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ABSTRACT

Our considerations are connected with the results of the first
three chapters of {1|. The aim of this paper is to contrubute in some way
to a better understanding of the purpose of introducing weak formulas while
dealing with the forcing relatidn for infinitary logics (Theorem 1.23) as
well as to correct, in our opinion, the proof of the weak form of the In-

terpolation theorem for infinitary logics.

INTRODUCTION

It is already announced in |1| that the proofs of:for
each p pll—+"PC_1 or of preserving E_ "seems to involve some
kind of saturation property for C" i.e. (*) for each p from
P | An ¢ follows p |+ A& (we are always given the other
implication)_ We have shown that all these statements are in
fact equivalent (thus mutually equivalent) to: for each p
(and ¢ ) pl~~v ¢ iff p|l—¢"* (Theorem 1.23). A sufficient
condition, merely conjectured in [1|, that these statements
hold, is that any nondecreasing sequence of length a <k, when
a fragment of some logic Lku is considered, has an upper bound
(Lemma 1.11). But this is not a necessary condition too (exam-
ple 1.13). From (*) follows also: for each p pll~ PCll which
otherwise when the given logic is infinitary does not have to
be fulfilled (gxample 1.15).

As for the proof of the Weak Interpolation Theorem for
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infinitary logics (semantical |= is replaced by syntactical |- )
our main objection is that relation (|| ) applied in it does not
have to be (and in cases of real interest, is not) a forcing
relation, while on the other side the properties of forcing re-
lations,in particular 1.22, are used. All the troubles are ower-
come successfully by the construction of a forcing relation
which has a "nice" intersection with the given one (Lemmas

2.12 - 2,23, Theorem 2,24).

Some other corrections and a few ,we hope, useful remarks

are made.

§ 0. We shall assume a knowledge of the basic proper-
ties of a forcing relation and in particular a familiarity with
[1
the most relevant definitions and results, mostly from !1!, may-

. However for the reader’s convenience we shall cite some of

be with some slight, 'unessential reformulations but using the
same terminology and notation.

Through the whole article the language L in question,
in all general discussions, will be a first-order language (fi-
nitary or not) containing at least one constant symbol. The ba-
sic logic symbols will be ~ (negation), &(conjunction), 3I(exi~
Stential quantifier ) and (in the case of infinitary logics)

A (infinite conjunction). The other like v (disjunction), -+
(implication), ¥ (universal quantifier) and V(infinite dis-
junction) are defined by the basic ones in the standard way.
AP will replace¢2§ . ,

. We shall just recall that the system of axioms

for finitary logic used in [1|, is divided into the groups: (A)
substitution instances of propositional tautologies, (B) basic
-quantificational axioms, (D) generalized quantificational axi-
oms and when the logic is with equality (C) identity axioms.
The only rule of inference is modus ponens. For the necessity
of infinitary logics we shall redefine in the natural way the
axioms of group (D) (and get D_), add a new setof axiams (Ax)
Pcdl: Anv O+ A G y PC_2: A& +¢ for all ¢ €e¢® and one more
rule of inference E_ : if y +¢ for all ¢ €9 then Yy >A & . Of
course, in the formulas of other axiom schemes, formulas
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of infinite length can occur. One can easily see that there a
redundancy in- the offered system of axioms. So, for instance
part (A) of it can be rather restricted and it is obvious that
PC_2 and E_ with the help of the axioms of part (A) give PC_1.
The set of all these axioms and rules of inference will be de-
noted by Ao.

§ 1. Let <C, < ,0> be apartially ordered set with the
least element 0, AT(L) the set of atomic and SENT(L) the set
of all sentences of a language L (we will often write only AT
and SENT rather than AT(L) and SENT(L) on the condition that
it is clear from the conteXt what is meant by it

DEFINITION 1.1. 4 unary relation | on C x SENT(L)
18 a foreing relation if it satisfies the following conditions
(instead of (p,¢) e |}~ we shall use the more common pll—¢ ; of
courge p ||£ ¢ will stand for (p,¢) & [~ ):

(1) The compability condition (8):
For each p,qeC , for any ¢ eETl
p<q and pll-¢ imply qll—¢ ;

If L is the language wtith equality we demand also

(1) (2) For each p eC and each closed term t there exists
qeC, g>p and ql t=t.
(27) For all closed terms tl’ t2 , for any atomze

formula ¢(v) with at most one variable free and for each p eC
there exists q €C such that g >p and efther p ||/ t, =t,or
Pll+4 ¢(t)) or q [}~ ¢(t,));

(2) pll—o, &0, if and only if pll-¢, and pll-¢, i

If L t8 an infinitary language we introduce too
(2) (<) pl|-nr o if and only if pl~o¢  for each ¢ €¢ ;

(3) plln ¢ if and only if for each a>p ql|+ ¢
(4) pll=3ve(v) if and only if there exists a closed
term t such that p ||l— ¢(t).

The elements of C will be, as usual, called conditions.
We read pil¢ as p forces ¢ ,When pil-rvyp we say that (a
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condition) p weakly forces ¢.
In defining some forcing relation we shall give only
its intersection with CxAT which is obviously sufficient.

