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ABSTRACT

All 950 non-isomorphic simple matroids on 8 elements were
constructed in | 2| by the use of a computer programme. By using elemen-
tary methods, without computer aid,we give another construction for
probably the most interesting (when non-isomorphisms are considered)
subclass P of 322 rank 4 paving matrolds on 8 elements. The class P is
partitioned into three disjoint subclasses, The construction of the first
two is éiven in this paper, while the construction of the third subclass
of P is given in a sequel paper 1] (these two papers make a whole); Ve
study in greater detail the ways in which the non~isomorphic possibilities
arise. Qur main tool in the construction of P are three auxiliary classes
of graphs (these graphs can be bijected to some of the paving matroids)

and some properties of the Steiner system 5(3,4,8).

PREL IMINARIES )

We emphasize that the whole understanding of the
construction itself can be gained without knowing what a
matroid is, although some familiarity with elements of
matroid theory is desirable. A few basic graph-theoretical
definitions are necessary; all can be found in any general
text on graphs (e.g., |3} ). Non-defined notions on matroids
(which appear only in several commentaries of the construction;
can be found in |4 {.

We shall mainly consider the sets which are subsets of
the set s =1{1,2,3,4,5,6,7,8}. If there is no possibility of
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confusion, then the fixed subsets of S are denoted without
brackets and commas (e.g., "1234" instead of "{1,2,3,41™).
We shall often speak about, e.g., "1234" instead of "the set
1234". An n-set (n-intersection, etc,) is a set (intersection,

etc.) of cardinality n. in particular, an n-path of a graph is
a path of n (distinct) edges. The cardinality of a set X is
denoted by |X]|.

By a "graph" we shall always mean a non-oriented graph

without loops and multiple edges. _

A ground-set of a family of sets is the union of all its
sets.

Two families of sets F; and For with the ground-sets G;
and G, respectively, are isomorphic if there is a bijection
a : Gy »>Gy such that

Xe Fy) <=>oX)EF,

The addition of a set X to a family F, where X does not
belong to F, is the operation which gives the family FU{X}.
The set X is said to be added to F.

If the addition of several different sets to the same
family F gives the isomorphic families with one set more, then
we choose one of these sets. Its addition to F gives a represen-

tative of a class of isomorphic larger families.
A P-family is a family F of distinct subsets of S

satisfying:
(a) XeF => | X| >4
=> | |
(b) (xlmzeFAxlix£ >,x1nx2 <2
(c) S¢F

An A-family is a P~family F which additionally satisfies:
(@) () XeFAIX|>5)

A B-family is a family F of distinct 4-subsets of S

satisfyings
(e} (xl,xzelwxx1 ;xz) => fxlnxz'le{o,z}
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A C-family is a P-family, which is neither an A-family
nor a B-family.

INTRODUCTION

There is an obvious bijection between non-isomorphic
P-families and non-isamorphic rank 4 paving matroids on 8
elements (P-families correspond- exactly to the families of
non-trivial hyperplanes of such matroids). On the other hand,
it is clear that non-isomorphic P-families may be partitioned
into non-isomorphic A-, B~ and C-families.

In this paper we shall give separate constructions for
all non-isomorphic A- and B-families. There are, respectively,
52 and 86 families in these classes. The construction of all
non-isomorphic C-families is given in |1/].

Our main tool for dealing with the lion”s share of non-
isomorphic A- and C-families are three classes of auxiliary
graphs. We establish the theorems which provide the necessary
correspodence in each case. On the other hand, the construction
of all non-isaomorphic subfamilies of the Steiner system §(3,
4,8) yields all the non-isomorphic B-families.

The non-isomorphism of any two constructed matroids
(i.e., of any two constructed P-families) should be obvious
from our construction. This is not so in catalogue |2{. For
example, there are 63 non-isomorphic rank 4 paving matroids
on 8 elements, which are given in |[2| by families of seven
4-hyperplanes.

