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ABSTRACT
We analyze the structure of the space o{M } and 6“{M }. Under cer-~
tain conditions on the matrix {Cp q:exp(mp(x))} we investigate relations

between the space 0‘{HP} and some spaces of ultradistributions. Also we in-
vestigate the Fourier transformation on the spaces O{Hp} and o*{M }.

p
1. INTRODUCTION

The spaces of the type S‘{Mp (x, 9 )} were introduced
in [10], though some examples of such spaces were analyzed al-

ready in [1]. In [9] a class of spaces of the type S‘{Mp (x, q)}

was investigated. _ .
In this paper we shall observe a class of spaces of
the type S’{Hp(x, q’)} denoted by c‘{np(x, q )} (short.

M - ] =C
c{p}oro)for p(x,_q) b, q

where N = IN U {0}. Throughout the paper {cp

exp(mp(x)). (P,q) eINxM

,q¢ (Pra) e WNxIN,}

(short. {Cp q}) denotes an infinite matrix of positive numbers
[ 4
and {mp (x), p eN} (short. {mp (x) }) denotes a sequence of func-

tions. The properties of {cp,q} and {mp (x)} will be given la-
ter.

We shall analyze the structure of -the spaces o and o~
The elements of ¢~ we shall call "exponential ultradistributi-
ons". Particularly ,we shall prove that under certain oconditions
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the space of test functions o{llp} is -sufficiently rich and
that )c‘{M } is a subspace of the space of ultradistributions
0 Nq ([35’) for a corresponding sequence {Nq i q e]No}. We

shall obtain a representation theorem for exponential ultra-
distributions. As well, we shall define the space of entire
analytic functions on the complex plane which is the Fourier
transformation of the space a{l!p}. This will enable us to
define the Fourier transformation of exponential ultradistri-
butions.

2. SPACEs u{Mp} AND o ’{Hp}

Let {Cp ‘-I} be an infinite matrix with positive numbers.
r .
For this matrix we suppose:

(C.1) C for every (p,q) e INx nlo ;

c
P.q = ptl,q

(C.2) For every p e N the sequence '{Cp q q ello} monotoni-
r

cally tends to zero when q +®,
(C.3) For every p eIN there exists p”" e N, p”>p, such that
for every € >0 there exists qo(c) e]No with the pro-

perty Cp'q _<_ecp,'q for qzqo(c).
(C.3) makes that (C.1) is superfluous in the theory of spaces o
an 0. We assume that (C.l) holds only to make the whole theory
easiar:
In order to have the differentiation as an inner operation
in o° we shall suppose as well:

(C.4) For every p eIN there exists p” e N, such that

sup{C /Cp, i qeN } <o,

P,q g+l

Let {up(t); pelN}, t >0, be a sequence of continuous

increasing functions which satisfy: uP(O) =0, up(w) == and

up(t) i“pu(t) for every t >0, p eWN. Putting

mp(t) = IZI up(u)du, pelN, telr,
we obtain another sequence of functions. Every m, (t), pem,
is an even convex function which increases to infinity faster
than any linear function when |[t| +®. This implies that its
dual function in the sense of Young
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mp(y) t=

O~

1(t:)di: = sup{ lt-yl-mp(t); teR}

is finite for arbitrary yeIR; u;l (t), £t >0 is the inverse fun-

ction of u, (t) (see [2]). We suppose also in the sequel that
the following condition (introduced in [6]), holds :

(A) PFor every peN there exists p” eIN such that
mP(Pt) imp,(t) holds for |[t| >p~.

