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ABSTRACT

In this paper we prove some generalizations of Theo-
rems 1 and 2 from-[5] in metric and probabliistic metric
spaces with convex stryctures,

W. Takahashi introduced in [14] a notion of convexity
in metric spaces and generalized some fixed point theorems in
Banach spaces. Some fixed point theorems in metric spaces
with convex structures are obtained by S. Itoh [8], S.A.
Naimpally, K.L. Singh and J.H.M. Whitfield N10], [11], B.E.
Rhoades, K.L. Singh and J.H.M..Whitfield [12] and
L.A. Tallman [17] and for metric spaces of the hyperbolic
type in [3]. '

In the first part of this paper we shall prove a
generalization of Theorem 1 from [5] where the measure of
ncnconpaétness ¥ 1s, in this paper, the Kuratowski measure
of noncompactness «. The second part of this paper contains
a generalizaltion of Theorem 2 from [5] on probabilistic
metric spaces with a convex structure.
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1. First, we shall give some definitions, where I = [0,1].

DEFINITION 1. [16] Let X be a metric space. A
mapping W : X x X x I + X <8 said to be a convex structure
Zf for every (x,¥,A) € X x X x I:

(1) d(u,W(x,y,A)) < Ad{u,x) + (1-1)d(u,y), for every u € X.

A metric space with a convex structure will be called a
convex metric space. There are many convex metric spaces which
cannot be imbedded in any Banach space [16].

REMARK. From (1) we obtain, for A4 =1 and u = x
that d(u,W(x,y,1)) = 0 which implies that x = W(x,y,1).
Similarly it follows that y = W(x,y,0). The mapping W is
not continuwous in general, however if X 1is compact then W
is continuous [16___]. If a convex metric space X 1s such that
co (A) 1s compact for every finite subset A of X, where
we denote by coL (M) (MC X) the intersection of all convex
sets N such that MC N (A set NC X 1is convex if for
every (x,Y,X) € N x N x1I : W(x,y,A) € N) then the mapping
W defines a pseudoconvex structure on X in the sense of
the Definition in [7].

DEFINITION 2. Let X be a convexr metric 8pace,
Xq € X and S : X + X. The mapping S 18 said to be (W,xo)-
—convex if for every z € X and ) € I:

W(Sz,xo,)‘) =8 (W(z,xo,)‘)) .

REMARK. If X 1is a Banach space and W(x,y.,\) =

_ = Ax + (1-1)y, for every (x,y,2) € X x X x I ,every homqe-

neous mapping § : X +* X 1is (W,0)-convex.

DEFINITION 3. [:12]_ 'A‘ convexr metric space X satis-
fies condition (1II) if for all (%x,¥,Z2,1) € X xX x X x I :
d(w(xlzlx')lw(leIA)) :_.d(*,y).

The Kuratowski_ me_ashré of noncompactness of a set
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D(D € X) . is defined by a{(D) = inf{e|e > 0, there exists

A.}. it h that D A d d4ai A, < ¢
{ ]}]eJ'J is finite, suc a ijéJ 3 an am A, .
for every j € J}.

A continuous mapping T : X — X 1is said to be
a-densifying on MC X if for any bounded subset D of M,
the set T(D) is bounded and:

a(D) > 0 => a(T(D)) < a(D).
In [2], the following theorem is proved.

THEOREM. A, Let S and T be continuous mappings
of a complete metric space (X,d) <into iteelf. Then S and
T have a éommon fized point in X if and only if there
exists a continuous mapping A : X + S8X ) TX, whieh commutes
with S and T and satisfies the inequality:

d(Ax,Ay) < qd(Sx,Ty), for every x,y € X,

where q € [0,1) and S,T an& A then have a unique common
fized point. _ _ :

We shall use Theore_m.l in 'the proof of the following
theorem. '

THEOREM 1. [Let (X,d) be a complete, convexr metric
space which gsatisfies condition (I1), A,'S and T continuous
mappings from X into X such that A commutes with .S and -
T, AX € SX [ TX, AX be bounded and the following conditions
are satisfied: -

1. - For every X;y € X:
d(Ax,Ay) < d(sx,Ty) .