The exhaustion of all non-isomorphic possibilities
immediately follows from |2|. We have made efforts, however,
to provide a self-consistent proof of this exhaustion,
although a full understanding of such a proof sometimes still
requires small case analyses. 1

We would by no means recommend our construction
instead of that of }2!:, in fact, our construction could be
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hardly completed without the help of the first one. We simply
hope that this construction could help a better understanding
of the ways in which non-isomorphic matroids arise and,
perhaps, be used for some further research.

FURTHER DEFINITIONS AND DENOTATIONS

Given an A-family F, which has exactly one 5-set,
denoted by X, we define the A-graph G of F as follows:

(1) vertices of G are elements of X

{(ii) there is an edge {a,bl in G if and only if there
is a 4-set containing {a,b} in F.

Two (non-incident) edges of the just defined A~graph
G are said to be similar if the corresponding two 4-sets of
F contain the same 2—suﬁset of S\X.

A denoted A-graph is a graph G on five vertices, with
at most six edges, such that

(i) some disjoint pairs of non-incident edges may be
distinguished

(ii) if G has k edges (4<k<6), then there are at least
k-3 pairs of distinguished edges .

REMARK: (ii) implies that G has not a vertex of degree 4.

The pairs of distinguished edges determine a denotation

of G.

We stress that it should be proved that denoted A-
graphs are A-graphs of some A~families. In fact, the definition
of denoted A-graphs includes the characterization of those
graphs, which can be represented as A-graphs of some A-families.

The family of blocks of the Steiner system 5(3,4,8) is
the family ¢, where:

1234, 1256, 1278, 1357, 1368, 1458, 1467\
¢ ={5678, 3478, 3456, 2468, 2457, 2367, 2358

(The blocks are for convenience written in two lines).
The complement of a block X of ¢ is the block S\X.
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The complementary subfamily of a subfamily F of ¢ is
the family F such that FUF =¢ ; FNF = §.
The family b1 is the family of those blocks of ¢,
which contain the element 1 (the first row in the entry above).
The blocks of ¢ without 8 are called heptahedron hyperplanes.
" A complement of a subfamily F of ¢ is a block, which

is not in F, but the complement of which is 'in F. In some
cases we say only "the complement"”, when F is clear from the
context.

We shall sometimes speak about some elements or same
subsets of S8 sharing the isomorphic position in (with respect
to) a subfamily F of ¢ . We found it difficult, and perhaps
unnecessary in this context, to make this rather vague notion

quite precise. It means that the corresponding subsets of S
should be equally treated when constructing non-isomorphic
subfamilies of ¢, which contain F. Such subsets are easily
recognized in each particular case, For example, a necessary
condition for two elements of S to share the isomorphic
position in F is for them to appear the same number of times
in the blocks of F. In most cases this condition appears to
be sufficient. A similar conclusion holds for 2-subsets of S.

A subset of S has a special ﬁosition in & subfamily
of ¢ if it does not share the 1somofph1c positionm(with
respect to that subfamily) with another subset of S.

CONSTRUCTION OF NON-1SOMORPHIC A-FAMILIES

We differentiate four cases for an A-family F:
Case 1: F has a 7-set X,

The rules (a) and (b) give F = x3y.
Case 2: F has a 6-set X,

It is easily seen that all the other sets of F can be
just the 4-sets which contain S\X and no two have a common
element in X. There are therefore just four non-isomorphic
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A—families with a 6é-set, having from none up to threée 4-sets.
Case 3: F has 'two S5-sets X; and Xo.

We have |X1n X,!= 2. An easy argument shows that all
the other sets of F can be just the 4-sets having two elements
in X\¥X, and the other two in X\X;. At most three such 4-gets
may appear simultaneously and each two of them have one common
element in X\X, and another one in X\X;. So again we have
four non-isomorphic possibilities depending on the number of
4-gets,

Case 4: F has exactly one 5-set X.

If F has a 4-set containing S\X, then we denote this
4-set by Y.

THEOREM ;. There 18 a bijection between non-igomorphic:

a) denoted A~graphs and A-families which have

exactly one S5-get X
and have not Y

b) denoted A-graphs and A-families which have
which have at least exactly one bS-get X
one igolated vertex and which have Y .