We denote by {mp,l(xl)}""’{mp,s (xs)}, p € N, the sequences

of functions obtained fram the corresponding sequences
{up' 150}, '{"'p,s (x;)} 1in the above construction,and we put

mp(x) =mp' (x ) +... 4+ m (x ) x=(x'1,...,xs) eR>

Since the sequences {mp 1("1) }, i=1,...,8 satisfy (1),
r

this condition (in an obvious interpretation) holds also for
{mp (x)}.
Further on in the paper we shall put

Mp(x, q ) =¢C exp(mp(x)), pelm, qelNo, x em® .,

P, Q

DEFINITION 1. The vector space of smooth funetions
on R such that for every pelN

YP(M ;= sup{|¢(q) (x)]Hp(x,]ql); xeR®, qe]Ng} <o

1g denoted by d{np(x, q )} (short. q{ll }) . The topology in
the space o{M } 18 given by the sequence of norme {Yp; pe N}

(As usual, |q| =q, +... +q where —(ql,...,qs).).

In the usual manner (see [I]) one checks that a sequ-
ence {¢n(x)} from 0{‘%} converges to ¢ eq{Mp} iff on every

compact set Ko R and every gq e]Nz the sequence {¢n (q)’. nelN}

(q)

converges uniformly to ¢

Cp >0 such that Yp(¢n) :Cp, for every né€N.

and for every p e N there exists
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PROPOSITION 1. Let ¢ec{MP} . Then

(1) lim sup{l¢(q) (x) |Mp(x,|q|); xelR’} =0
q b ad
(11) 1lim sup{|¢::(q) (x) IMP(x,ICI“; quN:} =0

|x] v

Proof. (i) follows fram (C.3) and (ii) follows
from the fact that mp(x) +o 1f |x| +o .

We denote by cp, p eN, a subspace of C"'(]Rs) such
that ¢ eo, iff ’ '

yp(?) <o, l1lim sup{[¢(q) (x) IMP(x,Iql); xeR®} = 0 and

|qf+e

lim sup{|¢(q) (x) Iup(prQI); qe]NZ} = 0.

| x>

THEOREM 1. (1} The epace % i8 a Banach space.
(11) The space d{Mp} i8 a Frechet-Schwarts epace.

Prooc6E. (i) Let 'yp(<b\’ —¢u) <g¢ if v,u >N{(e) and
let ¢ ec®(R®) be the limit of the sequence {¢v}.

We prove that ¢ ecp. Clearly YP(M <« holds.. We want to
prove the remaining properties of ¢. First we prove that for
every q € ]N?)

(a) sup{"p(x.IQI) l‘bv(g) 6D (x)]; xem®)+ 0 ag v .
If-v,uo >N(c) we have

(b) sup{Mp(x, lal) ]¢v(q) x)|; x e'ms \ K} <

< sup{Mp(x,lq]) lcbsq) (x)|; xemRE\K} + ¢,
(o]

where K =B(0,p} is the closed ball with radius p >0. If v +o
we obtain '

Csup @, (x, JaD) 6P @) 5 x e RO\ KD <

< sup{Mp(x,lq]) |¢"fq) x)]; xeRE\K} + ¢ .
[o]
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For every compact set Kc R® there exists N(e,K) such
that
sup{u x,lah |¢ (x) -¢(q) (x)]; xeK} <e L£ v >N{eg,K).

(q)

because ¢v (q) converges uniformly to ¢ on K.

Let Hg >N(e) and let p be chosen  such that for K =
= B(0,p) the following estimate holds

sup{M (x,lql)l%(q) (x)]; x eR®\ K} <e .
p Q
Therefore taking v 3v°(q) =max{N(¢), N(c,B(0,p))} we have
sup{up(x, lap) |¢\(,q) (x) -¢(q) (x)|; xemrS) <

sup{u (x,IqI)N (x) -¢(q) (x)|; xeK} +

A

+

sup{Mp(x,lql)(M\(,q) (x) | +|¢(q) (x)]); xem®\K} <
<€ +2 +2¢ = 5¢ .

Thus we proved (a).

Since ¢ eo_, there exists N_(e) such that
b, P o'~

sup{H (x,Iql)lcb (x)l,-erR }Y<e 1f |q] >N (e) .

From (b) we obtain that v >Nf¢) and |q] >N (e) imply

sup{np(x, la]) H\‘,q) (x)|; xem®¥} < 2¢ .
For a fixed g eNf’ and vi{(q) >v°(q) we have

sup{Mp(x,|q]) H(q) (x) —¢“§g; (x)|; x elR®) <e .

