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ABSTRACT

The space LG of generalized functions, whose elements have a Laguer-
re orthonormal expansionh Into a series, are investigated in [2| and |3}
In this paper we define the space LGby using a suitable family of seminoms .
This implies some properties of the space LG and the representation theorem
forsomeelements from LG . Also, by using a convolution inLG" and a Laplace
transform we give expansions into a series of some important géneralized

functions fromLG~.

I In monograph |4|, Zemanian investigated spaces of gene-
ralized functions whose elements have an orthonormal expansion
into a series. These spaces are denoted by A-.

In |4] various examples of such spaces are given. These
spaces correspond to various spaces Lz(I), (I is an interval
in R) and their orthonormal bases (wn) . The best known space of

A” -type is the space $§°. Among the examples ., thespace of the
test functions IG and of the generalized funct:.ons 1Gg, o >-1,
are given and theSe correspond to the space L (0 «) and the ge-
neralized Laguerre orthonormal bases (JLn) of L (0,), o >-1 ,
where

2 (x) (L) §1/2,0/2,7X/2 180y nen_ (= NU{O}) .
n T (a+n+1)
Laguerre polynomials are given by _
n m 1
a L nta, (-x) Yy _ T (y+1)
Lol 2= ) (i) mr— 6= Feenriy=v-17 )

m=0
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For a fixed ¢ > -1, the functions '&i(x), n eNo, are the

eigenfunctions for the self-adjoint operator in L2 (0,=)
R := x 0/2e¥/2py a1k, m0/2,x/2 (p = 4

a dx
for which
(1) Ra£:=—n2: ., n=0,1,...
hold.

In |2| and |3] we investigated the spaceslG and IG~
which correspond to a =0,LG:=IG_, LG 7=LG6 , because the base
(2,0, zn=z§, neN,, gives some conveniences. For example in i
the convolution and Laplace transform are defined and for them

an exchange formula holds (]3[).

In this paper we are going to define the space LG by
using the suitable family of seminorms. This will imply some

- properties of the spacelLG’, '

We shall also give the expansions of some of the impor-
tant generalized functions from LG~ by using the convolution
and Laplace transform in the space LG~.

1. We introduce in this paper the space IG by the
following definition:

DEFINITION 1. The space 1G is the subspace of L2 (0,=)N
n Cw(O, o) for which elements

1/2

£, () +=( J, [R¥4 (1 ]%ax) =, keN,, (R:=Rg)

(R%¢,2:) = (6,R51), keN

o 7 n\-eﬁo,

hold. - -
(If ¢, eL2(0,=) then (¢,9):=[ ¢(E)F(L1AE = <¢,P >) .
The convergence struciure in thie apace i8 given by the

sequence of seminorma (rk)‘, keN .

THEOREM 1. (1) 4 function ¢ from Lz(O,w)
of the form

b 2
(2) 6% I azs (= means: in equare mean)
n=o n

i8 in IG iff for every k eN, there existe Cr >0 such that
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(3) nk!an] 3C, y neNg

(11) A sequence (§,) from Lz(d,cc) of the form

(4) ¢éiaz

m i, mnn
eonverges in IG to ¢ €1G of the form (2), iff for any k eN the-
re extigts Cy >0 such that
k

I

(5) n

e .
am,nlick , N NQ apd

or ever a -+ as o
(6) 1 y neN, a . +a, m

Proof. (i) Since (3) holds iff for every k &N,
$ 2k 2 o '
I n lanl <o,
n=o
the assertion (i) directly follows from |[4[ Lemma 9.3.3.
(i1) ‘The conditions (5) and (6) are equivalent to the
condition:

a -a -0 ag m-o+o .

-

n=o-

for every k€N, |2

This condition is equivalent to rk(¢n-¢) +0 for every ke N,

~2k
Let us put D" "¢:= D(xD(xD(...(xD¢)...))); for example
~2 ~4 E— I
D°¢ =D(xD¢), D ¢ = D(xD(xD¢)) (B = ¢).

We are going to prove the following theorem: .