2. There exists m € N  such that A" ig o-densi-
fying on {W(z_,xo,k)lz € AX, X € [_'0,1],}_ for some
7 %, € X. . R |
If S and T are (W,x )-convex there ‘exists " x € X . such
that -x = Ax'= Sx'= TX. ’
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Proof: Let {kn}ne n be a sequence of real
numbers from (0,1) such that 1lim kn =1 and for every n € N:
n-+o

Anx = W(Ax,xo,-kn), for every x € X.

We shall prove that for every n € N there exists

X € X, so that

X, = Anxn = an = Txn .

Since X satisfies condition (II) we have that:

a(A x,Ay) = d(W(AX,x k), WAY,x Kk )) < k d(Ax,Ay) <

iAa

k_d(Sx,Ty)

for every x,y € X. Further, from AX C©SX{) TX, since S and
T are (W,xo)-convex, it follows that:

Anx = W(Ax,xo,kn) = W(Szx,xo,kn) = W(wa,xo,kn) and so

W(Ax,xo,kn) =S(W(z_,x ,k )) = T(W(wx,xo,kn)) € sX [} TX. Thus

x'70'"n
Anxg._ SX TX and since A and S are commutative we have:
AnSx = W(ASx,xo,kn) = W(SAx’xo'kn), = S(W(Ax,xo,kn)) = SAnx,

for every x € X and every n € N and similarly An_'rx = TAnx,
for every n €N and every x € X. Thus, all the conditions
of Theorem A are satisfied and there exists X € X such that
X, = Anxn = an = T’Sx" Furthermore:

d(xn,Axn) = d(A!“xn,Axn) = d(w(Axn,xo,kn),Axn) <
< knd(A_xn,Axn) + (l-kn)d(Axn,xo)

-

and since AX 1is bounded, it follow_s that:

(2) x]{-j;g d(xn,Axn) = 0.

Let us prove that (2) implies:

(3) lim d(xn,Amxn) = 0.

n-+wo
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Since for every k € N:

k

k +1 : k-1 A K k-1
da(a xn,A xn.) < d(s(a xn),T(A xn)) = 4(A

k
an,A 'rxn) =

1

k- k
= d(A xn,A xn)

it follows that:

d(Akxn,Ak+1xn) < d(-xn,Axn), for every k € N and every

nemlN and so:

m=1
k k+1
d(x A% ) < kZod(A X AT Tx ) < md(x ,Ax ).
This implies that (3) is satisfied. Let us prove that
the set {W(Ax,xo,)«)]x € X,A e (0,1)} is bounded. This fol-
lows from the inequality:

d(u,W(Az,xo,X)) < ad(u,Az) +‘(1-A)d(u,xo) for every (z,u)€XxX-

since AX is bounded. From the relations X, = Anxn (n e o)
we obtain that {xn|n em}g{W(Ax,xo,)\)lx € X,x € (0,1)}
and so the set -{xnln e N} is bounded. Furthermore, for

every ¢ > 0 we have from (3) that:

o {x |n en}y < u{B(Am({xn|n em}),e)d < u[Am({xn|n em})] +
+2e ([10]) where B(A,e) = {x € x|d(x,B) < e}(A C X) and so:

of {x_|n €W}l < alA™({x |n em}D)] .

This implies that «of {ann €N}l = 0 and there exists a

convergent subseguence {xn 1 . Let 'lim x = y. Then from:
k k€ N keo Ty A

S d(y,Ay) < dly,x_ ) + d{x Ax_ ) + d4d(ax_ ,Ay)
’ Ty n Y

and (2), since A is continuous,. it follows that y = Ay.-

From x = Sx =Tx , k €N, since § and T are conti-
Dy Ty ny

nuous, we obtain that y = Ay = Sy = Ty.
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2. If there exists m € N such that A"™X is compact, we
can prove a generalization of Theorem 2 from [5] for proba-
bilistic metric spaces with a convex structure.

