Zbornik radova Prirodno-matematičkog fakulteta-Universitet u Novom Sadu knjiga 14.1 (1984)

Review of Research Faculty of Science-University of Novi Sad, Volume 14, 1(1984)

ON COMMON FIXED POINTS IN METRIC AND PROBABILISTIC METRIC SPACES WITH CONVEX STRUCTURES

Olga Hadžić

Prirodno-matematički fakultet. Institut na matematiku 21000 Novi Sad, ul.dr Ilije Djuričića br.4, Jugoslavija

ABSTRACT

In this paper we prove some generalizations of Theorems 1 and 2 from [5] in metric and probabilistic metric spaces with convex structures.

W. Takahashi introduced in [14] a notion of convexity in metric spaces and generalized some fixed point theorems in Banach spaces. Some fixed point theorems in metric spaces with convex structures are obtained by S. Itoh [8], S.A. Naimpally, K.L. Singh and J.H.M. Whitfield [10], [11], B.E. Rhoades, K.L. Singh and J.H.M. Whitfield [12] and L.A. Tallman [17] and for metric spaces of the hyperbolic type in [3].

In the first part of this paper we shall prove a generalization of Theorem 1 from [5] where the measure of noncompactness \(\) is, in this paper, the Kuratowski measure of noncompactness \(\alpha \). The second part of this paper contains a generalization of Theorem 2 from [5] on probabilistic metric spaces with a convex structure.

AMS Mathematics subject classification (1980): 47H10
Key words and phrases: Convex structures, common fixed points, metric and probabilistic metric spaces.

1. First, we shall give some definitions, where I = [0,1].

DEFINITION 1. [16] Let X be a metric space. A mapping W: $X \times X \times I + X$ is said to be a convex structure if for every $(x,y,\lambda) \in X \times X \times I$:

(1) $d(u,W(x,y,\lambda)) \leq \lambda d(u,x) + (1-\lambda)d(u,y)$, for every $u \in X$.

A metric space with a convex structure will be called a convex metric space. There are many convex metric spaces which cannot be imbedded in any Banach space [16].

REMARK. From (1) we obtain, for $\lambda=1$ and u=x that d(u,W(x,y,1))=0 which implies that x=W(x,y,1). Similarly it follows that y=W(x,y,0). The mapping W is not continuous in general, however if X is compact then W is continuous [16]. If a convex metric space X is such that $co_W(A)$ is compact for every finite subset A of X, where we denote by $co_W(M)$ $(M\subseteq X)$ the intersection of all convex sets N such that $M\subseteq N$ (A set $N\subseteq X$ is convex if for every $(x,y,\lambda)\in N\times N\times I:W(x,y,\lambda)\in N$) then the mapping W defines a pseudoconvex structure on X in the sense of the Definition in [7].

DEFINITION 2. Let X be a convex metric space, $x_0 \in X$ and S: X + X. The mapping S is said to be (W,x_0) -convex if for every $z \in X$ and $\lambda \in I$:

$$W(Sz,x_0,\lambda) = S(W(z,x_0,\lambda)).$$

REMARK. If X is a Banach space and $W(x,y,\lambda) = \lambda x + (1-\lambda)y$, for every $(x,y,\lambda) \in X \times X \times I$, every homogeneous mapping S: X + X is (W,0)-convex.

DEFINITION 3. [12] A convex metric space X satisfies condition (II) if for all $(x,y,z,\lambda) \in X \times X \times I$: $d(W(x,z,\lambda),W(y,z,\lambda)) \leq d(x,y).$

The Kuratowski measure of noncompactness of a set

 $D(D \subseteq X)$ is defined by $\alpha(D) = \inf\{\epsilon \mid \epsilon > 0$, there exists $\{A_j\}_{j \in J}$, J is finite, such that $D \subseteq \bigcup A_j$ and diam $A_j < \epsilon$, for every $j \in J$.