THEOREM 2.(i) A function ¢ elG <ff ¢ €eC [0,=) and
Y (#) == sup{x*[D* (x)]; x ©.0,=), £ <k} <=, k eN_ ;

Pop ($) == sup{[Bchb(x)]; x € 0,°)f<o. , keN .
(11) A sequence (¢m) from IG converges to 0 iff for every keNo
Yk(qn) +0 and p2k(¢m) +0 g morw ,
First we are going to prove two lemmas,

LEMMA 3. For the functions (zn), newN,, the following
formulas and estimates hold:
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A1) If ‘k,3eN and j <k then
. R i 2k
kaJ&n(x) = ) c

Ci=e

. e
n,k,j,izn-kﬂ.' n €No

and there axiste Ck’ 'j >0 such that
’ s

o “k o n n #0
'qn'ikvjril ‘ick.rjn b1 T"—'O,»...',k (o = 1 n=0 )
(i) If k&N ‘
ok
~2k, _ &
D&y -izo cn,k,j.'%n--kﬂ‘. » D EN,
and there exists Ek >0 guch that
e, k,1) 2G0 -

Proof£. From the formula from |1| ,p-188. for
« =0 and n €Ny, we have

(7) xlh(x) =-{n+1)2 (x) + (2n+l)£n(X) ~nk (2_, =0)

n+1 n-1% -1

=1 -1 -
(8) xDJLn(x) =3 (n+1)2n+ 5 2 5 2

1 n n-1

So, by induction, one can prove (i).
For the assertion of (ii) we ought to combine (7), (8)
with (1) for ¢« = 0. In this way we obtain

(9)  D(xD§) = - § (n+l)g_,, - 7 (2n+1)2_ - § ne , neNg,

n-1
from which (ii) follows by induction.

LEMMA 4, If ¢ eLG ti8 of the form
2 = -
6 = }

, 2
n=o

a
nn

then this seriee converges uniformly to ¢ in [0,=).
Moreover, for any k eN, and j e Ng

(10) £pIgp(x) = § ax"pd 1 00
n=o

In (10) the series converges uniformly in [0,»).

Proof€t. For the proof we need the following formu-
la and estimate from 1.
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a _ _ o+l
(11) Ly Looy » neN
a T{a+n), 1 _x/2 -
(12) |L (x) ] < T | L © ,.xe[o,),aio, neN

From (12) for o=0 and X, e [0,»), we have
E la 12, ()] < 7 la l <,

n=o

This means that néo ank‘.n co‘nverges uniformly in !-Q,oo) to ..

Let us prove (10) for {k,j) =(1,0) and (k,3j) =(0,1)
because for arbitrary (k,3j), (10)1fo_llowsr-by induction.
From (11) and (12) it follows that for every n'eNo

TS 7 R WU 5
Ipe | = le (- 5 L) =L, 3 00) ] < n+1,x €0,

holds.

Since for (a, ), n eN , {3) holds, we- obtain that )' a, 2
. n=o
converges u.niformly on [0,®).

. o

Similarly, from (7) and (3 ) it follows that | a xt (x)
converges uniformly in [0,«). n=o ..

Pr oo fof Theorem 2. (i) Let 4 €C  [0,») and for every

keN_, Y (¢) <=, and p2k(¢) <w. Since the functions x»kaJcp(x),

x»b5* 4 (x), 3,keN_, j<k, are bounded on [0,1), we have
© . 1 N ' o0,

(13) ]ka:]cb(x)|2dx§j|33‘[>:l ¢'(x)|2dx +{ l’!‘
o o 1l x

k”n%(x)l dx <o ,

o - 1 - P
(1) f |5%9 ) |Zax <[ |D%*g x) |%ax +
o (o]

lz |52k¢ (x) [_zdx <o ,

[

N

So we obtain that x*D3¢ (x), D°X¢(x) € L2(0,%), 3, keN, 3 <k.

We may prove by induction that R ¢, k eN , is a linear
comblnatlon of factors of the form x'D ¢(x), r,leN , i <r <k,
and D ¢(x), s €N, s<k So R ¢eL (0,») for every keN . By
induction we maz, as well, provewthat for every k eNo and n eNo

(Rk¢,2n) = é Rk¢(t)£n(t)dt=[ ¢(t)Rk2n(t)dt ' pela .

o
From Definition 1 it follows that ¢ eLG. If ¢ € Lz(o,co)

such that ¢ is of the form (2) and (3) holds, then from Lemma
4, using (7), (11) and (12), we obtain y, (¢) <= and ;jzk(d&) <,
keNo.
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(1i) From (13) and (14) with 'qu' instead of ¢ we have
s 0 2o, 5% 0 30, ke, 3<k, a5 mee .