DEFINITION 1.2 A forcing system ie a triple <C,||— ,L>
where C 18 a partially ordered set with the least element ,L a

given language and |l— a foreing relation on C x SENT(L).

DEFINITION 1.3. Let <C,|}- ,L> be a foreing system
where L 18 a finitary logie. For peC

°|p| = {6 € SENT|p|l~-n ¢}

Instead of Tc|0|, where 0 ig the leaat element of C we wri-

te Jjust T, Tc i8 called the (foreing) companion.

In any of the propositions.that follow , if it is not
already written it g.oes without saying that some forcing sys-
tem <C,|}~,L >, fixed but without any special characteristics,
1s given.

The following assertions are direct consequences of de-
finition 1.1.

THEOREM 1.4, {al For any conditions p,q and for
any sentence ¢ if pll—¢ and q>p then q|l¢;

(b) For each p €C and for each sentence ¢ either
Pl ¢ or p ||+~
(c) For each p € C and for each sentence ¢ there exists

a condition q >p such that ql|l—¢ or gl ¢.

LEMMA 1.5. (a) If pll—¢ then pllan ¢
(6)  pll=v¢  if and only if pll= " ¢
fe) plln&¢ 2f and only if pll— & o
(d)  pllvava ¢ if and only if for all
closed terms t pll—w ¢(t) .

In |1 | is given a complete and very exhaustive syntac-
tic proof of

THEQREM 1.6. Let <C,|l—,L> be a forecing system where
. L 8 a finitary language (of an arbitrary cardinality). Then

for each p €C
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(1) Tclp] i8 a consistent,deductively closed set
(€|pl I~ ¢ implies o€T |p);

(2) If ¢(v1,...,vn) tg a logically valid formula (Z.e.
|-—L¢ (Vireeosv )) then for any closed terms ti,...,t,

C
oty ..ast ) €T {p

In this place we would like to mention two things. First-
ly, (any) condition p really forces, not merely weakly for-
ces, each of the axians (for a finitary logic). This follows from

Lemmas 1.5 and

LEMMA 1.7. plln(vg ay) Zf and only if pll—~(¢ &)
whieh give.

LEMMA 1.8. pl-v (¢ ) 2f and only pl¢ +y,

That is not a property of for instance the forcing rela-
tion defined in |4]| where both & and V are taken for basic
logic symbols and a part of the definition of a forcing relation
is.

pllm¢ vy if and only if either pl~¢ or pli—-v
while we have

LEMMA 1.9. There exists g>p, g |l¢vy Zf and only if
there exists q>p, ql¢ or q|l—v,

Secondly, the result of Theorem 1.6. cannot be genera-
lized i.e. an analogous assertion for infinitary logics with
equality does not hold even if we kept "the syntactic apparatus"
of the finitary logic possible enriched by PC_ 2. Namely it is

easy to prove
LEMMA 1.10. For all peC, pll—nnPC 2 (that is p we k-
ly forces any sentence belonging to theaxiom scheme PC_2 )

but let us try ‘to check p|l—rawvvu(v=u-+ (¢ +¢°)) wher:
¢ is a formula in which u is free for v, ¢° is the result o’
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substituting some ( not necessarily all) free occurences of v
by u and ¢ 4is of the form AVY (infinite conjuction). In case
of a finitary logic the proof, based on Definition 1.1, is given
by induction on the complexity of ¢.

First of all let us note that (for any ¢)

Plww¥vvu({v=u->(¢>¢")) if and only if for all closed
terms t,,t, pl~(t) =t, 8¢ (t,) avd (t;,t))).

Let us suppose there exists a condition g>p such that

qll—-tl =t, 8AY &~AY". By inductive hypothesis, from qH——tl =t,

and gll-v, v e¥ follows qf|x “W°. Henceq |l ~A~n ¥~ for in
the opposite case for any r > q there would exist a formula

¥ e¥” such thatg|lt ~yT Let us fix such a pair r,y”. Then
for some s >r s|l—p“ while also s||——t1 =t, and s|}~y, contrary
to the inductive assumption. Now the question is, whether
q||#~Avv¥° is in contradiction with q|l-~AY¥” . And the answer
is that there is noO a general answei‘, that is that the answer
does not follow from the very definition of a forcing relation,
as we shall soon see.

In case we wish to get an analogy of Theorem 1.6. for
any infinitary logic, two of the possible ways to accomplish
this are either to add some new assumptions to the set of con-
ditions or to redefine the set Tclp] in the suitable way.

So if we have the Lku logic (k >w) it holds (we assume
the axiom of choice)

LEMMA 1.11. If a partially ordered set of conditions
<C, X> has the property that for each X <k any nondecreasing
sequence p_ <P, < ... <P, <--- @<\ Zn C has an upper bound then:

for each condition p (and dny set of sentencea &, |®| <k)J
(*) Pl An @ if and only if pll-~v A0

Proof. We shall consider only the less trivial im-
plication. Let ¢ ={¢Y|Y <A(< K)}, p,geC and p|Av & and let
us suppose that for each a <) we have already constructed a se-
quence g <P, <--.- :p8_<_...,8 <a so that ]::BH--qpY for each y <8.
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If o is a limit ordinal just the assumption on partially orde-~
red set enables us to extend the segquence with a new condition
P, (pcl_zpB for B <a) which forces all formulas‘¢Y /Y <a (in oth-
er words we can simply "bridge the gap " between successor and
limit ordinals). The case that o is a Buccessor ordinal is clear
(compare with 1.5 (c)).