A continuous mapping $T:X\to X$ is said to be α -densifying on $M\subseteq X$ if for any bounded subset D of M, the set T(D) is bounded and:

$$\alpha(D) > 0 \Rightarrow \alpha(T(D)) < \alpha(D)$$
.

In [2], the following theorem is proved.

THEOREM A. Let S and T be continuous mappings of a complete metric space (X,d) into itself. Then S and T have a common fixed point in X if and only if there exists a continuous mapping $A:X+SX\bigcap TX$, which commutes with S and T and satisfies the inequality:

 $d(Ax,Ay) \leq qd(Sx,Ty)$, for every x,y $\in X$,

where $q \in [0,1)$ and S,T and A then have a unique common fixed point.

We shall use Theorem 1 in the proof of the following theorem.

THEOREM 1. Let (X,d) be a complete, convex metric space which satisfies condition (II), A,S and T continuous mappings from X into X such that A commutes with S and T, $AX \subseteq SX \cap TX$, AX be bounded and the following conditions are satisfied:

1. For every x,y e X:

 $d(Ax,Ay) \leq d(Sx,Ty)$.

2. There exists $m \in \mathbb{N}$ such that A^m is α -densifying on $\{W(z,x_0,\lambda) \mid z \in AX, \lambda \in [0,1]\}$ for some $x_0 \in X$.

If S and T are (W, x_0) -convex there exists $x \in X$ such that x = Ax = Sx = Tx.

Proof: Let $\{k_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers from (0,1) such that $\lim_{n\to\infty} k_n = 1$ and for every $n\in\mathbb{N}$:

$$A_n x = W(Ax, x_0, k_n)$$
, for every $x \in X$.

We shall prove that for every $n \in \mathbb{N}$ there exists $x_n \in X$, so that

$$x_n = A_n x_n = S x_n = T x_n$$
.

Since X satisfies condition (II) we have that:

$$d(A_nx,A_ny) = d(W(Ax,x_0,k_n), W(Ay,x_0,k_n)) \le k_nd(Ax,Ay) \le k_nd(Sx,Ty)$$

for every $x,y \in X$. Further, from $AX \subseteq SX \cap TX$, since S and T are (W,x_0) -convex, it follows that: $A_n x = W(Ax,x_0,k_n) = W(Sz_x,x_0,k_n) = W(Tw_x,x_0,k_n) \text{ and so } W(Ax,x_0,k_n) = S(W(z_x,x_0,k_n)) = T(W(w_x,x_0,k_n)) \in SX \cap TX.$ Thus $A_n X \subseteq SX \cap TX \text{ and since } A \text{ and } S \text{ are commutative we have: } A_n Sx = W(ASx,x_0,k_n) = W(SAx,x_0,k_n) = S(W(Ax,x_0,k_n)) = SA_n x,$ for every $x \in X$ and every $n \in \mathbb{N}$ and similarly $A_n Tx = TA_n x$, for every $n \in \mathbb{N}$ and every $x \in X$. Thus, all the conditions of Theorem A are satisfied and there exists $x_n \in X$ such that $x_n = A_n x_n = Sx_n = Tx_n$. Furthermore:

$$d(x_{n},Ax_{n}) = d(A_{n}x_{n},Ax_{n}) = d(W(Ax_{n},x_{0},k_{n}),Ax_{n}) \le k_{n}d(Ax_{n},Ax_{n}) + (1-k_{n})d(Ax_{n},x_{0})$$

and since AX is bounded, it follows that:

(2)
$$\lim_{n\to\infty} d(x_n, Ax_n) = 0.$$

Let us prove that (2) implies:

(3)
$$\lim_{n\to\infty} d(x_n, A^{\hat{m}}x_n) = 0.$$

Since for every k & N:

$$d(A^{k}x_{n},A^{k+1}x_{n}) \leq d(S(A^{k-1}x_{n}),T(A^{k}x_{n})) = d(A^{k-1}Sx_{n},A^{k}Tx_{n}) =$$

$$= d(A^{k-1}x_{n},A^{k}x_{n})$$

it follows that:

 $d(A^k x_n, A^{k+1} x_n) \le d(x_n, Ax_n)$, for every $k \in \mathbb{N}$ and every $n \in \mathbb{N}$ and so:

$$d(x_n, A^m x_n) \le \sum_{k=0}^{m-1} d(A^k x_n, A^{k+1} x_n) \le md(x_n, Ax_n).$$

This implies that (3) is satisfied. Let us prove that the set $\{W(Ax,x_0,\lambda) \mid x \in X, \lambda \in (0,1)\}$ is bounded. This follows from the inequality:

$$d(u,W(Az,x_0,\lambda)) \le \lambda d(u,Az) + (1-\lambda)d(u,x_0)$$
 for every $(z,u)\in X\times X$

since AX is bounded. From the relations $x_n = A_n x_n$ (n \in N) we obtain that $\{x_n \mid n \in \mathbb{N}\} \subseteq \{w(Ax, x_0, \lambda) \mid x \in X, \lambda \in (0, 1)\}$ and so the set $\{x_n \mid n \in \mathbb{N}\}$ is bounded. Furthermore, for every $\varepsilon > 0$ we have from (3) that:

 $\begin{array}{ll} \alpha[\ \{x_n \mid n \in \mathbb{N}\}] \ \leq \ \alpha[\ B(A^m(\{x_n \mid n \in \mathbb{N}\}), \epsilon)] \ \leq \ \alpha[\ A^m(\{x_n \mid n \in \mathbb{N}\})] \ + \\ + \ 2\epsilon \quad ([10]) \quad \text{where} \quad B(A, \epsilon) \ = \ \{x \in X \mid d(x, A) \ < \ \epsilon\} (A \subseteq X) \ \text{and so:} \end{array}$

$$\alpha[\{x_n | n \in \mathbb{N}\}] \leq \alpha[A^m(\{x_n | n \in \mathbb{N}\})]$$
.

This implies that $\alpha[\{x_n \mid n \in \mathbb{N}\}] = 0$ and there exists a convergent subsequence $\{x_n\}$. Let $\lim_{k \to \infty} x_k = y$. Then from:

$$d(y,Ay) \le d(y,x_{n_k}) + d(x_{n_k},Ax_{n_k}) + d(Ax_{n_k},Ay)$$

and (2), since A is continuous, it follows that y = Ay. From x = Sx = Tx, $k \in \mathbb{N}$, since S and T are continuous, k = N, we obtain that k = N = Sy = Ty. 2. If there exists $m \in \mathbb{N}$ such that $\overline{A^m}X$ is compact, we can prove a generalization of Theorem 2 from [5] for probabilistic metric spaces with a convex structure.

A triplet (S,F,t) is a Menger space [14] if and only if S is an arbitrary set, $F:S\times S \to \Delta$, where Δ denotes the set of all the distribution functions F and t is a T-norm [14] so that the following conditions are satisfied $(F(p,q)=F_{p,q})$ for every $p,q\in S$:

- 1. $F_{p,q}(x) = 1$, for every $x \in \mathbb{R}^+$ if and only if p = q.
- 2. $F_{p,q}(0) = 0$, for every $p,q \in S$.
- 3. $F_{p,q} = F_{q,p}$ for every p,q e S and
- 4. $F_{p,r}(x+y) \ge t(F_{p,q}(x),F_{q,r}(y))$, for every $p,q,r \in S$ and every $x,y \in \mathbb{R}^+$.