. 2
This means that for any k.eN'o, Rk¢m + 0 as m+eo ,
If ¢m is of the form (4), meN, is a sequence from IG which

converges to O e LG, using (5), (6), Lemma 4, (7),(11) and (12)
we obtain that ‘ '

Y (b)) +0 and 0, (4.)+0, k6N, as m+e .

" We see that we do not need Lemma 3 for the proof of The-
orem 2. Yet this Lemma and the appropriate assertion for the
transposefd marpings dir_ect;y imply:

THEOREM 5.  The mappings from LG” to LG~ defined by

£+D3 (x"f) j,keN, 3<k;
(15) ) 2 2, ,.2
£+D(x(P " (x(...D"(x (D" (x(D£))))...))))
are contimuous with reepect to the strong (weak) topologies in
Ve Ra c ' '
Let as remark that the cdnvergence structure of LG” is inve-~

stigated in |2].
2, Theorem 2 implies that LG is a subspace of E(0,x)

and that the convergence in IG implies the 6onvergence in
E(0,~). Since D(0,~) =IG and P{0,~) is a dense subspace of
E(0,~) we have '

E“(0,»)=1LG~ (see also J4| p. 319.).

k

1f Fell (0,) and for some k eN, F(t)t erl(1,«)

then by

X,

o 1 N o )
¢ +<F,¢>:= (I)F(tmt)dt? [ F(eyo(v)at + { Feye ¥ (e (e))at
[e] 1

an element from IG~ is defined.

So Theorem 5 and Theorem 9.6.2. from |4| implies
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THEOREM 6. (i) |4)felG” ;rr £ is of the form

f = RkF + S exp(-x/2)

for some F eLz(O,m), keN and co—complea: number.

(1) If FeL] (0, and F(t)t ®er'(1,=)
for some k eN then
p?*r  and DlxTF

are from LG~ for every k €N and every j,r EN_, jsr.

There is an open problem concerning the connections be-
tween the space IG” and S7(0,x).

3. In |3| the convolution of elements f = a

and g = | bpty from IG~ is defined by
e £ o E I3
g = c %

nie BN

where c_ = ) b
n .

. a ) ab ( ) =20).
p+g=n

g p+qén-1 P 4a p+<i=—l

With this operation, LG~ is a convolution algebra and
in ]3] we have proved that the mapping from LG~ xbG~ into IG~*
defined by '

(£,g) ~f g
is sequentially continu‘ousé(in the sense of weak topology) .
If feL2 and gel” then in IG~
(f © g)(x) = [ £(x-t)g(t)dt

[}
holds ([3]).

The Laplace transform in LG~” is defined by

o o
. -st -st .
Lif)i= <f,e %> =< ] ayp ,e " =77 a )
! neo 0D neo O n
© _ 2 n .
=] a (s(si{ ) +' Res >0 (see !4{).
n=o0

We have shown that & is a sequéntially continuous bi-
jection of I - (in relation to the weak topology in 1G " )and the
space of functions L , analytic in the half-space Res >0 of-
the form
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F(s) = | a
n=o

n n+l

(s+1/2)
such that coefficients a,neN, satisfy the condition

Ja, ] <mi¥

for some M >0 and k €eN. In [ we have a topoloagy induced by the
topology of the uniform corfvergence on a carpact subsets of the
half-space Res >0.
We have shown, as well in |3], that
Ylfeg) = #(£)¥lg) .

2 Vv
Let f = ng_o c b -€L°(0,=) and £ = n£ c % . Since.

e_s‘t eL.z(O,w), for any s = +in, £ >0, in the sense of the uni-

form convergence on comi)act subsets on the half-space Res>0,wehave

Y 4 N L] o
(s-1/2) _ -st -st
a —Lol = e £f (t)dt -+ [ e f£(t)at =4#(f) (s)
nZo P (s+1/2)?" {: v é
as Varw =

This means that the Laplace transformation in 1IG~ is a genera-
lization of the Laplace transformation in L2 (0,=).

4. We are going to give the expansions into a series

of some elements from IG” in the sense of the convergence
in 1IG”.
Since
-3
-st @
(16) [ et ae = Llet)  pesso, o ¥ -1,
o s®

we have (for s =3 ) that [ g, (£)dt = 2(-1)". This implies
[o]

the expansion of function £(x) =1, x € f0,o): .