In the end, let us note only that the other (more tri-
vial) implication always holds.

Fram (*) follows directly p|" ¥v¥u(v=u->(¢s +¢"))
(thus, in geéneral, in the notation from [1| p|l~n PC 11) also
for infinitary logics because of

LEMMA 1.12. The conditions"(*)"and"for each p
pll=vA® Zf and only <if pll—~ A~n 0" are equivalent.

Proof6£,. An immediate consequence of Definition 1.1

However the condition on a partially ordered set from
the previous lemma is not necessary in order that (*) holds.
The following example shows this. i

EXAMPLE 1.13. Let M be an infinitely countable model
of a countable language and let A be its diagram (the set of
all atomic and negations of atomic sentences of the language
L(M) which hold in the model MM). Let us enumerate the senten-

ces of A= tDlUcI)z where ¢, and ¢, are, respectively, the set of

2
atomie, that s negations of atomic sentences from A in such a
way that @, ={¢n[n ew} and ¢2={¢w+k|k €ew} Further let C =

= {pala <wtw} where 12 ={¢B|Bia}’ be partially ordered by the
inelusion relation and let us determine a foreing relation on

CxSENT(L(M)mlw) by:
for atomic ¢ pall—-qb if and inly if ¢ €p,
For the forcing system <C, ||~ , L(M)w;w> (one can easily
check that the given triple is really a forcing system) (*) holds
i.e. for any condition p =P, and any set ¢ of sentences,|?| <w

pll=an A0 if and only if pll- A~ @
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, Let us prove this. Since <C, > is linearly ordered
(with the least element po={¢o}) for any B,y (<w +w) and each
sentence ¢ of the language L(M)(Mlm

pB[].—'w ¢ if and only if pYH—’V" ¢
Hence it is enough to check that ‘
pyll=nvAe if and only if p |~Ave

Namely, on condition the assertion paH»——'w AD iff pall-—A W b
is true for at least one condition Py (*) follows easily. For
let g #o and pBH——A'vwb . Then by the above paH-A w ¢ whence
Pyll~"v A¢ and therefore pBII—-'w Ad

But for any sentence ¢

p,ll—¢ if and only if pr,L'V\: ¢ (then clearly pmH—A'v\:o
implies that pwH-—-A ) and consequently pmH—-'w AD ).
The proof is by induction on the complexity of ¢ .

If ¢ is atomic and pmH-'vnq; then ¢ € ¢, and so pwH—da
since ¢l§ P,* .

If ¢ is 3Ivy(v) and Pw”“""" 3vy(v) then for some n €w
and some closed term t pm+n]|— v(t) . Thus pw![—-v\, v(t) and by
the inductive hypothesis pwH- vit) i.e. pwll—- Jvy (v) .

Other cases are even more trivial.

EXAMPLE 1.14. Let all suppositions, except the enume-
ration of A , be as in the previous case. New we shall suppose
that

A= {¢n[n € w} (thus C={pn|n ewl, pn={¢o,...,¢n}).
It is eaey to verify that for all jew
pll~Aw s and  pli-nha
Thus in particular Py |[|4 v~ A A and we see that in this example

of the foreing system (*) does not hold.

We have only proved that (*) implies Tclpl I pC 11 (i.e.
for any ¢ which belongs to the axiom scheme PC 11 Tclpl ¢ that
is ¢ eTC]pl) . Thus in case (*) does not hold we have to check
separately whether TC[p| I PC 11 holds or not.
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The next example, however, confirms our second remark given
after 1.9.

EXAMPLE 1.15. Let L be a language containing just equal-
ity relation = and let M be an infinitely countable model for
L in which = 16 interpreted as an equivalence relation such
that at least one equivalence class contains infinitely many
elementa. Let A be such a clags and let a, b be two elements of
A, Let A =A1 ua, be the positive diagram of M, where 8, 18 the
get of atomic sentences in whieh constant ¢, appears, corregpon-
ding to the eglement a (A2==A\ Al) and let us enumerate the sen-
tences of A so that A ={¢n[n ewl and 4, ={¢m+k]k €w} . Again
we put p, ={¢B|B'sa}, C=={pa[a <wtw} and define for the language
L(M)w w @ foreing relation as before.

Now there i8 no one condition which would force weakly

€y =Sy > (A 4, + A Ai) where A{ i8 a result of the substitution

of eonstant c, by y in the sentences of 4,, for
Pyll-cy=c, 8Aa, 8 AAS

In particular no condition forces weakly ¥v¥u(v =u - (Adj(V)+

+-AA£(u)) where A{(v) and Ai(u) are obtained from A, that is

Af by substituting constants €. Cb by, the variables v and u

respectively. .

In |1| in order to obtain an analogous result to 1.6
for infinitary logicsthe notion of Tclp] is redefined. For that
purpose firstly, the concept of "weak" formulas is introduced.