Thus, from

sup(M_ (x, |a]) [¢ ‘T ) |5 x em®) <

< sup{np(x,|q]) “(q) (x) -¢“§g; (x)]; xem®} +

(q)

. -]

+ sup{Hp(x,l qllé
we obtain that
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lim sup{M (x,|q|)|¢(q) x)]; xewr®} =0 .
lqle
The proof of
l:im{sup M, (x,|q|)|¢(q) (x) |; qemz} =0

'xl-bw

may be derived in a similar way by observing separately this

supremum for |q| <q, and lq] >q  for a suitable q €N,

(11) .Proposition 1 implies that of{M_} = N Oy
p=1

Let p" be an integer such that p" >p” where p~ is an integer
which corresponds to given p € IN in condition (C.3). From
condition {A) it follows that we may choose p" such that
exp(mp(x) -mp..(x))_-ro as |x| +« . We shall show that the in-

clusion mapping ap.. +ap is campact. For the proof we shall use

an idea fram [1] .

‘Let { 4> } be a bounded sequence in Gp"‘ We denumerate the set
S by putting e,=(1, ,...,0) +1, e,=(0,1,...,0) +2,..etc.
{Kn}wecbmteasequenceofcurpactsmsetsofll such that

o P
K <K, ,,nelN, U K =] and

n n=o D

s
sup{exp (mp(x) —mp..(x)), x e R \Kn.} <eg

where the sequence {en}, € >0, monotonically tends to zero

o
(Kn is the interior of Kn)

(e1)

The functions |¢ (x)|, veN, are uniformly bounded

on K;. Hence, by virtue of the Arzela theorem, there exists a sub~sequ-
ence {¢, ,} of Yo} which converges uniformly on K;. Becau-

se of the uniform boundedness of the functions |¢(e1) x)|, v,1=

= \J]relN on K, , according to the same Arzela theorem there

e2)
exists a sub-sequence {¢\,,2} of  {¢y 1} such that {¢\, 2} conver-

ges uniformly on K2. Continuing in this manner, and then
applying a diagonalization process we obtain a sequence {¢\N}.
¢ ]
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(q)

As {¢(q)} converges to ¢ on every compact set K< ®® and

Y ‘("w) <M we have that 7 « () <M because of

|¢‘q’ () | < O/ Cpa ) X (myn (x))

fla p

which holds on every compact set K< ®° .
We shall show that ¢ eap and that {«# } converges to

i .
d)nop

For a fixed g e]Nz we have

(c) sup{C exp(mp(x))M(q) (x) |3 x elRE\ Kn} <

PI|Q‘
(q)
< en(cp’lql /cp".lql)sup{cp".lql exp(mp..(x))M (x) |

s
xe]R\Kn-}f_en.

where € is from (C.3).

Let {e;} be a sequence of real numbers which tends to
zero and let 'qo(e;), n eN, be the corresponding numbers from
condition (C.3). From the inequality

sup(C | exp(mp(x)) |¢(q) (x)]; x eR®} <

(q)

p.lq

< gl;.exp(mp(x)-mpl(x))Sup{Cp..’Iql exp (m, » (¥)) 6 % () |;

S -
xeR } < e M

which holds for |q| >q,(e]),we obtain that

lim sup{C

expm_(x)) 6P (x)]; xer®} = 0.
fq|+e p

p.lal

Thig fact, together with (c), implies

(q) 8
lim sup{c ) (x)|exp(m (x)); qeN_} = 0.
x| Pe)q] lexp@p ()i q X} = 0

So we proved that ¢ eap-.