(17) 1=2 ] (=1
n=o

Let the §-distribution §(t-x), x>0, be defined by <§(t-x),
¢(t)> := ¢(x). It is clear that §(t-x) e llG". We are going to
find the coefficients an,‘n eNo,in the expansion
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8 (t~-x) = nio a f (t).
Ve h_ave
(18) L5 (t-x)) (8) = <& (t~x),e St 5= 7%
;3 ; (‘s--1/2)n
(19) L (t-x))(8) = ) a L(r (t)) = ) a Lol _
n=o0 ,_n- n n=o ° (s+1/2)“+1
In IG~ we have
-xs s (sz'--1/2)n
e = ) —t0  (x)
n=o (s+1/2)“+1 n
Thus from (18) and (19) we obtain
(s-1/2)" T (ss1/2)" '
y a —Lol_ = X (%),
n=o o (s+1/2)n+1 n=o (s+1/2)n+ n
Since ¥ transformation is a bijection from IG” to L, we
‘have
.(20) 8 (t-x) = n£o B (x) g (£).

Particularly_, becauseln (0) =1, n eNo, for x =0, we have d&§(t) =

o
= ] & (t). If £(t) eIG” and x >0, let us define the operati-
n=o0

on of the translation in LG~ by:

<f(t-x),d(t) >:=<£(t),d(t+x)> , ¢ e€lG .
Since the mapping form LG to IG defined by

d(t) » ¢ (x+t)
is continuous, it follows that f(t-x) eILG", If felG” is a fu-
nction in (0,»), then a generalized function f (t~x) is a func-
tion which is equal to zero in [0,x] and to £(t-x) in (x,%).
Let us prove: &(t-x) © f(t) =f(t-x). In order to pro-
ve this formula, some formulas for the Laguerre polynomials

are needed. .

LEMMA 7. For x>0 and t €[0,2) we have

(21) L (t+x) = J L (x)L_(t) - } L_(x)L_(t),
" ptg=n’ P P pig=n-1 d
( = 0),

p+qé—1
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Proof. The coefficient of tl, 0<? <n, on the le-

ft side of (21) is

n-% ] L+r
(22) R R b L1 7 r
r=o 7T r (2+r)!

The coefficient of t®on the right side of (21) is

3 [ n=2-1 n-(g4r) =
(-1) n-(e+r), (-1)'ix b
(23) [ [ r=o i=o L e
i n-ry(z+r)( n-1-(g+r), Ln it 7T
r=0 . . i

The coefficients of x> in (22) and (23) are:

oy AL .
- {=1) L+i
(24) By 222 )
L+1 (L+i) ! i
£ n=-2-1
(25) (-1) (PEmTy (Ao

L1it r<o 1 -l T

The equality of (24) and (25) follows from the known identity:

n-£-1i

. 2-1 i = (221)'
r=o0

From this Lemma, by a simple calculation of the coeffi-
cients of f(t-x) and using (20), we obtain

(26) § (t~x) © £(t) = £(t-x)

From (17) and (26) we have:

_fJo o<t<x _ T %t ., \n-i
h (t-x) := {1 €S % —ng__o( 1204(1) L (x)+20 (x))e (F).

From (26) and the identity

m
-8t m m+n d —~
—5 L

e " "x L (t)dt =(-1) 1-1/s)1/s)], neN

o8

me Nol

one may easily obtain the expansions of the generalized func-

tions
m _
(t=x) | = {

0 Oitix

(t-x)™ > x .
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REZIME

ANALITICKA KARAKTERIZACIJA PROSTORA UOPSTENIH
FUNKCIJA KOJE IMAJU LAGEROVU EKSPANZIJU _

Prostor uop&tenih funkcija €iji elementi imaju Lagero-
vu ekspanziju u redove su ispitivani u 12} i |3!. U ovom radu
smo definisali prostor L pomodu odgovarajude familije seminor-
mi. Na taj naéin smo dobili odgovarajude osobine prostora L&
kao i teoremu o reprezentaciji elemenata iz LG . Takodje, kori-
stedi konvoluciju u IG” kao i Laplasovu transformaciju dajemo
razlaganje u redove vaZnih uopstenih funkcija iz IG” .