These bijections are realized by establishing such
isomorphisms between the denoted A-graphs and the A-graphs
of the A-families, which map pairs of distinguished edges to
pairs of similar edges and conversely.

Pr oo f. (Sketch) An A-family F of Case 4.has the
unique A-graph G with fixed pairs of similar edges. It is
easily shown that G satisfies all the conditions to be a
denoted A-graph, when the similar edges are interpreted as
distinguished. On the other hand, a denoted A-graph uniquely -
determines, up to an obvious isomorphism, the corresponding
A-family. As for b), we observe that the element XNY cannot
appear in another 4-set of F.

We give the table of all non-isomorphic denoted A-
graphs. The graphs are given without isolated vertices, if

*) Two denot e A-graphs G, and.G, are isomorphic if there is agraph-isomor-
phism which ma pis G1 onto G2 and pres erves the denotation,
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there are any. Two distinguished edges in the same pair are
always crossed by the some number of short lines. The order
of this denotation is unimportant.

THE TABLE OF NON-ISOMORPHIC DENOTED A-GRAPHS

| |

|7 | =

A AT
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pa €
=, x| O

2| I
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It is well-known (see,e.g., the Appendix of !2|) that
the above list includes (when the isolated vertices are
returned) all non-isomorphic graphs on five vertices, which
have at most six edges and which have not a vertex of degree
4, The exhaustion of non-isomorphic possibilities for
denotation, however, should be checked by case analysis. Thus



266 Dragan Acketa

for example, the last denoted A-graph in the table has two
vertices of degree 3 connected by three disjoint paths of
length 2. Any edge has just two non-incident edges and it is
easy to see that there are only two isomorphic possibilities
for denotation.

As there are 29 non-isomorphic denoted A-graphs, 14
of which have isolated vertices, Theorem 1 gives that there
are 43 non-isomorphic A-families arising in Case 4. We point
out, however, that the Table above does not give only the
number of these A-families, but an immediate construction of
any of them as well.

REMARK: We can immediately construct 47 non-paving
rank 4 simple matroids on 8 elements by taking duals of the
paving matroids determined by A-families of Cases 3. and 4.

(2) CONSTRUCTION OF NON ISOMORPHIC B-FAMILIES

We shall primarily give three theorems, which will be
used in the construction.

THEOREM 2, Eaeh B-family F can be embedded into % .

Proof. As the assertion obviously holds for the
empty family, the family with exactly one 4-set and the family
with exactly two complementary 4-sets, we may assume that the
family F contains two intersecting 4-sgets x1={a,b,c,d} and
x2={a,b,e,f}. It is easy to check that the only remaining
4-subsets of s={a,b,c,d,e,f,g,h}, which have not 1- or 3-
intersections with either of X;, xz,are the sets of IUJUK,
where

I={{a,b,gyh}, {c,d,e,£}, {c,d,g,h}, {e,£,9,h}}

J={{a,c,e,g}, {a,c,f,h}, {a,d,e,h}, {a,d4,f,g9} ]

{b,d4,£,h}, {b,d,e,9}, {b,c,f,931, {b,c,e,h}
{a,c,e,h}, {a,c,f,9}, {a,d,e,g}, {a,d,f,h}
{b,4,f£,9}, {b,d,e,h}, {b,c,f,h}, {b,c,e,qg} } .
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There are no "forbidden" intersections among the sets
of IUJ or IUK, while each set of J has either 1- or 3-inter-
section with each set of K. Thus the only two maximal B-fami-
lies containing X={X1,X2} are X+I+J = &, and X+I+K = ¢,. We

3

have, however, that @2 =~ ¢ and ¢3 = ¢, The isomorphisms are
established by the permutations, which map {a,b,c,d,e,f,q,h}

to {1,2,3,4,5,6,7,8} and {1,2,3,4,5,6,8,7} respectively.

THEOREM 3. If two subfamilies of ¢ are isomorphic,
then their complementary subfamilies are also isomorphic. In
other words, there always exigts such an isomorphism between
two tsomorphic subfamilies of &, which can be extended to an

automorphism of ¢.