We have
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. (q) _ (q) .
Y p(q;w—q,) =< sup{!‘lp(x,]q])u\w (x) ¢q(x)] ;i xe K, q emz} +
+ suP{MP(x, la] )] ¢‘£;I) (x) - ¢(q) (x)|3 x eIR°\ K., g emz } <
< sup(M G fap) o () - (T 005 x €K, jal< g le )+

+ sup(M_(x, |q] )(|¢\(;3) @ e P x e, lal >q (e )} +

+

sup{M_ (x, |q ) ( I¢v,\(,q) [+ 16D @ D5 x eR®N K. la| <

< aple ) ) + suplu x, la (1683 1+ 16'Y a1

x e\ K, lal >q (e )eoupi, e, ) 14,57 ) -

- oV s xex_, lal <q (e}t e Mt e Ml o M,

Therefore from the construction of the sequence

(x)} it follows that {¢_W} converges to ¢ 1in op
?

We shall turn now to an important example of the

(6

M_}.
space of p}

3. IMBEDDING OF 0'{HP} INTO ULTRADISTRIBUTIONS

Let

q
=P
(1) cP:q Nq

where {Nq; q eNo} is an increasing sequence of positive nu-

mbers such that the following conditions holds:

M.1) NziN

a qe W, ;

a-1 N1
(M¢2) ° There are A >0 and H> 0 such that
q
Nq:AH Nq+1 ’ quo ;
o0
M.3)" ] N /N
go 9

q
(see [3]). Observe that ‘then the matrix {g— } satisfies the
q

g+l <=
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lal
conditions (C.1)-(C.4). Now putting Mp(x,lq‘) = ET Txp(mp(x))
q

we came to an example of a space of the type o{MP}, i.e. to

. q s s
the space g{g—l-lexp(mp(x))}; of course, here g eEN_, xeR .
q :

(Ng)
One checks easily that the space .7 ¢ (IR) (see [4])

lal

is a subspace of o{";L exp(mp(x))}. in fact we shall prove
la]

samething more:

(Nq)

THEOREM 2. a) The 8pace D (IRS) 78 a dense

lal
subepace of o{%—— exp (mp(x) 11,
lal

4d . .
b) The space 0{5(_ exp(mp(x))} 18 suffietently
q
rich in the gense of [1].

Prooft. a) Let ¢{x) be an arbitrary function

q
from of E—I—I exP(mp(X))} {short. oi{Mp}) . We shall const-
q

(N,
ruct a sequence of functions from 7D T (r® ), which conver-
ges to ¢(x) in ol{up} .
First, let us recall that condition (M.3) ° implies
that there exists a nonnegative function with compact sup-

(N)
port h(x) from ? 9 (IR®) such that h(x) =1 on the inter-
val [-1,1]%,

X (N) s
Let h_(x) :=h({), nelN; cbviously h_(x)ép T (Rr®)
for every neIN and let us put Kn : = supp hn‘

We shall use the following inequality

q|
lq sup{g-l— lh(q)(x) |3 xe X}
9] q|

q
(2) sup{f;—Il lh,(,q) (x)]; x eR®} <
| n

for every p,ne N, qe]Nz .
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We prove now that the sequence’ {hn(x)¢(x)} converges
to ¢(x) in the sense of o, {M_}. It 1s clear that for every
campact set K=IR® the sequence {(h (x) ¢ (x}) q)' n e]N}con-

verges uniformly to ¢ (x) on K. So, we have yet to prove
that for every p e IN there exists C.p >0 with the property

(3) Yo, ()e) <€ .

In fact, from the inequality Nr q-r < NoNq' ¢<r<q,
r.,q eNo, which follows from (M.l), we have

sup{l(hn(x)¢(x)) () Iexé(mp(x)); x er®} <

<

< ; { 3) sup ”hr(tr) (x)|; x eKn} sup{ M(q—r) (x) |
r=q .

ri<a T ola-rl

[z NN _
2B, x eR_}y. ($) < Zolg| ) ( 9ysup{ |h ‘D (x) |-
n’'2p - r
lx 2pfdl rfa

N
. exp(mzp(X)); x eK } < I (9 -—lz-ug-'—rlsupflh(r) x) |-

Lep?d | Jsl
_E)c-;-'xem"qem°h2?(¢) <Cp o

for some C_>0 (as usual, (¥)=( 1)( By, r<q<=> r, <
p- fr ry morg ! zq i-
_:qil 1=1,2,...,8).

