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ABSTRACT

The regular matroids mark an interesting half-way stage between
the matroids corresponding to graphs on the one hand, and the binary ma-
troids, that is matroids which are representable over GF(2), on the other.
Perhaps the most famous result to date in all of matroid theory is Tutte’s
characterization of regular matroids by means of forbidden minors |2]. An
interesting feature of regular matroids is their close relationship with
an important class of matrices, the unimodular matrices [4| (note that the
entries of a unimodular matrix are all 0 or 1).

Our aim in this paper is to give some algebraic properties of the

standard representatives matrices of regular matroids.

INTRODUCTION

The matroid theoretic terminology and results used in
this paper are according to standard literature (e.g., see |2,
4,5| ). Let E be a finite set and r a function r 28 o
(2E is the power set of E and N the set of non-negative in-
tegers). Then the pair (E,r) is a matroid M := M(E,r) on E, and
r(s) is the rank of SESE, if the following conditions hold:

(a) r(s) <|s| , for each ScE,
(b) if s€s“S E , then r(sS) ri(s”) ,
(c) r{(sUs”) +r(sis”) <r(s) +r(s”), for each §,S"<E .
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A subset ScE is called independent if r(S) =|S| where |S| de-
notes the cardinality of S; a basis of M is a maximal indepen-
dent subset of E. .

If B is a basis of M, then B* =E -B is called a coba-
sis of M. The dual matroid of M is the matroid M* on E whose
bases are the cobases of M. If r* is the rank function of M*,
‘then r*(s) ={S| -r(E) +r (E-S) for every S<=E. Let F(M) be the
family of independent sets of M, and F a field. M is represen-
table |1] over I if there exists a vector space V over F and
an injection o : E +V such that a subset S of E belongs to F (M)
if and only if the corresponding vectors of c(S) are linearly
independent over IF . A matroid is reqular |4| if it is repre-
sentable over any field.

Throughout, we shall denote r := r(E); it is well-known
that for any basis B of M we have r(B) =r(E). Let then B be a
basis of M and m = |E-B|. If M is representable over a field I
it will have a standard matrix representation [2,4| with res-
pect to the basis B of the form R(M,B) =[I_|A] where I_ is the
r xr identity matrix and A is an r xm matrix with the entries

belonging to IF.

A well-known property of matroid representation (sta-
ted by Tutte in |2]) says that if M has a standard representa-
tion R(M,B) = EI |A], then the dual M* has a standard represen-
tation R*(M,B*) = ]:A [T ) where AT is the transpoded of A and
B* =E ~-B. The following hold:

(1) [RM,B)] [R* (M,B*)] "

rm’

(2) [R* ,B*)] [R(4,B7] 7T

where opq denotes the null matrix with p rows and g codumns,

omr '

The main results. In the sequel we shall consider M

to be a regular matroid on the finite set E = {el,ez,. ..,en} .
If S is any subset of E and R a standard representation matrix
of M we define R(S) as the submatrix of R consisting of those

columns that correspond to members of S.
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THEOREM 1.  (W.T.Tutte,|3|}. The matrices R(M,B) and
R'(M,B*) are unimodular.

THEOREM 2. (W.T.Tutte,|3|). Let S be a subset of E.
The determinant of R(S) has one of the values 1 or -1 if S is

a basis of M and 0 otherwise.

THEOREM 3. (KH.T,Tutte,|3!). Let S be a subset of E.
The determinant of R*(S) has one of the values 1 or -1 <f S

18 a cobasis of M and 0 otherwise.

COROLLARY (W.T.Tutte,{3|). The following hold:
(3) det ([R(M,B)] [’_'R(M,B)]T) =bM) ,

(4) det ([R* (M,B%)] [R* (M,B*)]T) = b(M) .

Proofc€E. It follows from Theorem 1 and 2 by apply-
ing the Binet-Cauchy theorem:

T b (M) 5 bM)
det ([RM,B)] [R(M,B)] ) = ] [detr(B,)]= ) 1=bM),
= i=1 i=1

where Bi' i=1,2,...,b{M) are the bases of M. Similarly we can
prove (4). (Q.E.D))

LEMMA 1. For any r xm matrix A the following hold:
det(r_+aa") > o.
ProocE. Let X be an arbitrar)i r x1 vector. Thus
XT(Ir +2aT)x = xTx +x7AATX = X°X + (AaTx) T (aTx) = || x| ?

Il aTx|| 2 >0, i.e., I +aaT is a positive definite matrix
(|| X|| denotes the norm of X). Since I. +2aT is symmetrical it
follows by Sylvester ‘s criterion (e.g., see [6]) that det(I +
+AA)>0. (C.E.D.)

LEMMA 2. |6] If Y {8 a square matriz of the form

[é g] where A and D are square matrices, then the fol-

lowing hold:

(a) if detA # 0, then detY
(b) if detD # 0, then detyY

det Adet(D-CA B) ’
det Ddet (A-BD C)
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LEMMA 3. The following hold:
(¢)  det| RWLB) | .4 |
R* (M,B*)| —

R* (M,B%*) mr R(M,B)
(da) det | ——- = (-1) det ¢
RIM,B) R*(MIB*)

Prooc€E. According to Lemma 2 we have

R(M,B) Ir A T T
det | ————|= det = det(Im-+A a) = det(Ir +AAT),

R* (M,B*) ~A I,

and (c) follows from Lemma 1. On the other hand, by Lemma 2,
we have '