The (ε,λ) -topology is introduced by the (ε,λ) -neighbourhoods of $v\in S$:

$$\mathbf{U}_{\mathbf{v}}(\varepsilon,\lambda) = \{\mathbf{u} \mid \mathbf{u} \in \mathbf{S}, \mathbf{F}_{\mathbf{u},\mathbf{v}}(\varepsilon) > 1-\lambda\}, \ \varepsilon > 0, \ \lambda \in (0,1).$$

DEFINITION 4. Let (S,F,t) be a Menger space. A mapping $W: S \times S \times I \rightarrow S$ is said to be a convex structure if for every $(u,x,y,\lambda) \in S \times S \times S \times (0,1)$:

$$\begin{split} & \mathbb{F}_{\mathbf{u}, W(\mathbf{x}, \mathbf{y}, \lambda)} (2\epsilon) \geq \mathsf{t}(\mathbb{F}_{\mathbf{u}, \mathbf{x}}(\frac{\epsilon}{\lambda}), \mathbb{F}_{\mathbf{u}, \mathbf{y}}(\frac{\epsilon}{1 - \lambda})), \quad \textit{for every } \epsilon \in \mathbb{R}^+ \\ & \textit{and } W(\mathbf{x}, \mathbf{y}, 0) = \mathbf{y}, \ W(\mathbf{x}, \mathbf{y}, 1) = \mathbf{x}. \end{split}$$

It is easy to see that a metric space (S,d) with a convex structure is a Menger space with the same convex structure. It is known that (S,f,\min) is a Menger space, where for every $(u,v) \in X \times X$:

$$F_{u,v}(x) = \begin{cases} 0, d(u,v) \ge x \\ & \text{for every } x \in \mathbb{R}. \end{cases}$$

Then we can show that a mapping $W: S \times S \times I + S$, which 'satisfies the inequality from Definition 1., is a convex structure in the sense of Definition 4. Every random normed space (S,F,t) is a probabilistic metric space with a convex structure defined by:

$$\begin{split} & \mathbb{W}(\mathbf{x},\mathbf{y},\lambda) = \lambda \mathbf{x} + (1-\lambda)\mathbf{y}, \text{ for } (\mathbf{x},\mathbf{y},\lambda) \in \mathbb{S} \times \mathbb{S} \times \mathbb{I}, \text{ since} \\ & \mathbb{F}_{\mathbf{u},\mathbb{W}(\mathbf{x},\mathbf{y},\lambda)}(2\varepsilon) = \mathbb{F}_{\mathbf{u}-\lambda\mathbf{x}-(1-\lambda)\mathbf{y}}(2\varepsilon) = \mathbb{F}_{\lambda(\mathbf{u}-\mathbf{x})+(1-\lambda)(\mathbf{u}-\mathbf{y})}(2\varepsilon) \geq \\ & \geq \mathsf{t}(\mathbb{F}_{\lambda(\mathbf{u}-\mathbf{x})}(\varepsilon),\mathbb{F}_{(1-\lambda)(\mathbf{u}-\mathbf{y})}(\varepsilon)) = \mathsf{t}(\mathbb{F}_{\mathbf{u}-\mathbf{x}}(\frac{\varepsilon}{\lambda}),\mathbb{F}_{\mathbf{u}-\mathbf{y}}(\frac{\varepsilon}{1-\lambda})) \\ & \text{ for every } \lambda \in (0,1). \end{split}$$

DEFINITION 5. A Menger space (S,F,t) with a convex structure $W: S \times S \times I + S$ satisfies condition (P II) if for all $(x,y,z,\lambda) \in S \times S \times S \times (0,1)$:

$$F_{W(x,z,\lambda),W(y,z,\lambda)}(\lambda \epsilon) \geq F_{x,y}(\epsilon)$$
, for every $\epsilon \in \mathbb{R}^+$.

Every random normed space with the convex structure, which is defined above, satisfies condition (P II) since:

$$F_{\lambda x+(1-\lambda)z-\lambda y-(1-\lambda)z}(\lambda \epsilon) = F_{\lambda(x-y)}(\lambda \epsilon) = F_{x-y}(\epsilon)$$
, for every $\lambda > 0$.