DEFINITION 1.16. For a formula ¢ of (infinitary) logic
L we define a "weak" formula ¢Wk as follows:
(i) <Zf ¢ is atomice ¢Wk ig wWi¢ ;
(ii) <Zf ¢ <& AY ¢Wk i8 AWWk (thig case includes a fini-
te conjuction);
(111) if ¢ 8 Ivp(v) "% <8 an Ivy"E(v)
and (iv) <f ¢ 28 ¢Wk i8 Nka .

From the aspect of a forcing relaticn, as long as fini-
tary logics are considered, nothing new is obtained by "weak"
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formulas because of

LEMMA 1.17. If <C,||— ,L> ©& a forcing system where L
18 a finitary language then for any condition p and any sentence
¢ of L
pll~ ¢ and only if  pll-o*"

But independent of whether a logic L is finite or not
it always holds:

LEMMA 1.18.  pll—nn ¢¥F iF and only if pll—e¢"%,

and h wk wk wk
Pll—Aw 0" iff  pllA ¢ iff pllavaeT

So as we see "weak" formulas enable us to "draw out"”
the double negation in front of the infinite conjuction, more -
over, to eliminate it. Now it follows directly from the conside-
ration made after 1.10 and Lemma 1.12

LEMMA 1.19. pll— (pc11)"k,
This lemma also follows from parts (a) and (b) of

LEMMA 1.20. Let <C, |} sLy > be a foreing system. Then
(for any peC J:

(a) if pl= 4+ and p|l—¢¥F then p|l-y** ;
(b) pl (A »40)"®  (i.e. pl (e 1)) ;
(c) pll— (& (¥ >¢) » (W>A8)) K urence: pl (v > ¥F For
¢€ED
each ¢ €d implies p| (¢ »AQ)Wk ;
(d) if ¢(v1,...,vu), U<\ Ze a quantificational formula

for any closed terms tyreearty pIL—¢Wk(t1,...,tu).

Thus for the generalized notion of Tc!p] (see Lemma 1.17)
given by

DEFINITION 1.21. Let <C,|-,L> be a foreing system.

For pecC

(o

T€|p| = {¢ eSENT|p||-¢"%}
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C

(again for TCIOI ve use only T )
oOne obtains
THEOREM 1.22. [1] Let  <C,||—,L> be a forcing system

where L 18 an infinitary logic with the set of axioms and rules

of inference Ao. Then for any p €C
(1) Tclp| 18 a consistent deductively closed set ;

(2) if ¢(v1,...,vu) ig¢ formula of the language L and

't

}—-L¢(vl,...,vu) then for any closed terms t,,... y

C
o(tyreee,t ) T |p]

The next theorem (together with example 1.14) shows that
the introduction of "weak" formulas is necessary while dealing
with infinitary logics even in they are not with equality when-

ever we want to have at disposal either PC_1 or E_.

THEOREM 1,23. The following are equivalent:
(a) (%) ¢
(b) for each eonditiom p pll¢ <if and only if pH~¢Wk
(c) for eaech eondition p p|~nPC 1
and (d) for each condition p from pll—an (Y +¢) for all $ed
followe pll-nn(yp +A0) .

Proof. (a) »(d) Since weak forcing preserves modus
ponens (this assertion is a part of Theorem 1.6) (d) is accord-
ing to Lemma 1.7 equivalent to
(d7) for each condition p plln( A'V\(w +¢) + (Y >A0))
¢ed

i.e. pll— A v(p Ang) 8y &7AD )

de d
We think it is simpler to prove (a) + (d7).

Let us suppose (a) holds but for some condition p there

exists a condition q >p such that qf|—-Ady Ane) 8y 8V A%, By 1.12
ed
a}|—~Avve whence for some ¢, €¢ q ||+ ¢,- Hence for some con-

dition r >q r|}.-f\,¢° but then r|l~(y 8¢ ) and |y &g, a
contradiction. :
(a) % (¢) By 1.5 (e¢) from pll-an(Annd »nag ) (for  any
¢ €d) (Lemma 1.10) “and pll—~v(vng > ¢) follows pll—nan (((Avvd » wn @)
& (v »¢)) thus also pll—w(Awd +~¢) . Because of (d)
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pll=~v (Avng »A®) that is p|l—~(Avd 8VAD) .,

(c) +(b) On the assumption (c) holds we prove (b) by
induction on the complexity of formulas. Cf course (see 1.17)
the only interesting case is when ¢ is of the form A Y

pll- (A")¥K iff for each v eV p|l~v"* iff (by the induc-
tive hypothesié) for each v eV¥ pll—nyp 4ff pll— Ay iff
pl|—~vA¥ (in the last step we use: pl|l—-Avw Y and (¢) imply that
for any g >p a||4£ “AY , consequently pll—vvAY).

(b) + (a) We have just proved that always p[[-—-(Atb)Wk if
and only if p|l—Av9d and (b) gives us also pl— (49)¥* 1f ana
only if pll~~vad .