b) We shall check all three conditions fram the
Lemma on page 236 in [1] . We already know that there exists
a nontrivial function in oi{M }. The translation-invariance
of the space o'l{Mp} follows fram condition (2). In fact,
by (A) for given t e R%and peIN there exists a p” € IN such
that ﬁp(x) :mp,(x—t) for |x| sufficiently large. For

¢ eoi{Mp}, this implies
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- »lal
Yo (6 (x-t)) =sup( ¢ ‘Y (x-t) | B— exp(m (x)); x e B,q e )
q .
< c-supf ¢ o f=r expm (x)); x e, g eng) < -
q

for some C >0 which does not depend on x and q. At last, we
must show that for arbitrary t elﬁi the function ¢ (x)exp i(x,t)
is in cl{Mp}, provided that ¢ ecl{Mp}.( As usual,

(b)) Sx t, + .o 4%t ). We have

sup{ [D9(6 (x)exp 16r,t )) exp(m (x)); x e T’} <

l

- q-r|
< 3 (g)sup{lst(q r)(x) Iﬁﬁl————— exp(m2 (x)); x erY
r<q [q-r P
. tzppep!al ) gy (g, (2pleh

N <y
Il a-r] < Y2p q A
(2p) lql“]'rl (2p) 7 r<q

114l N N
< C sup{J_thl__;qe]Ns}- _+g+<c _l&.,..<co

P "pl9

r Nlrl —_

y2eer il
since sup{-l—zp%}—,— ; qug} < = in view of (M.3) ", C1 and
q

62 are positive constants which do not depend on x or q.

la]
This theorem shows that o°{ £—|-—l exp(mp(x))} (the
.  Slal 9
dual of the space of E exp(mp)))) is a subspace of a
fal
N
space of ultradistributions 0( q) ’(ms) .

A sufficient condition which implies that the spa-
ce c’{Mp} is .a subspace of a space of ultradistributions

is given in the following theorem. Its proof is similar to
that of Theorem 2, so we omit it.

THEOREM 3. Let ua suppose for the matrix {Cp q}
Yr
that the following condition holds as well:
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(4) For every p €IN there exist p €N, p’ >p,
nd K . >0 such that
@ PP
9. c (E‘)r
2 P . . .
p,qixp,p p’,a-r " . r,qemo ’ r<q

If {Nq} satisfies (M.1) and (M.3) " , then.

(N)
a) The space D q(ns) i8 a dense subspace of the

a?ace d{Mp},-

b) The space G{Mp} is sufficiently rich (in the sense of [1l)

k. A STRUCTURAL THEOREM FOR o”(H )

It is proved in [9] that a linear functional f on
S{Mp(x, q )} is continuocus iff there exists a peIN and a
sequence of measures {fq; qe ]Ng} on R® such that

(5) 7 (total variation of fq) < ®
qe IN,

and for every ¢ € S{Mp}

(6) <f,¢> = ) (__1)]q|_ Is M (x,[q])-cb(q) (x)df .
s w®E P 9
qeIN,

Yamanaka proved this theorem under conditions which are all

satisfied in the case Mp(x,]q]) exp(mp(x)); i.e., the

='CPI lal
representation (6), under the convergence of the series (5),
is valid for the elements from o'{MP}. However, for this
space we shall obtain a somewhat more precise structural
theorem. /

THEOREM 4. A linear funetional £ on d{llp} i8 con-
tinuoue iff there exists a p eMN and a sequence of functi-

ons from Lioc(IRs) :{fq(x); q emg} such that
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(57) I ess supl|f (x)|; xeR®)} < «
qe IV, a

and forevery ¢ €0 {MP}

(69 <t> = T c 0l expm )6 D o
qemo IRs -
- fq(x)dx .

Prooc€E. First we have to prove that the sequ-
ence of norms {yp} 1s egquivalent to the sequence of norms
{n p} where

np(¢) := sup{ [ Mp(x,|q|)|¢(q) (x) |dx; qelN:}, peN .
s
IR

In [6] we proved that condition (A) implies conditi-
on (N) ([I]) for every sequence {exp(mp'i(xi)}, i=1,2,...,s8.