In [5] the following theorem is proved.

THEOREM B. Let (X,F,t) be a complete Menger space with continuous T-norm t and let S and T be continuous mappings of X into X. Then S and T have a common fixed point in X if and only if there exists a continuous mapping $A: X \to SX \cap TX$, which commutes with S and T and satisfies the following conditions:

(i) For every x,y e x:

$$\mathbf{F}_{Ax,Ay}(\varepsilon) \geq \mathbf{F}_{Sx,Ty}(\frac{\varepsilon}{q})$$
, for every $\varepsilon > 0$, where $q \in (0,1)$.

(ii) There exists x e X such that:

$$\sup_{\varepsilon} \inf_{n \in \mathbb{N}} F_{Ax_n, Ax_0}(\varepsilon) = 1$$

where $\{x_n\}_{n \in \mathbb{N}}$ is such that $Ax_{2n-2} = Sx_{2n-1}$ and $Ax_{2n-1} = Tx_{2n}$, $n \in \mathbb{N}$.

Then S,T and A have a unique common fixed point.

REMARK. Condition (ii) is satisfied if AX is a probabilistic bounded subset of X which means that $\sup_{x \in X} D_A(x) = 1 \quad \text{where:}$

$$D_{A}(x) = \sup_{t < x} \inf_{p,q \in A} F_{p,q}(t), x \in \mathbb{R}^{+}.$$

If S: X + X and (X,F,t) is a Menger space with a convex structure W then S is (W,x_O) -convex $(x_O \in X)$ if, as in Definition 2, $W(Sz,x_O,\lambda) = S(W(z,x_O,\lambda))$, for every $z \in X$, and every $\lambda \in [0,1]$.

THEOREM 2. Let (X,F,t) be a complete Menger space with a convex structure W which satisfies condition $(P\ II),A,S$ and T continuous mappings from X into X such that for some $m\in \mathbb{N}$, $\overline{A^mX}$ is compact, AX be probabilistic bounded, $AX\subseteq SX\cap TX$ and for every $x,y\in X$ and every $x\in \mathbb{R}^+$:

$$F_{Ax,Ay}(\varepsilon) \geq F_{Sx,Ty}(\varepsilon)$$
.

If there exists $x_0 \in X$ so that S and T are (W,x_0) -convex then there exists $x \in X$ such that x = Sx = Tx=Ax.

Proof. Similarly as in Theorem 1 it follows that there exists, for every $n \in \mathbb{N}$, $x_n \in X$ such that $x_n = A_n x_n = Sx_n = Tx_n$, where $A_n x = W(Ax, x_0, k_n)$ for every $n \in \mathbb{N}$ and every $x \in X$ and $\lim_{n \to \infty} k_n = 1$. Furthermore:

$$F_{x_n,Ax_n}(2\varepsilon) = F_{A_nx_n,Ax_n}(2\varepsilon) = F_{W(Ax_n,x_0k_n),Ax_n}(2\varepsilon)$$

$$\geq t(F_{Ax_n,Ax_n}(\frac{\varepsilon}{k_n}),F_{Ax_n,x_0}(\frac{\varepsilon}{1-k_n})) =$$

$$= t(1,F_{Ax_n,x_0}(\frac{\varepsilon}{1-k_n})) = F_{Ax_n,x_0}(\frac{\varepsilon}{1-k_n}) .$$

Since AX is probabilistic bounded, for every z C X we have:

 $\inf_{n \in \mathbb{N}} F_{Ax_n,Az}(x) \ge \sup_{t \le x} \inf_{p,q \in AX} F_{p,q}(t) = D_{AX}(x)$ and so:

(4)
$$\sup_{\mathbf{x}} \inf_{\mathbf{n} \in \mathbb{N}} F_{\mathbf{A}\mathbf{x}_{\mathbf{n}}, \mathbf{A}\mathbf{z}}(\mathbf{x}) = \sup_{\mathbf{x}} D_{\mathbf{A}\mathbf{X}}(\mathbf{x}) = 1$$

Let us prove that $\lim_{n\to\infty} F_{Ax_n,x_0}(\frac{\varepsilon}{1-k_n}) = 1$.