A triplet (s,F,t) is a Menger space [14] if and
only if S is an arbitrary set, F : S x § + A, where A de-
notes the set of all the distribution functions F and t 1is
a T-norm [14] so that the following conditions are satisfied

( F(p,q) = F

o :
P.q for every p,q € s)

1. Fp q(x) =1, for every x € R' if and only if p=q.
’ . ) .

2. F (0) = 0, for every p,q € S.

P.q -
. F = F £ e s
3 ,q q,p or every p,q and
4. Fp,}r(x"'y) > t(Fp'q(x),Fq'r(y)), for every p,q,r € S

and every x,Y € IR+.

The (e,A)-topology is introduced by the (&,A)-neigh-
bourhoods of v € S:

U, (e,}) = {uju € S'Fu,v(" > 1-A}, € >0, A € (0,1).

DEFINITION &, Let (S,F,t) be a Menger space. A
mapping W : S x S x I + S 18 satd to be a convex structure
tf for every (u,x,Y,A) € S xS x 8 x (0,1):

y(26) 2 £(F, §)E, (gE0),  for every ¢ ew'

FU'W(XIYIA u,y 1-A

and W(x,y,0) =y, W(x,y,1) = x.
It is easy to see that a metric space (S,d) with
a convex structure is a Menger space with the same convex

structure, It is known that (S,f,min ) 1is a Menger space,
where for every (u,v) € X x X: ' ’

0, d(u,v)

v

X

Fu'v(x) = » | | for every x € R,

A
»

1, d(u,v)
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Then we can show that a mapping W : 8 xS x I + S, which *
satisfies the 1nequality from Definition 1., is a convex
umauemEMSmuofmﬂmum4.muyaanMmd
space (S,F,t) 1is a probabilistic metric space with a convex
structure defined by:

Wi(x,¥,\) = xx + (1~-)\)y, for (x,y,)) € 8 x S x I, since

)(Ze) =F (2¢e) = )(Ze) 2

Fu,W(x,y,A u-Ax-(1-1)y FA(u—x)-v—(l—k)(u—y

- - € €
_>_ t(Fx(u_x)(e)'F(l_x) (u_y)(e)) = t(Fu_x('X)'Fu_y(l__x))

for evexy X € (0,1).

DEFINITION 5. A Menger space (S,F,t) with a eonvex
structure W : S x S x I - S egatitefiee condition (P II) <if
for all (x,¥,2,)) €8 xS x8 x (0,1) :

+
Fw(x,z,x),W(y,z,x)(AE) > Fx,y(e)' for every e €R .

Every random normed space with the convex structure, which is
defined above, satisfies condition (P II) since:

Frxt(1-) z=Ay= (1-1) 2 (A€) = Fy (oyy RE) = By ()

for every A > 0.
In [5] the following theorem is proved.

THEOREM B. Let (X,F,t) be a complete Menger space
with continuous T-norm t and let S and T be continuous
mappings of X into X. Then S and T have a common  fized -
point in X if and only if there exists a. continuous mapping
A : X+ SX ) TX, whieh commutes with S and T and satis-
fies the following conditions:

(1) For every x,y € X:

€ o .
FAx,Ay(e) 2 FSx,TY(E)' for every e > 0,

where q € (0,1).
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.{11) There exists X, € X such that:

sup inf F

(e) =1
£ néelN Axn.'Axo

vhere {x } oo 7“8 such that Ax, . = 8x, ., and

Axgo_p = TXppe D € iN.

Then S,T and A have a unique common fized point.

REMARK. Condition (ii) is satisfied if AX is a
probabilistic bounded subset of X which means that

sup DA(x) = 1 where:
X

+

D,(x) = sup inf F (t), xX€R
A t<x p,g€A P.q

If 8 : X+ X and (X,F,t) 1s a Menger space with:
a convex structure W then S is (w,xo)-convex (xo € X)
if, as in Definition 2, W(Sz,xo,)\) = S(W(z,xo,A)), for every
z € X, and every X € [0,1}.

