1,2,... (see [2] and |3]).
Using this fact and the oscillation and nonoscillation results
from {2| and |3{ we can give some further results on the sta-
bility and asymptotic stability of (EF).

6. CONCLUDING REMARKS

REMARK 6.1. In the case of the Thomas-Fermi differe-
nce equation (E) i.e. in the case where condition (Cl) is re-
placed by .the following one
(Cl’) p(n) <0 for n=0,1,... ard p(n) is not eventually =zero.

Using similar methods as in the proofs of Theorem 3.1.
and 3.2., we can prove, under some appropriate conditions, the
existence of solutions asymptotically equivalent to constant
and to p(n). Thus, we can prove the following )

THEQREM 6.1. Congider the difference equation (E)
subject to condttion (Cl’) and (CZ)' Then, (E) has a nonogctil-
latory sqlution of the minimal type tff the foZZowjing condi-
tion holds

o 1 n
I == ! plkl<m=,
s r k=0
(E) #%as a solution of the maximal type iff condition (C4) holds.

We note that in the case of the Thomas-Fermi equation
the estimate related to (1) does not hold and so the terms
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minimal and maximal do not have the same sense as above.
Moreaver, all the results of Section 2.-4. can be ex-
tended to the corresponding difference inequality

y(n) [a(r(n)ay(n)) +p(n+1)f(y(n+1))] <0, n=0,1,... ,

while Theorem 6.1. also holds for the following difference
inequality '

y(n) [A(r(n)ay(n)) +p(n+1) £(y(n+1))] >0, n=0,1,... .

REMARK 6.2, All the obtained results can be extended

to the difference equations of the from

Ar(n)Ay(n)) +p(n)f(y(n)) =0, n=0,1,...,

and
A(r(n)Ay (n)) +p(n+2)f(y(n+2))=0, n=0,1,... ,

which are discrete approximations of the same differential
equation (ry”) ~ +pf(y) =0. In that case, the conditions are
slightly different, while the methods are the same,

Finally, we note that the presented results of Secti-

on 2.-4. also hold if condition (0) on f 1is replaced by the
f (u)

condition that f 1s either sublinear ( - is nondecrea-
sing for u <0 and nonincreasing for u >0) or superlinear ( f—‘:—)

i1s nonincreasing for u <0 and nondecreasing for-u >0).
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REZIME

ASIMPTOTSKA ANALIZA NELINEARNE DIFERENTNE
JEDNACINE DRUGOG REDA (II)

U radu se izuava oscilatornost i asimptotsko ponaBanije
reSenja diferentne jednadine drugog reda.

(E) A{r(n)Ay (n)) +p(n+l) £(y (n+1)) =0, n=0,1,... .

Posle uvodnih izlaganija, u Glavi 2 se daje ' korisna oce-
na za neoscilatorna refenija od (E}. U Glavi 3 dobijamo karakteri-
zaciju minimalnog i maksimalnog neoscilatornog ré§enja. U Glavi
4 dobijamo karakterizaciju oscilatornih reZenja. Glava 5 sadrZi
neke specifi¥ne rezultate za Emden-Fowlerovu jednadinu kao i neke
rezultate vezane za stabilnost linearne jednaéine.'Posiednja gla-
va sadrZi neka uop3tenja i pro3irenja prethodnih rezultata.