After all this it seems natural to put.the guestion of
the appropriatness of defining a forcing relation taking for the
basic symbol A rather than V. For with (see |2|) plv¢ if and
only if for some ¢ €% p|/—¢ we would obtain the desired p|l—A ¢
if and only if pll—-A ¢ (where now A® replaces Va9 ) and there-

fore also ’

pl ¢Wk if and only if pllan ¢

which would make the introduction of "weak" formulas unneces-

sary. Our justification could be that the presented system of

axioms and rules of inferences for infinitary logic is in wide
use.

Let us here also note that disregarding the way we have
defined the forcing relation in case L is a fragment of the lan-
guage Lk+w of power <k, where k 1is a regular cardinal and D
(a set of new constants) of cardinality k a condition on C
like that we use in Lemma 1.11 is put in order that the Generic
Model Theorem holds (|2]).

§2. The following example is taken from |1|

EXAMPLE 2.1. Let L be a logic with the set of axioms
and rules of inference Ao' T a theory consistent in L, Al and
A2 sets, respectively, of new constants that is, new function

and relation symbols, where |A2|_§|A1] = U |¢] <|L] (= k) and
e L -
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‘r"sL(A;1 UAz) a set with the following properties:

(1) ¢ € F implies sub(¢) =F (sub(¢) is the set of all sub-
formulas of ¢);

(2) ¢ €F implies ~¢ €F;

(3) if ¢gF and |¢]| < Ko+ Where x_ is the supremum of the
length of proofs in L (thus A if L is a fragment of logic LAu-'
we recall the definition: Th¢ iff there is a subset A of T
such that |A| <k  and |-AA=~¢ ) then A eF ;

(4) 1if ¢(v) eF and c eAl then ¢(c) eF)
and (5) for each formula ¢ from F there exists a constant c en,
which does not appear in ¢ .

Let C be a set partially ordered by inclusion whose ele-
ments are all subsets (p) of SENT(F) =SENT(L(A1 UAZ)) NF which
satisfy:

(1) if peC then |p| <k
(ii) for peC TU p is consistent theory in L(A1 UAay)
and (1ii) formula belonging to peC is not a conjunction.

We define a unary relation ||~ on CxAT(L(A; UA,)) by
pl|-¢ if and only if ¢ ep )
and assume that it is extended to a Irelation on C xSEN’I‘(L(I-\1 UA2))
resembling the forcing relation.

Our first remark would be that without additional assump-
tions about the set F the given relation does not have to be a
forcing relation Even the assertion:

if tl’t are closed terms occurring in formulas of F

2
and ¢ (v) €F then
(1) 0l (2] =t))
and (ii) for each p there exists g 2p such that either

pll# t,=t, or p[|+# ¢(t;) or qll- ¢ (ty)
does not have to hold always.

It seems most natural to introduce the condition that
F contains .the complete corresponding finitary logic and then
if X is a singular cardinal necessarily to weaken the condition
(3) in order that (5) be kept. The condition (3) is too strong



340 Milan Grulovidé

anvyhow. Let us also say that the sets F¢l, F¢2 and Fo we use

in the proof of the weak interpolation theorem do not necessarily
~satisfy it. In addition to all that (3) is, together with (4),
without an extra, great restriction, in collision with (5) for
A sinqular.

The next results are interesting in themselves and even
if a forcing relation is not considered they will be useful in
the application of forcing. _

Let ) be a regular cardinal (this condition is only to
simplify the "story"), L a fragment of Logic L)\Ll (with the set
of axioms and rules of inference Ao)and Al’ A2 and T is in 2.1 .
and as for C we ¢mit condition (iii), which in our opinion, in
the given consideration does not play any special role. We defi-
ne the relation [~ on C xSENT(L(A,UA,)) as in 2.1 with the
exception that now we put

P|l~ 3v¢(v) if and only if there exists cs A, such that
p{|— ¢ (c) (the alternative would be the strengthening of (4)
by . ‘

(47) 1if ¢{(v) eF and t is a closed term then ¢ (t) eF)

For relation ||~ holds

LEMMA 2,2, pH—- ¢wk if and only if pllan ¢Wk .

Pr oo f. By induction on the complexity of formulas,

LEMMA 2.3. If ¢ eSENT(F), peC and (1) ¢ €Pi, (2)
pi- ¢Wk;/‘ (3) TUplld~ ¢ and (4) there exists g such that

g=2p U {¢} then
(a) (1) »(2); (b) (2) »(3) and (c) (3) ~ (4).

Proof. (c} is trivial. wWe prove (a) and (b) (si-
multaneously) by induction on the complexity of formulas. In re-
gard to the reformulation made we shall aive only the supplement (with
necessary correction) of the proof from (1).

Let A¢ ep, q=2p and ¢ €d , In view of the fact that
TUqU{$} is consistent r sqU {¢} eC and by the inductive assump-

tion r|j—¢ WK It follows pll=nn ¢Wk i.e. p H-¢Wk, accordingly
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also pll— )"k,

1f pll- (40)** but not TUp||+~ A% then TUp U {~Ad} is
consistent. Consequently for some ¢ ed TUp U {vAd ,v} 1is con-
sistent. But for gZp U {aAd,vd) q]}--'\:¢Wk is in contradiction
with p|l—¢ ¥k and q”# ng "% implies the existence of some r=q
such that rlL»¢w and because of it TUr F#~¢ while ~¢ er is a
contradiction again.