T
-A I
R*(M,B*) { _ m| _
det [—§7ﬁ7§7—] = det { Ir % } =

= (-1)™get (Ir+AAT) -

1
T
i
o
0
e
1
w [
! =]
o
H 3’6
| I |

= (-1)™Tget | RM.B) . (Q.E.D.)
R (M,B*)
THEOREM 4. The following hold:
(5) det | RM,B) | _ b (M)
R*(M,B*)
(6) det [B%m—:g;—)] =+ b
ProoctE. From (1) - (4) we obtain:

(det | ROLB) |2 40| RMB) | 4.4 | _RM,B)
R* (M,B*) R* (M,B*) R* (M, B*)

det [M_)_} detl:[R M,8)]7T
R

[R* (M,B*)]T]

*(M,B*)

det ( [M:l [[R(M,B)jT' [R* (M,B*)‘]_'Ij )
R

*(M,B*)
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- get | [ROM,B)] Rm,p)]T Roe,®)] [Rem,e91T | _
®* ,B*)] [RM,B)] T | [R*(M,B%)] [R* ,B4)] "
_ 1 T ny]? .
- get | R,B)] [RM,B)] Orm T:’ )
- Omr [R* (M,B*)] [R* (M,B*) ]
r (r+l)

- benJ? .

Thus, (5) follows according to (c¢) and (6) follows by (5) and
(d). (Q.E.D.) Let B be a fixed basis of M,B* =E - B and Bi'

B; = E -Bi, i=1,2,...,b(M). For every Bi
sum of the columns ” indices of R(M,B) that correspond to mem-

" bers of B,. Similarly for s(B*). By expansion of det _R(M,B)
. , i - R* (M, B*)

according to Laplace”’s rule considering all major square subma-

we denote by s(Bi) the

trices of order r contained in the rows of R(M,B), and using

Theorem 2 and 3 we obtain from (5):

b (M) s(B,)

S = (-1)
i=1

i detR(B,)detR* (B}) = b(M) .

Similarly, using R* (M,B*), by (6) we have:

b (M) s(BI)
s* = ] (-1)

) detR (B, ) detR* (BI) =*rbm .
i=1

s(B,)

Obviously, S = b(M) if and only if (-1) i detR(Bi)detR*(BI) =1

for every i=1,2,...,b(M) , i.e. if and only if detR(Bi) =
s(B,)
= (-1) 1 detr* (B;) for every i=1,2,...,b(M).Similarly S*=bM)1if ard

*
s(B,) .
only if detR(Bi) = (-1) i detR*(B;) for every i=1,2,...,b(M).
. s (B!
Oon the other hand, s* = -b(M) if and only if (-1) . detR(Bi)

detR*(B;) =-1 for every i=1,2,...,bM), i.e., if and only if

s (B})+1 .
detR(Bi) = (-1) 1 detR*(Bi) for every i=1,2,...,b(M). Thus

we have the following theorems:



256 Danut Marcu

THEOREM 5. The following holds:

s(B.)
detR(B;) = (-1) 1

detR*(B]), 1=1,2,..:,b(M).
THEOREM 6. Only one of the following holds:

6D

either detR(Bi) = (-1) detR*(Bi), i=1,2,...,bM),

*
s(Bi)+1

or detR(B;) = (-1) detR* (B;), i=1,2,...,bM).

Let B” be a basis of M such that B#B°, B-B~ = {ei ‘
1

€. re.e.4e;, } and B"-B={e, ,e, ,...,e, } (obviously |B-B~|=
12 Tt Jy 32 Je

= |B°~B| ). We shall denote by R(B~B°, B"-B) thé square sub-

matrix of R{(M,B) consisting of elements in the crossing of

the rows il,}z,...,i with the columns jl,jz,...,j£1

t

THEOREM 7. The following holds:

detR(B-B“, B™-B) = detR(B”) .

Prooc6€E. Obviously, the columns t+1, t+2,...,r of
R(M,B) have only one non-null entry, i.e.,

(7) (R(M,B)) = (RM,B)) .= (ROM,B)), _=1.

t+1,t+1 42,842 "

Let At+1 denote the subdeterminant of detR(B~”) obtained by de-

leting the row t+1 and the column t+1: At+2 _the subdeter-~

minant of A obtained by deleting the row t+2 and the

t+1
column t+2 and so on up to Ar. From (7) and the definition of

R(M,B) it follows that detR(B~) = At+1 = At+2 = ... = Ar =

= detR(B-B”", B"™-B) . (Q.E.D.).
Similarly, if B*” is a cobasis of M such that B*~ #B*
we then have:

THEOREM 8. The following holds:

detR* (B* -B*~, B* -B*) = detR*(B*").
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Let Ba' Bb be two distinct baseés of M, B;,_Bg their
corresponding cobases and Ra; Ry, R;, Rg the respectively

standard representative matrices. Let d(B,,B,) = |Ba—Bb[

= IBb al . According to the form of R and R* apd since Ba—Bb=

= Bﬁ-—B;, Bb -Ba = B; -B; we then have
- d(B,/By)
(8) detRa(Ba-Bb, Bb-Ba) = (=1) detR;(B*—B*,Bg B*) v
d(B b)
(9) detRb(Bb—Ba,Ba-Bb) = (-1) detRb(B*-B*,B*—Bb .

From (8) and (9), using Theorems 7 and 8 we obtain:

d(B,,By) .
= - *
(10) detRa(Bb) (-1) detRa(Bb) ’
d(B ,Bb) .k
(11) detRb(Ba) = (-1) detRb(Ba) .
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REZIME

NEKE ALGEBARSKE OSOBINE REGULARNIF MATROIDA

U ovom radu dokazane su neke algebarske osobine stan-

dardnih reprezentativnih matrica regularnih matroida.