Since $F_{Ax_n,x_0}(\varepsilon) \ge t(F_{Ax_n,Az}(\frac{\varepsilon}{2}),F_{Az,x_0}(\frac{\varepsilon}{2}))$ for every $\varepsilon \in \mathbb{R}^+$ we have that:

$$(5) \quad F_{Ax_n,x_0}(\frac{\varepsilon}{1-k_n}) \geq t(F_{Ax_n,Az}(\frac{\varepsilon}{2(1-k_n)}),F_{Az,x_0}(\frac{\varepsilon}{2(1-k_n)}))$$

for every $n \in \mathbb{N}$. Using the continuity of t, relations (4) and (5) and relation $\lim_{n \to \infty} k_n = 1$, we obtain that

 $\lim_{n\to\infty} F_{Ax_n, x_0}(\frac{\varepsilon}{1-k_n}) = 1 \text{ and so for every } \varepsilon > 0,$

 $\lim_{n\to\infty} F_{x_n,Ax_n}(\varepsilon) = 1. \text{ The set } \overline{A^m x} \text{ is compact and so there exists a subsequence } \{x_n\} \text{ such that } \lim_{k\to\infty} A^m x_n = y$

Similarly as in Theorem 1, we can prove that:

 $F_{A^k x_n, A^{k+1} x_n}(\varepsilon) \ge F_{x_n, A x_n}(\varepsilon)$, for every $\varepsilon \in \mathbb{R}^+$, every $n \in \mathbb{N}$ and every $k \in \mathbb{N}$.

Since:

$$F_{x_{n},A^{m}x_{n}}(\varepsilon) \geq t(F_{x_{n},Ax_{n}}(\frac{\varepsilon}{2}),t(F_{x_{n},Ax_{n}}(\frac{\varepsilon}{2^{2}}),t(F_{x_{n},Ax_{n}}(\frac{\varepsilon}{2^{3}}),\dots,\frac{\varepsilon}{2^{3}}),\dots,\frac{F_{x_{n},Ax_{n}}(\frac{\varepsilon}{2^{m-1}}))\dots)$$

from relation t(1,1) = 1, the continuity of t and:

$$\lim_{n\to\infty} F_{x_n,Ax_n}(\frac{\varepsilon}{2^s}) = 1, \quad s \in \{1,2,\ldots,m-1\}$$

we obtain that:

(6)
$$\lim_{n\to\infty} F \qquad (\varepsilon) = 1, \text{ for every } \varepsilon \in \mathbb{R}^+.$$

The continuity of t, relation (6) and the inequality:

$$F_{x_{n_k}, y}(\varepsilon) \ge t(F_{x_{n_k}, A^m x_{n_k}}(\frac{\varepsilon}{2}), F_{y, A^m x_{n_k}}(\frac{\varepsilon}{2}))$$

imply that $\lim_{k\to\infty} x_n = y$. Since A is continuous from the inequality:

$$\mathbf{F}_{\mathbf{y},\mathbf{A}\mathbf{y}}(\varepsilon) \geq \mathbf{t}(\mathbf{F}_{\mathbf{y},\mathbf{x}_{\mathbf{n}_{k}}}(\frac{\varepsilon}{2}),\mathbf{t}(\mathbf{F}_{\mathbf{x}_{\mathbf{n}_{k}},\mathbf{A}\mathbf{x}_{\mathbf{n}_{k}}}(\frac{\varepsilon}{4}),\mathbf{F}_{\mathbf{A}\mathbf{x}_{\mathbf{n}_{k}},\mathbf{A}\mathbf{y}}(\frac{\varepsilon}{4})))$$

it follows that $F_{y,Ay}(\epsilon) = 1$, for every $\epsilon \in \mathbb{R}^+$ and so y = Ay. Since S and T are continuous, from $x_{n_k} = Sx_{n_k} = Tx_{n_k}$, $k \in \mathbb{N}$ we obtain that y = Ay = Sy = Ty.