If 3Jv¢(v) ep then for some c eh, TUpU{¢(c)} is con-.
sistent ( it is easy to see that this is true for any constant
c of Ay
q2p there exists ¢ from A, such that r =qU{¢(c)} eC. Since
wK(c) (that is r|l=1v ¢"%(v))

not- appearing in sentences of p). Analogously for any

by the inductive hypothesis r||—g¢
pll—nn .':‘vdiWk i.e. pH—(EIV(b)Wk. .

From p|l— Qv¢ ) ¥* follows the existence of r eC and
c eA; such that r2p and rI|+¢Wk(c) . Assumption TUr |4 ¢ (c)
implies TUr £ wwnv¢(v), therefore TUp H NIve (V).

COROLLARY 2.4, For ¢ eBENT(F) and pecC

pll—¢"® if and only if TUplo .

REMARK. In regard to the supposition that X is a regu-
lar cardinal the restriction |T| <A is unnecessary. In the op-
posite case (when X is singular), we introduce it because of
the application of rule E_.

The rest of the paper shall be devoted to the proof of
the so-called weak interpolation theorem which is to replace,in
general, the invalid interpolation theorem for infinitary logics
(see |1],]4]).

THEOREM 2.5, Let q>l and ¢2 be two gentences of the gi-

ven logie L, with equality (and the set of axioms and rules of

Au
inference Ao) and let |--¢l >¢, . Then there exists a sentence ¢
of logic L, such that |»—¢l ~¢ and |-¢ »¢, and that each cons-
tant and each function and relation symbol with the exeeption

of =, whieh occurs in ¢, occurs as well in both ¢1 and ¢2.
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The main idea of the proof, which to a great extent sug-
gests technical solutions, is taken on from the proof of the
Interpolation Theorem in (classical) Lyy 1l0gic where under the

assumption that there is no interpolant between ¢1 and ¢2 is
being shown the existence of a Hintikka theory containing ¢1
and m¢2, hence the existence of a model (corresponding canoni-
cal model) for ¢, and vy

Now in accordance with replacing l= with - we use syn-
tactical apparatus. For that purpose we shall extend, firstly,
the language L by a set of (new) constants A of cardinalityggdgl
and then in L(A)Au define set F¢i, i=1,2 as the set of all .for-
mmlas with the property that each constant and each function
and relation symbol (different from =) of the language L,which
occurs in them occurs in ¢i and which contain no more constants
from A than it is permissible to have quantifiers (which should
enable us to "eliminate", if necessary, these constants from
the relevant formula). In general F¢i satisfies all but the third
item of the definition from 2.1. However if o sFé, and |¢| <cfu
then A® eF¢i. Thus, ‘and by analogy with the proof of Craig-s
theorem, we are taking for elements of C all the subsets, inclu-
ding the empty set, P =P1 UP2 of SENT(Fcb1 UF¢2)(we assume that
Pi < F¢i, i=1,2) of the cardinality less than cfpy and such
that the union of theories Thm(AP;) ={f eF_=F¢, N F¢2|APiFg} .
i=1,2 1is consistent. Therelation || € C.xSENT(L!A)Au) is defi-

~ ned like the relation ||~ in 2.3. This time using the sign ||
instead of |- we emphasize that

| is not necessarily a forcing
relation.

To the proofs of the following several lemmas which can -
be found in |1| should be added, because it follows from the rea-
sons unmentioned there, the real possibility of the assumption

that sets A, applied in them, belong to Fo.
LEMMA 2.6, If Ei €F¢i, i=1,2 and £€Fo then 'I‘hm((E1 &)l Thm(£2)

i8 consistent in and only <if Thm(El) UThm(g2 &%) 11s constis-
tent. '
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LEMMA 2.7. If &y EF¢15 i=1,2 and Thm(El) UThﬂl(Ez) i8
inconsistent there exigts an interpolant E-o between F”l and

“Ey (g »E, and bE enE ).

LEMMA 2.8. If ¢, eF¢ , i=1,2-and Thm(f,) UThm(£,) <s
congigtent ther_l £, UThm(El) U-'I-‘hm(Ez) i8 consistent too .

LEMMA 2.9. If ¢, eF¢,, i=1,2, ¢ eF¢, and Thm(g, &¢) U
U Thm(g,) <& inconsistent then {£,} UThm(g,) }-v¢ and Thm(E, &
&v¢) UThm(E,) <& consistent. ' '

LEMMA 2.10. If EieF¢i, i=1,2, Ade F¢1‘aﬂd Thm(El 8'\:A¢)U'I'l‘l'n(52)
18 a congiatent theory then for some ¢€¢'I’l'nn(£1&'\:A¢M)UThm(£2) 18
also consistent. -
LEMMA 2.11. Let PeC and y €F¢, (1 e{1,2}). Then
(1) »(2) and (2) + (3) where (1) yeP ; (2) P ka and (3) there
exists Q in C such that PU (v} =Q. '

Proof. By induction on the complexity of the for-
mula ¢.Since lemmas 2.6 - 2.10 have already been given there is
little more left to be done. The casey is 3v¢(v) shall serve
as an example (the other cases, we think,are easier).