LEMMA 1. If a permutation 0 of S satisfies the
condition: "oal(d)Nd contains some three blocks with exactly
one common element”, then a(9) = & -

Proof. As a(9) is isomorphic to ¢, it suffices
to prove that a(¢) is uniquely determined by the given three
blocks X,,X,,X;. Denote X ,NX,NX, = {z}. The other four blocks
of a(?), which contain z, must be:

(xlﬂx2)+(S\(x1Ux2)) ’ (xlnx3)+(5\(xlux3)) |
(xzﬂx3)+(5\(xzux3)) ’ {z}+(x1\(x2ux3))+(x2\(xlux3))+(X3\(x1UX2))

where "+" denotes the union of disjoint sets.

Namely, the first three blocks are due to the fact
that each of the 2-sets xlnxz, X{lx3, inx3 appears in exactly
three blocks of a(d). A similar argument applied to the 2-sets
{23+ (XN (X,0%X5)), {21+ (X N(XUX)), {z}+(X\(x,UX,)) yields
the fourth block.

The remaining seven blocks of «(?) must be the comple-
ments of the first seven.

LEMMA 2. If o i8 an isomorphism between two subfami-
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lies Fl and Fz of &, each of which containe (at least) three
blockes with exactly one common element, them o can ba extended

to an automorphism of @.

Pr oo f. As the cardinality c¢ of the ground-set
of Fl is at least 7, the bijection o between the ground-sets
of Fl and li'2
(if c=8, then 0=}, The proof is completed by applying Lemma 1.

can be extended to a unique permutation o of S

Proof of Theorem 3. Due to Lemma 2., we have to
consider only the case when nohe of two isomorphic subfamilies
1?‘1 and E'2 of ¢ has three blocks with exactly one common element.
We differentiate three cases:

Case 1. IE‘l has two intersecting blocks
X, = {a,b,c,d} ’ x2k= {a,b,e,f}-

The 3-set {a,c,e}l is included in a block X3={a,c,e,q}
of ¢, for some geS\(xluxz). Let o denote any isomorphism of
F, onto F,. Similarly there exists a block X4={ «a), a(c),o @,v}
of %,for some veS\(a (Xl)Ua(Xz)) . Obviously X3¢ Fl,x4¢F2. We

define a permutation oy of S as follows:

a1 (x) =a(x) for xeX;UX,, ajl{g) = v

a, (s N\ ({g} U/Xl sz)) = SN ({v}iu alX))U a(X,)).

- The permutation oy estabilishes an isomorphism between
the subfamilies {Xl-,xz,x3} and {a(xl), oz(xz),'x4} of ¢. Thus a

is an automorphism of ¢by Lemma 2.

1

The only blocks, which may arise in F. (by reason of

1

the assumption), apart from X, and Xz, are:

1

‘(XIU Xz) N (x1 llxz) Xy ﬂX2)+(S N\ (XU Xz)) AN X, S\XZ'
Since a, (Xl) =q (Xl) and o, (X2) = q (X2) , the images
of each of these blocks under a and ay coincide.This implies
that oy is an extension of «q.
Case 2. F has a block X1 = {a,b,c,d}, but has not

two intersecting blocks.

There exist two blocks X, = {a,b,e,f} and Xy = {a,c,e,g}
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of ¢ for some e, £,9eS\X, . X, ,X ;¢ 0.

Let o denote an arbitrary isomorphism of Fl onto Fz.
similarly, there exist blocks X, = {o{a),e(b), h,i} and
Xg = {g(a),alc),h,j} of & for some h,i,jes\o(xX,). Obviously
x4,X5¢F2. We define the following permutation oy of s:

az(x) =a(x) for x€x1
Otz(e) =h : 0.2(f) =i ; az(g)'=j
&y (S\N(X,UX,UX,)) = S\(a(X;)UX,UX.),

The permutation o establishes an isomorphism between
the subfamilies {XI,XZ,X3}and &lei,x4,x5} of &. a, is an
automorphism of ¢ by Lemma 2.

The only block, which may arise in Fi, apart from xl,
is S\x1 and :

az(S\Xl) = S\az(xli = S\a(xl) = a(S\Xl).

proves that oy is an extension of a.