REFERENCES

- [1] Constantin, Gh., Istrațescu, I., Elemente de Analiză
 Probabilista si Aplicații, Editura Academiei
 Republicii Socialiste România, 1981.
- [2] Fisher, B., Mappings with a common fixed point, Math. Sem.
 Notes, Kobe University Vol. 7, No 1 (1979), 81-84.
- [3] Goebel, K., and Kirk, W.A., Iteration processes for nonexpansive mappings, Topological Methods in Wonlinear Functional Analysis, Contemporary Mathematics, American Mathematical Society, Volume 21, 1982, 115-123.

- [4] Hadžić, O., On common fixed point in probabilistic metric spaces, Math.Sem. Notes, Kobe University, Vol. 10 (1982), 31-39.
- [5] Hadžić, O., On a common fixed point in Banach and random normed spaces, Zbornik radova Prirodno-matematičkog fakulteta u Novom Sadu, serija za matematiku, 11 (1981), 11-18.
- [6] Hadžlć, O., Fixed Point Theory in Topological Vector

 Spaces, Institute of Mathematics, University

 of Novi Sad, 1984, 337 pages.
- [7] Horvat, Ch., Point fixed et coincidences pour les applications multivoques sens convexite, C.R.Acad. Sc. Paris, t 296 (1976), 403-406.
- [8] Itoh, S., Some fixed points theorems in metric spaces, Fund. Math. 102 (1979). 109-117.
- [9] Menger, K., Statistical metric, Proc.Nat.Acad.Sci., USA, 28 (1942), 535-537.
- [10] Naimpally, S.A., Singh, K.L. and Whitfield, J.H.M.,

 Common fixed points for nonexpansive and asymptotically nonexpansive mappings, Comm. Math.

 Univ. Carolinae, 24, 2 (1983), 287-300.
- [11] Naimpally, S.A., Singh, K.L., and Whitfield, J.H.M.,

 Fixed and common fixed points for nonexpansive

 mappings in convex metric spaces, Math.Sem. Notes,

 Kobe University, Vol. 11 (1983), 239-248.
- [12] Rhoades, B.E., Singh, K.L., and Whitfield, J.H.M.,

 Fixed points for generalized nonexpansive
 mappings, Comm. Math. Univ. Carolinae, 23,
 3 (1982), 443-451.
- [13] Schweizer, B., and Sklar, A., Statistical metric spaces,
 Pac.J. Math., 10 (1969), 313-334.
- [14] Schweizer, B. and Skiar, A., Probabilistic metric spaces,
 North-Holland Series in Probability and Applied
 Mathematics, 5, 1983.
- [15] Sherstnev, A.N., The notion of random normed space, DAN USSR, 149(2) (1963), 280-283 (in Russian).

- [16] Takahashi, W., A convexity in metric space and nonexpansive mappings, I, Kodai Math. Sem. Rep., 22 (1970)
- [17] Tallman, L.A., Fixed points for condensing multifunctions in metric spaces with convex structures, Kodai Math. Sem. Rep., 29 (1977), 62-70.

Received by the editors August 7, 1984.

REZIME

O ZAJEDNIČKIM NEPOKRETNIM TAČKAMA U METRIČKIM I VEROVATNOSNIM METRIČKIM PROSTORIMA SA KONVEKSNOM STRUKTUROM

U ovom radu dokazana su neka uopštenja Teorema 1 1 2 iz [5] u metričkim i verovatnosnim metričkim prostorima sa konveksnom strukturom.