Let Jvo(v) €F¢, and 3Ive(v) eP, gP, U P, =P (this is, of
course, no restriction at all). Then for some c eA Thm(@A P, &

8 ¢(c)) U Thm(APz) is consistent for in the opposite case i\Pl
UThm(APz) - v¢(c) for each cer (2.9)but if c is a constant
not occurring in ej.therl\P1 or APZ we would obtain APIU Thm(APz)

 ~ 3v¢(v), contradictory to 2.8 (2.6 makes consideration of
theory Thm(AP,) UThm(AP,4¢(c)) in case 3Ivé(v) € F superfluous.
rtherefore for all Qe C, Q 2 P there exists ¢ in A so that
2U {¢(c)} = R € C whence because of RH¢>Wk(c) Bl 3v ¢Wk(v) ,
accordingly P !l (Iv¢(v)) wk

On condition P || (3v #(v))¥X Qll ¢Wk(c) for some QO =P
ana some cei. rhen 2 U{y(c)} = R & C and so RU{ Ive(v)} e ¢
also. :

nowever, what else we need is a forcing relation (”~ )
such that a set of conditions is C and for ¢ er¢,, (ie{1,2}h

(and 2 €& €) @ l~¢"" ir (ana only if) ol ¢¥% .
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) For with it here 1is the proof., Namely, according to 2.7
it is sufficient to prove {¢1,'\:¢ } gC. But the assumption P =
= {9, b, } eC leads to a contradiction because of theorem 1.22
(and hypothesis |—-¢1 +¢,) Pll=n(,&ve, )Wk while according to
2.11 P|]¢1k &m¢2k, thus also PIF—¢1 &m¢2k .

In the following we assume that language L contains of
the nonlogical symbols only those occurr:.ng in formulas ¢1 and
6o and if it is not already included, the relation symbol = ,
that is L = L1 UL2 U{=} where L1 and I.2 are languages,elements
of which are symbols fram ¢, and P respectively. _

For a closed term t of the language L(A) we will say
that it is basic if either t is a constant or t is of the form
f(cl,...,cn) where f is an n-ary function symbql and CyreeesCy
are elements of A |5].

LEMMA 2,12, For each bastitc term t and each P € C there
exists c €A and Q€C such that PUlt =c} Q.

Proof. An immediate consequence of lemmas 2.8,
2.9. ’

ILet t be a closed term, Pe&€C and c eA. We define re-
lation P||~-t =c in the following way:

for t =c eF¢, UF¢, by : (a) P| t=c if and only of
t =c ep;

otherwise, inductively (on the complexity of the term

t) and according to (a) :if t =f(t1,...,tn) (and
E(t,.eent) =C ¢F¢, UF¢,) Pl/l-t =c if and only if there
exist elements CirenesCy from A such that Pll-ti =cy, i=1,...,n

and P|l-f(c,,...,c ) =c.

Relation P|l—c = t is analogously determined.

"From now on we shall not always accent that the first
components (P,Q,R,...) of relation ||~ are elements of C (i.e.
we shall not permanently repeat P €C, Q€C, ReC ,...). Besides
that being most of the proofs of the subsequent lemmas rather
tedious than difficult we shall usually omit them.
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LEMMA 2.13. If Pl|l-t=c (P||l=c=t) and Q2P then
Ql-t=c (Q|}—c=t).

LEMMA 2,14, If Pll~t=c (P|[~c =t) there exists Q,Q0 =P
and Q|jl—c =t (Q|-t=c).

LEMMA 2,15, For each closed term t and any P there
exist Q and c €A such that PSQ and Q[l~t=c (Q|l-c=t).

Pr oo f. If all the symbols of t are from L, (L,)
the assertion follows from the fact that there exists a constant
c € A not occurring in the sentences of P, Otherwise we use the
induction on the complexity of t. .

L4

LEMHA' 2.16. Let tl' t2 be closed terms and c,d €A .

(a) If P|l—t,=c and P|j t,=d there exists Q such that Q=P
and Q|l-c =4d.

(b) If P|l~t;=c and P|l~c =d there exists Q such that Q2P
and Q|l—t, =d’

(c) If Pl}=t, =t, and PH—tl =c there exists Q such that Q2P
and Q||—t2=c.

(d) If Pl}—t, =t,, P|-t, =c and P||—-t2 =d there exists Q
such that Q=P and Q|}c =d.

Now in the natural way we extend the relation ||~ with
the remark that we shall use the same symbol for extensions.

DEFINITION 2,17. Let ¢ Ep(tl,...,tn) (for n=2 p can
be = as well) be an atomic sentence (of the language L(A)) and
P eC. Relation |l— <C xAT(L(A)) is given by

(a) P||—¢ <Zf and only if ¢ €P for ¢ eF¢1UF¢2, that is

(b) P||—¢ =f and only if there exist constants C «sC

_ 1’ n
from A such that P‘|}-ti=ci, i=1_,...,n and p(cl,...,cn) eP (Z.e.
12y} i e ¢Fo, UF¢,

(Clearly, requirements P|l—c, =t, instead of p H—ti =c,,

according to (a) P|}—pl(c

i=1l,...,n would change nothing essentially - 2.14).