"THEQREM 2. Let (X,F,t) be a complete Menger space

with a eonvex etructure W which satisfieg condition (P II),A,S

and T continuous mappings from X <into X such that for
some m €N, A™ e compaet, AX be probabilietic bounded,
AXC SXN TX and for every x,y € X and every ¢ € =*:

F (€)

Ax,Ay (e) .

2 Fsx,1y

If there exists xoex so that S and T are
(W,xo)—convex then there exists X € X such that

'x = Sx = Tx=Ax.

Proo f. Similarly as in Theorem 1 it follows that

there exlists, for ever}_"-n €N, X, € X such that x, = A x_ =

n'n

= an = Txn, where Anx'-—' W(Ax,xo,kn) for every n €N and
every x € X and 1lim k_ = 1. Furthermore:
n-sw .
F (2¢) = F, _ . (2€) ='F ' (2¢) >
7 xn,Axn Anxn,Axn W(Axn,xdkn),Ax

n
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€ €
2 1"(FAxn,Axn (k_:) 'FAxn,xo (FE;» =

= £(1,F (5) = F () -
Axn'rxo 1=k, Axn",‘o 1 n

Since AX is probabilistic bounded, for every
z € X we have:

inf F (x) >8sup inf F_ (t) =D, (x) and so:
nem "XprAz t<x p;q€EAX P.q AX
(4) gsup inf FAx ,Az(X) = sup DAx(x) =1
x nEN n’ x
) €
Let us prove that lim F (=) = 1.
Ao Axn,xo 1 kn'
; € € +
Since AXn’xo(t-:) > t(FAxn,Az (5-) ,FAz'xo(-z—)) for every € €I[R

we have that:

£ : € >4
(5) FAxn,xo(_l-k_n) 2 t(FAxn,Az (“_2(1-TTn )'FAz,xo(‘z"(i‘—-kn‘)'”

for every n € N. Using the contimiity of t, relations (4)
and (5) and relation 1lim kn = 1, we obtain that

) n-+wo
[>
lim F (=) =1 and so for every ¢ > 0,
nco Ax %o 1 kn
1im F (¢) = 1. The set ATy is compact and so there
n-+o xn,Ax .
exists a subsequence {xn } such that 1lim Amxn =y
k k€ IN : . ke k
Similarly as in Theorem 1, we can prove that:
F k k+1 (e) > Fx Ax (e), for every ¢ €[R+, every n €N
A X X, n’"“n

and every k € IN.

Since:-
P (€) 2 eF, L (S),eF, o (S ,EE, L, (S,
x ATx ' n'"“n S n'n2 n’ "n 2
£ . )
23 A% (—nﬁ))...)-

n n 2 . -
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from relation t(1,1) = 1, the continuity of ¢t and:

lim F
e xh,Ax

we obtain that:

( ) = 1' 8 € {1,2,-.‘.,“‘!"1}

. +
(6) lim F m (e) =1, for every € €R .
n-+e xhiA X, )

The continuity of t, relation (6) and the inequality:

£ ' €
Fx ,y(8) 2 B(F, a0y (7)"Fy,hmxn (30
k

Ny ny Ny
imply that 11m xnk = y. Since A 1is continuous from the
1nequa11ty.

Fo ay(e) 2 t(F (5}, t(F ) ,F &)
Y. Y, xn xhk,Axnk r Axnk,Ay 7
it follows that Fy (e) = 1, for every € € r* and so y = Ay.
Since S and T are continuous from = Tx ‘
; e T Py T Ty
k €N we obtain that y = Ay = Sy = Ty.
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REZIME

O ZAJEDNICKIM NEPOKRETNIM TACKAMA U METRICKIM
I VEROVATNOSNIM METRICKIM PROSTORIMA
SA KONVEKSNOM STRUKTUROM

U ovom radu dokazana su neka uop3tenja Teorema 1 i 2
iz [5] u metrikim i verovatnosnim metri&kim prostorima sa
konveksnom strukturom. '