Case 3. F1 has no blocks

®\F, = ®\F, = ¢, which completes the proof of Theorem
3.

Consequence: Non-isomorphic.subfamilies of ¢, which _
have more than seven blocks, are uniquely determined (up te
an isomorphism} as the complementary subfamilies of those
non~isamorphic subfamilies of ¢, which have at most six blocks.

THEOREM 4. The assertion of Theorem 3 still holds,
when & is replaced by ®,.

Proo f. Omitted as similar to and easier than the
previous one. (Deleting 1 from all sets of.%l, we have the
lines of the Fano plane, and we should use the families of
three non-concurrent lines as the "key").

Theorem 2 and the Consequence of Theorem 3 reduce the
construction of all non-isomorphic- B-families to the construc-
tion of all non-isomorphic subfamilies of ¢ whig@“have at most
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seven blocks. This last construction will be done step- by-
step, beginning with the smaller subfamilies. Given a
subfamily of k blocks, we should naturally look for its non-
isomorphic superfamilies of k+l1 blocks and choose one
representative from each class of isomorphic families for
the next step of generation. A great defect of this procedure,
however, is that non-isomorphic families may have isomorphic
superfamilies. In order to lessen its effect as much as
possible, we develop the following approach:

We shall favorize the element 1 of § in our construction
in the following sense:

No element of {2,3,4,5,6,7,8} appears in more blocks
than 1 does and no 2-subset of S appears in three blocks of
¢ if a 2-subset containing 1 does not,

in any subfamily of ¢ which we construct (to be the
representative of a class of isomorphic subfamilies).

This condition still preserves the generality,
because all the elements, respectively 2-subsets, of S are
in isomorphic positions in ¢. What is more, we may assume
that the 4-sets containing 1, of any subfamily of ¢ that we
construct, necessarily form one of the fixed (representatives
of) non-isomorphic subfamilies of @1.

We primarily construct non-isomorphic subfamilies of
@1 and add thereafter some 4-sets from ¢\¢1 to them in order
to obtain other subfamilies of ¢. For each number of blocks
we primarily list the representatives of the corresponding
non-isomorphic subfamilies ( separated by commas ). This
list is, except for the trivial cases, followed by short
explanations of the construction.

NON-|SOMORPHIC SUBFAMILIES OF 01

0 blocks: ¢

1 blocks:s A = {1234}

2 blocks: B {1234,1256}. Each two blocks of ¢, have a
2-intersection.
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3 blocks: C = {1234,1256,1278} and D = {1234,1256,1357},

The three blocks have 1 as a common element. They may
have one more common element, but need not.

Theorem 4 provides that there are just two non-isomor-
phic subfamilies of ¢1 having four blocks and just one for
each number of blocks between five and seven. We prefer to
choose lexicographically the first representatives than to
take the complementary subfamilies.

4 blocks: .E
F

{1234,1256,1357,1467} and
"{1234,1256,1278,1357}

The common intersection of the three missing 4-sets

of ¢1 may be of cardinality 2 or 1

5 blocks: G
6 blocks: H
7 blocks: ¢1.

{1234,1256,1278,1357,1368}
{1234,1256,1278,1357,1368,1458}

NON-ISOMORPHIC SUBFAMILIES OF & WHICH
HAVE AT MOST SEVEN BLOCKS

0 blocks: ¢

1 block: A

2 blocks: B, AU{5678}. The two blocks may be disjoint.

3 blocks: C, D, BU{3456}, BU{3478}. None of the blocks
containing 2 may be added to B, otherwise 2 would appear more
frequently than 1. For a similar reason it is impossible to
choose the subfamily A from ¢1. The block from‘¢\¢1,may either
intersect both blocks of B or just one of them.