This fact is crucial for the proof of equivalence of sequ-
ences {Yp} and f1p}. In ([7], this Journal) we discuss more
about condition (N). Thus,using arguments of the proof of
([7] Lemma 3. (1)) and remarks given in ([7], part 2) one
can prove that the sequences {Yp} and {n p} are equivalent.

For a fixed peN we denote by Olp the normed spa-

ce defined in the following way

b €eo iff p eC (Rs)up(¢)<w and

1p

1imf M (x, |q|)'¢(q)(x)|dx 0,
la]+= o
Similarly to the proof of Theorem 1 (i) one can pro-
ve that °1p’ p eIN, are (B) spaces, 01120132 - and
that the norms {n } are pairwisely campatible. If we denote
by of the ccmpletion of the space o according to the nomm
Mg P eIN, fram [1] p.35 we obtain

o= U (P~
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It means that any element f from o~ may be exten-
ded from the space o onto the space of (for saome p); this
element from (oF) ” let usdenotealsoby £. The of is a closed

subspace of the space g, . By Hahn-Banach Theorem f may be

1p
continuously extended fram of on °1p to be continuous. Con-
trary. a restriction of any element from ol’p'on oP belongs
to (cp) “. Since we want to give a representation theorem

for the elements fram o, by the given explanations it is
enough to prove a representation theorem for elements from
oy .

lp i s,
We denote by I' the subspace of ]__[s L (1) defined

qeNg
in the following way

. s
V= () eT 1ff | ¢]] = sup{nfs [ogq(x)|axi qe Ny }<=

and 1lim Is |¢q(x)|dx =0,
- (Rl

The space clp is isametrically isamorphic to a

subspace of I', T =u(clp), where u is the mapping defined in

p
the following way

-> = . (q)
01p? ¢ > ule) = o x,la]) 07 x)) eT .

If £ eol‘p then by

<E,p> 1= <E,ut(y)> yer,,
an element fram I‘E; is. defined. By Hahn-Banach Theorem %
may be extended on I' to be an element fram I'; let us deno-
te this element by F. It is known (see [9] or [{]) tmt if
F eI'” then there exist functions fq, q e]Nz, from L(®R%)such
that

<F,y> = [ . fs £4(X)0 ()%, b = (4,) er and
qe]No IR

¥ esssup{|fq(x)|; xeR® }cw
qel\lg '
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It means that on o we have

1lp
<£,6> = <Eule)> = | fq(x)Mp(x,|q|)¢(q) (x)dx =
8 ‘B8
qe]No R

=< J (—l)lq'(fq(x)Mp(x,lq]))(q), d(x)> .

qe IV,
We obtain that £ ec;p 1ff £ is of the form
1 £= 3 (-pld (£ (om (x, [a])) (D

s
ge IN °
such that

(8) 7§ esssup{[fq(x)|; xeR® }¢w

quZ.
where the series in (7) converges weakly in clp‘
Let us prove now a more suitable representation

theorenm.

THEOREM 5. A linear funetional £ on c{Mp} ig con-
tinuous iff there exist p, €N and continuous functions
s s .. :
IR th th t :
Fq(x), qeWN_ , on wi € property o Ng sup{ |Fq(x)|,

x eIR%} <w such that for every ¢ ed{Mp}

_n lal (q)
]( 1) Is exp(mpl(x))d’ (x)Fq(x)dx

Proo6€E. By what was said before, the condition
is sufficient. Conversely, from representation (6°) we ob-
tain that there exist a natural number p and bounded mea-
surable functions quuchthat (5°) holds with the property

= -1 lal (q)
<£,¢> I Cp.ICII( 1) j exp(mp(x)M (x)fq(x)dx

s
qe N
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¢ eo{MD}, or symbolically