LEMMA 2,18, If ¢ {8 an atomic sentence, Pll~¢ and
Q2P then also Qll—¢.
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LEMMA 2.19. For all closed terms tl" t2-' t3 and each
P€ C holda:
(a). There exists Q,Q=2P and Q”_.tl =t. ;

1l
(b) if P”...tl =t2 there exists Q,Q=2P and Q”—-tz =t1 :
(e) if Pj-t, =t, and P{f-t, =t, there existe Q,02P and

LEMMA 2,20, Let ti=t; ,-1=1,...,n be closed termg, £
‘and p a function that is a relation symbol of the length n and
PeC. If P [}t =t{ ,i=1 ,...,n there exiests Q such that Q2P
and Q (=€ (ty,...at ) =E£(t[, .., t7) . If still P ”“'p(tl,...,tn)
there ezi’ete R_,R;P qnd R l"’l-p(tl',..‘.,tr;).

LEMMA 2.21. Let ‘tl, 1:2 and O be cloged termg, 0° a
term obtatined by substitution in O (not necesgarily all) occu-
rences of t, by t, and let PeC. If P H-tl =t, there existe

Q such that Q=P and Q |o=0".

Proof. By induction on the complexity of ¢ using
the previous lemmas.

LEMMA 2.22. Let t, t, be closed terms and ¢(v) an
atomie formula (with at most one free variable). Then for each
P there exists Q=P such that either P ||/ t,=t, orp H# ¢ ()

or Q [l-¢(ty) .

According to 2.18 amd 2.22 the relation ||— determines
a forcing relation (which we denote also by |l— and) for which
holds:

LEMMA 2.23. Let P be a condition (now in regard to the
accepted terminology we again call elements of C conditions), t
a elosed term and é(v) a formula (of the language L(A)) with at
moet one free variable, c an element of A and let pl|l-t =c.
Then pl||- (6 (ENYF if and only if bll- (6 (eN¥VE,

Proof. By induction on the complexity of formula ¢,
If ¢ (v) is an atomic formula the statement is a direct

conseqﬁence of the previous three lemmas. Other cases are trivial.
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On the basis of what has been said the proof of (the #eak
Interpolation Theorem) 2.5 follows from

THEOREM 2.24, For ¢ eF¢_ U F¢ and Pe C
wk . 1. 2 wk
Pil ¢ if and only if Pll-o"" .

Proof. By induction on the complexity of ¢ . The
only interesting case we have is when ¢ is of the form I vy (v)
{where ¢(v) is a formula with at most one free variable).

7 LetP-H——GV!lJ(V))Wk (i.e. Pl EleWk(v)) and Q2P. Then
for some R2Q and some closed term t RH—ka(t). By 2.15 there
exists S(€C) and c€ A such that S 2R and S||—t =c. Thus also
(2.23) S||—1ka(c) whence P|| (E]w],'(v))Wk too. The proof in the op-

posite direction is trivial.
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REZIME

PRIMEDBA O FORSINGU I S5LABOJ INTERPOLACIONOJ
TEOREMI ZA BESKONACNE LOGIKE

NaSa razmatranja odnose se na rezultate prva tri pog-

lavlja iz | 1|. Cilj nam je da bolje osetimo ulogu slabih for-
mula i korigujemo dokaz slabe interpolacione teorere za besko-

na¢ne logike.
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U |1] je veé nagovesteno da (direktni) dokazi tvrdje-
nja kao 3to su: za svako p p|j—"PC_1, ili: pravilo izvodjenja
E, ostaje ofuvano, “izgléda da zahtevaju" sledefe svojstvo sku-
pa uslova C: (*) za svako p iz p|l-A o sledi p|l-“ Ad (imp-
likacija u suprotnom smeru je uvek ta®na). Mi pokazujemo da su
ovl iskazi ekvivalentni (dakle i medjusobno ekvivalentni) sa:
za svako p p|l—vv$ ako i samo ako plF—¢Wk (Teorema 1.23.). Do~
voljan uslov, samo pretpostavljen u |1], da ova tvrdjenja i va-
fe u sludaju kada posmatramo fragment logike ka, je da svaki
nerastuél niz uslova duZine X <k ima gornje ogranifenje (Lema
'1.11). To, medjutim, nije i potreban uslov (Primer 1.13). Iz
(*) takodje proizilazi: za svako p p|l"vPCl1l, 3to inaZe nije u
opStem ispunjeno za beskonadne logike (Primer 1.15).

3to se tide dokaza slabe interpolacione teoreme za bes-
kona¥ne logike (semanti¥ko [ je zamenjeno sintaktidkim | ) os-
novna zamerka nam je da relacija (||) koja se u njemu koristi
mne mora da bude 1 u slucdajevima od stvarnog interesa i nije, fo-
rsing relacija dok se u isto vreme koriste osobine forsing rela-
cije (posebno 1.22}, Iskrsli problem re3avamo konstrukcijom for-
sing relacije koja sa datom ima presek "po meri" (Leme 2.12 -

- 2.23, Teorema 2.24). U&injene su i neke druge korekcije 1 po-
boljSanja.

Komentari uz pojedine stavove treba da doprinesu boljem
sagledavanju izloZene materije.