4 blocks: E, F, CcU{3456}, DU{2358}, DU{2367}

DU{2468}, BU{3478,5678}. None of the blocks with 2
may be added to C. Each of the remaining blocks (in ¢\¢1) is
the complement of a block of C. Similarly none of the blocks
containing 2, or 3456, may be added to B. Each of 2367,2457, -
3456, constitutes with D up to an isomorphism unique subfamily
of four heptahedron hyperplanes, without an element common for
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all the four (i.e.,which is not isomorphic to E). The set 2358
is the only one from ¢\¢,, which satisfies the following two
conditions: it is not included in the ground-set of D and has
a noniemptyrinterséction with all sets of D. All complements
(of sets) of D share the isomorphic position with respect
to D. ' :
5 blocks: G, EU{23581}, EU{2367}; Fu{2358}, Fu{2468},

FU{3456}, CU{3456,3478}, DU{2468,3456}, DU{2468,3478}.

The elements 2,3,4,5,6,7 5hare the isomorphic position
in E and the same conclusion holds for the sets of E. Adding
one of the complements to E we obtain therefore four
isomorphic families, while by the adding of one of 2367,2457,
3456 we obtain the (up to an isomorphism unique) family of
five heptahedron hyperplanes. Note ‘that the set 1357 has a
special position in F (with respect to the other three blocks).
' The additions of 2468 and one of the remaining three
complements to F give rise consequently to two non-isomorphic
families. The blocks 2358,2367 and 2457 share the isomorphic
position with respect to F. As for C, two of the blocks 3456,
3478,5678 must be chosen, which gives three isomorphic
possibilities. When D is considered, notice that none of the
elements 2,3,5 may appear twice in the blocks of ¢\¢1. We
must therefore choose at least one block from each of the
families {3456,3478,5678}, {2457,2468,5678} and {2367,2468,
3478}. Obviously one of the "intersection blocks" 2468,3478
and 5678 must be chosen, but the third family may be
represented by the block, which does not exist in the other
two. Since (5+4):8>2, some elements of S must occur thrice

in five blocks and the subfamily B of ¢l must not be chosen.

6 blocks: H, Guy{2358}, GU{2457), cU{5678}, EU{2367,2457},
EU{2358,2468}, FU{2358,3456}, FU{2367,3456}, FU{2468,3456},
FU{3456,3478}, CU{3456,3478,5678}, DU{2468,3478,5678}

¢NG = {1458,1467}, so the element 4 has a special
position in G (besides 1). This implies that there are three
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non-isomorphic possibilities to add the sixth block to G; it
either is the complement (of a black of G) or is not; in the
first case we must make a difference between 5678 ahd the
complements containing 4. There is, up to an isomorphism,
just one family of six blocks with the ground-set of
cardinality 7. It arises from E. The elements 2,3,4,5,6,7
share the isomorphic position in E and we still have two non-
isomorphic possibilities; to add one or two complements to E.
We ignore the first one, for it necessarily includes a .
2-subset of S, which does not contain 1 and which appears in
three blocks (such a situation would contradict our
favorizing 1) and is isomorphic to the case FU{2367,3456}.
The family F contains 1 four times and 2 tﬁree times; one
of the added blocks must be therefore any of 3456,3478,5678.
Notice that the elements 4,6,8 share the isomorphic position
in F and so do 3,5,7. If the sixth block is not a complement
of F, then there are two possibilities; its intersection with
the only complement may be included in {3,5,7} or not. If
both the blocks added to F are the complements of F, then we
have two non-isomorphic cases depending on whether the
"special” 2468 is included or not.

None of the blocks with 2 may be added to C; this
leaves just one possibility. As 1 appears in three blocks of
D, we have (because of (6+4):8 =3) that each element of S
must occur in three blocks of the corresponding family of
six blocks. Thus three blocks containing 8 should be added
to D, but it is easy to see that 2358 must not be added.

7 blocks: ¢1, Hy{2358}, HU{2367}, GU{2358,2367}
GU{2358,2457}, GU{2358,5678}, Gu{2457,2468}, GU{2457,3456},
Gu{2457,5678}, EU{2367,2457,3456}, EU{2358,2468,3478},
FU{2468,3456,3478}, Fy{3456,3478,5678}, FU{2358,3478,5678}.