(10 £ = c D9 (ex x)) £ .
») Zs o, lq| ( p(mp( )) q(X))
o
Let us choose P, e IN such that the function

x-exp(mp(x) —mpl (x)) is bounded (see (N)) and condition (C.4)
holds. Then we obtain :

10)° £ = ¢ patl
(10) 1 %o, slat] (exp(m, (IFg, ) (x)))
qe IN
o
where
) C . 1 X
F (x) = —E—-l-q-]-' exp(-m_ (x)) fexp(m (t))£_(t)dt, qe]Ns
Pli]q+ll

are bounded continuous functions or IR® . Since

c.
3 sup{]Fq+1(x)|;erRs}isup{E-E-‘—-(L—;qemo} .
qex® s g+l |

sup{ |x|expm_(x) ~m_(x)); x eR®}. 7§ esssup {|£_(x)|;
P P, g q
qeN_

x elR®} <o ,

the relation (10¢ ) is the desired representation of f.

5. FOURIER TRANSFORMATION ON O{Mp}

In this section we define the space of entire analy-
tic functions ¥ such that F(¢) = ¥for some ¢ ec{M_}; as usual
F stands for the Fourler transform. This enables us to defi-
ne , through the Parseval equality, the Fouriler transform of
the elements from c"{MP}.

We denote by £ = £ +in the s-dimensional complex va-
riable, ¢ = (C'l,...,Cs) where I, =£, +in e€, k =1,...,5. As
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8

usual, the scalar product <x,t> is } %, b, for x =(x;,...
k=1

x ) eR® and &=(& ) ect
ceseXg 17°°°7°g .

The Fourier transform of a function ¢ eLioc(IRs) is
defined by

(1) 3@ = Fp @) = [ e txd>

¢ (x)dx
=°

provided that this integral converges. First we prove a Lemma.

LEMMA 1. Let ¢ eo{Hp} . Then the integral (11) de-

fines an entire analytic function $() of L =g+4in e €® such
that

a2) It 9-0@) | < g—EB— expm (), p=1,2,...,

p.lal
for some A_ >0,

il

Of course, ﬁp(n)=ﬁp’1(n1)... p,s'(ns)’ n=(n1,...,ns). .

Proof, Let us take n°=(n°,1,...

"""o,s)' o,k >0, k=1,...,8 and estimate the integral
(13) |(-i)lq| f xq-e_iq"c)ﬂx)dxl for [nk| <ng ke
s = O
R .
s
k=1,...,8 and q=(q1,...,qs)em° .

Since it is less or equal than

8 q n, -m_ . (x)

c.[ !(lﬂxkl)k X'k Tpk Mk
k=1 1R

dxk for same € =C(p,q) >0
and

v

ok i) 230l Ing pe —Ap e (B x>0 k=1,..u,s

we obtain that (13)uniformly converges in any "strip"{ £ +1in
e€®;|n| <n_}. This implies that we can differentiate un-

der the integral sign arbitrary many times. This means that

$(1;) is an entire analytic function on ts. Let us prove now
(12) ; we observe first that
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1e% @) =1F6 D@ =] e *e@ yyax| .
ms

For given p e IN we choose P~ € IN such that

/| expm (x) -m .(x))dx <= ‘

IRS

(condition (N)). Now if ¢ eo{Mp} we have

c s
1 |
lt% @) | cg——— e L IxlInlom xnax <
. g : P =
P, ql ]Rs i=1
%  Ixlin, |
supl{exp( L IX1iny] —m (x)); xemrS ).
cp’llql i=1 P
c . c .
[ exp(m_(x)-m_.(x))dx = ~exp(®_(n)) <z exp(m_(n))
]Rs P P cp‘llq! P Pl'ql P

for some positive constants Cl' C2 which depend on p but not
on qé€ ]NB .
o
la]

If , (pe]g]) em xIN_ where {N'ql;

C 22 tm——
N
p.|q| la
lq] emo} satisfies the conditions (M1l), (M2) - and (M3)~°, from
this l?clﬂla and|([:3], Lemma 3.3),directly follows that for

¢ el exp(mp(x)} we have the following statement:
q

For any p there exists Cp >0 such that
1§ (2) |<C, explii (n) ~M(p[nD)} ,
where M(p), p >0, is the associated function to {Nq} P

la] ‘
. plN
(14) M(p) := supi{log _—N—'—}g]; lal em_} (see GBD.
q

Let us prove an inequality in the opposite direction.