) There are two non-isomorphic possibilities to add the
seventh block to H; it may be either 2358 or one of the
complements. We have already noticed that the element 4
plays a special role in G. The block 5678 is the only
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complement of G without 4. We may have none, one or two
complements among the two blocks added to G, but in the last
two cases the possibilities which include 5678 are not
isomorphic to those ﬁhich do not. what is more, 2 and 3 are .
the only elements of 8 which appear in exactly three blocks
of G. On account of that fact, in the case when two
complements with 4 are chosen, we make a difference between
the case when the same one and the different two of the
elements 2,3 appear in these two complements. Since the
element 1 appears only four times in E, (when adding three
blocks to E) at least one block must be chosén from each of
the families {3456,3478,5678},{2457,2468,5678},{2358,2367,
5678},{2367,2468,3478},{2358,2457,3478},{2358,2468,3456}. If
the chosen three sets do not contain 8, then we have the
family of heptahedron hyperplanes. The element 1 does not
occur in the same 2-subset in three blocks of E. Any block
from {2367,2457,3456} has a 2-intersection contained in a
block of E, with any block from {2358,2468,3478,5678}. Thus
the only possibility left is to add to E three of the four
blocks containing 8.

As for the family F, it is obvious that at most one
of the blocks contaihing 2 can be added. If all the three
blocks added to F are the complements, then we differentiate
the cases when the "special" 2468 is among them and when is
not. If just two of the added blocks are the complements
(none of them may be 2468), then there are two non-isomorphic
cases depending on whether there exist two added hyperplanes
with the intersection included in the "special" set {3,5,7}
or not. The first of these cases, however, is isomorphic to
the case GU{2457,5678}.

None of the subfamilies C,D of ¢, may be possibly
used for the production of subfamilies of ¢ with seven blocks.
The average number of appéarances of elements of 'S in seven
blocks is 28:8>3, so there exists an element which appears
in more than three blocks.
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We conclude that there are

2 (L+1+2+4+7+9 + 12) + 14 = 86
non-isomorphic B-families.

There is a very simple routine to check that all the
constructed B-families are really pairwise non-isomorphic.
In fact, each two of the constructed subfamilies of ¢ (with
the same number of blocks) differ in at least one of the
followings:

a)) the deck of incidence numbers of elements 1,2,...,8,
without regard to order

b)) the number of 2-subsets of S appearing in three
blocks »

Since each element (respectively 2-subset) of S appears
in exactly seven (respectively three) blocks of ¢, these
differences are preserved with the complementary subfamilies.
This immediately gives, without the use of Theorem 3, the
number of non-isomorphic subfamilies of ¢ with more than seven
blocks, which is’ the same to the number of. those with less then
‘'seven blocks. We cannot prove in this way, however, that some new
non-isomorphic possibilities do not arise with larger numbers of
blocks or, eguivalently, that a)) and b)) completely determine

(up to an isomorphism) a subfamily of ¢ .
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REZIME

NOVA KONSTRUKCIJA PEJVING MATROIDA RANGA 4 NA SKUPU OD
8 ELEMENATA (I)

U radu |2| je pomoéu kompjutera konstruisano svih 950
neizomorfnih prostih matroida na skupu od 8 elemenata.

Koristeéi elementarne metode, bez pomoéi kompjutera,
mi izvodimo nowvu konstrukciju potklase P od 322 pejving mat-
roida ranga 4 na skupu od 8 elemenata. (Pot)klasa P je po
svojoj—prilici najkomplikovanija, kad je u pitanju (ne)izo-
morfnost matroida, kod matroida na skupovima od najvi3e 8
elemenata.

Klasa P se razbija u tri disjunktne potklase. Konstruk-
cija prve dve je data u ovom radu, a konstrukcija treée pot-
klase od P je data u narednom radu |[1]| (ova dva rada &ine
celinu).

Prilikom konstrukcije detaljno ispitujemo moguénosti
za javljanje neizomorfnih matroida. Pritom se u znafajnoj
meri slu¥imo sa tri pomoéne klase grafova (koje su u obostra-
no jednozna&noj korespodenciji sa odredjenim potklasama od P),
kao 1 nekim osobinama ¥tajnerovog sistema S(3,4,8).