LEMMA 2. Let Y(Z) be an entire analytie function
such that

B
(15) lcq]]‘i’(t)lia—%—' exp(ip(n)) for [ =E+in emR® ,
P, 19
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every (p,q) eINx ]No and some Bp >0. Then the function ¢ defi-
ned by

ei<x,£> s

(16)  o(x) := [ wWE)aE, x eIR
R
ie q smooth function on TR°which belomgs to GiM }.

plql

——-— the inequality

Let us observe that for Cp;lql = NIqI

(15) can be written as

an ¥ | :Bpexp(;lp(n) -M(pjt])

provided that (Ml), (M2)~ and (M3)“ hold for {qul' lal emo}.

The function M is defined in (14). So in this case we have a
more precise statement.

Proofof Lema 2. The behaviour of ¥(%) for |Z]|
large implies that this integral defines a smooth function on

R® . lLet us take p€IN. First, we replace the real hyperplane
R® in (16) by the hyperplane

RS +in ={E+in;E e R®} (we shall fix ne ®® later);

in fact, from (15) it follows that

o(x) = J XX &>y (rii)aE  ana

IRS

6@ = § 1 @iy @sinas  @=(g)...-0q,) e2)

IRS

q q, :
Since by definition cq=t:11-....c: P 4 =(t;1,...,;s) €
€ cs, using the inequality
le 1%, |t |92
;2,+'11‘ , k=1,...,8,
X

q
X
lgl ™ <

we obtain
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(6D ) | <expl-<x,m>) [ (1z]%1c|¥ 5 v | -
8
IR

dg. ... dg

1 8
(E2+1) ... (E241)

where 2 denotes (g, +2,...,9 _+2). By assumption we get
at 1 s

B
(18) 16D ()| <expl-<x,n>) - e () +
P, lq

where p" eIN, p" >p, is chosen so that

C.
(19) sup {EP-'-LQJ—_— i lal eINo} <o (see C.4).
p" a2y
For x = (xl,...,xs) e]Rs, SRR TR #0 we choose each
component Dy k=1,2,...,8 of n e IR® such that X "Ny >0 for

every k=1,2,...,s8. Taking the infinum by n of the right hand .
side in (18) we obtain

» exp{-m_,(x)-{ 1 + 1

(q) B € —
(X)]i P P 'cpllql P“llq+2I

| ¢

for same ip,se, which depends also on the sign of xk, k=1,...

...,8. Howewer, we see at once that a constant l_Bp., >0 can be
found which depends only on p €lN. Hence

C . C
expm () + [ () | <By Relal , pelal

C

c P T T
p".lg] “p".lq+2]

P, )q]

and by (19) we get at last

Yp(da) <o
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The space of entire analytic functions which satisfy
(15) for every (p,|q|) e xIN_  we denote byH {Mp}. From Lem-

mas 1 and 2 we get

THEOREM 9. The Fourier transformation te a topolo-
gical igomorphiem between O'{Hp} and H{Mp}.

The Fourier transform of Te c’{Mp} is an analytic

functional T on H{MP}. We define it in the usual way:

<T,4> 1= 21 <T(x),$(-X)>, ¢ ec{np}.

(Obviously ¢ (-x) ec{Mp} if ¢ (%) ec{Mp}).
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REZ IME

O KLASI PROSTORA TIPA S'{Mp(xp q)}

U radu je analizirana struktura prostora o{MP}, c‘{Mp}.
Pod odredjenim uslovima za matricu {Cp'q;exp (Mp(x))} ispitan
je odnos prostora c’{Mp} i prostora ultradistribucija. Takodje
je ispitana Furijerova transformacija na prostorima O{Mp},

9 {MP}.



