Review of Research Faculty of Science-University of Novi Sad, Volume 14,1(1984)

A COINCIDENCE THEOREM FOR MULTIVALUED MAPPINGS IN BANACH SPACES

Bogdan Rsepecki
Institute of Mathematics A. Mickiewicz University,
Matejki 48/49, 60-769 Poznań, Poland

ABSTRACT

M.A. Krasnoselskii [4] proved that if K is a nonempty closed bounded subset of a Banach space and A, B are operators on K such that A is completely continuous, B is a contraction and Au + Bv θ K for all u, v θ K, then the equation x = Ax + Bx has a solution in K. Many papers related to this result have been published. In particular, Melvin [5] has given conditions under which there exists a solution of the equation x = G(x,Qx). We present a generalization of Melvin's theorem for the relation $Tx \theta F(x,Q(Tx))$ with F taking values in the family of nonempty closed convex bounded subsets of a Banach space. An application of our result to the theory of differential relations is also given.

1. INTRODUCTION .

W.R. Melvin [5] has proved the following theorem:

AMS Mathematics subject classification (1980): 47H10
Key words and phrases: Coincidence theorems, multivalued mappings, Banach spaces.

Let E be a Banach space, K a nonempty closed convex bounded subset of E. Suppose that we have a continuous operator Q which maps K into a compact subset of E, and an operator G from $K \times \overline{Q[K]}$ into K such that $G(\cdot,y)$ is continuous for each fixed $y \in \overline{Q[K]}$ and $G(x,\cdot)$ is a contraction uniformly with respect to $x \in K$. Then the equation x = G(x,Qx) has a solution in K.

This result extends the well-known fixed point theorem of Krasnoselskii [4] which combines both the Banach contraction principle and the Schauder fixed point theorem. The purpose of this note is to give some generalization of Melvin's result as a coincidence theorem for multivalued mappings. More precisely, we shall consider the realtion

$$Tx \in F(x,Q(Tx))$$

with F taking values in the family of nonempty closed convex bounded subsets of a Banach space. An application to the theory of differential relations is also given.

2. PRELIMINARIES

Let us denote: by CB(M) - the family of all nonempty closed bounded subsets of a metric space M; by CCB(M) - the family of all nonempty closed convex bounded subsets of a linear normed space M; by $C(M_1, M_2)$ - the metric space of all continuous bounded functions from a metric space M_1 to a metric space M_2 , endowed with the usual supremum metric σ .

The sets CB(M) and CCB(M) will be regarded as metric spaces with the Hausdorff metric $Dist_M$, i.e.

Dist_M(A,B) = max[sup d(x,B), sup d(x,A)];
$$x\in A$$
 $x\in B$

here the distance between any point $x \in M$ and the nonempty subset Z of M is denoted by d(x,Z) (= $\inf\{\rho(x,z): z \in Z\}$).

The Lemma below is an immediate adaptation of the corresponding result of Michael ([6], Lemma 7.1) and is basic in the proof of our main result.

LEMMA. Let M be a metric space and E a Banach space. Assume that $\mu>1,\ h\in C(M,E)$ and $H:M\to CCB(E)$ is continuous. Then there exists h $\in C(M,E)$ satisfying

 $h_{O}(x) \in H(x), \quad \|h(x) - h_{O}(x)\| \leq \mu \cdot d(h(x), H(x))$ for each x in M.

We shall also use the following fixed point theorem due to Nadler [7]:

Let M be a complete metric space with the metric ρ . Let H: M + CB(M) be such that $\mathrm{Dist}_{\mathrm{M}}(\mathrm{Hx}_1,\mathrm{Hx}_2) \leq \lambda \cdot \rho(\mathrm{x}_1,\mathrm{x}_2)$ for $\mathrm{x}_1,\mathrm{x}_2 \in \mathrm{M}$ and with a constant $\lambda < 1$. Then the multivalued mapping H has a fixed point in M.

3. MAIN RESULT

The result reads as follows.

THEOREM. Let M be a compact metric space, E a Banach space with the norm $\|\cdot\|$, X a nonempty subset of E, and K a nonempty closed convex bounded subset of E. Let Q: K + M be a continuous mapping, T: X + E a homeomorphism such that $T[X] \subset K$ and $\{T \circ f : f \in C(M,E)\}$ is a closed subset of C(M,E). Suppose that F is a mapping from X × M to CCB(E) satisfying the following conditions:

- (i) $F(X \times M) \subset T(X)$
- (ii) $F(x,\cdot)$ is continuous on M for each fixed $x \in X_i$
- (iii) $\operatorname{Dist}_{\mathbb{B}}(\mathbb{F}(x_1,y),\mathbb{F}(x_2,y)) \leq k \| \operatorname{Tx}_1 \operatorname{Tx}_2 \|$ for all x_1,x_2 in X, y $\in \mathbb{M}$ and with a positive constant k < 1.

Under these assumptions there exists a point x_0 in X such that $Tx_0 \in F(x_0,Q(Tx_0))$.

Proof. Put A = C(M,X). Define mappings I and Ω as follows: for $f \in A$,

$$I(f) = T \circ f$$

and

$$\Omega(f) = \{g \in C(M,E) : g(x) \in F(f(x),x) \text{ for } x \in M\}.$$

Then I: $A \to C(M,E)$, I[A] is closed, and since T is a homeomorphism, it follows that $\Omega[A] \subset I[A]$. It can be easily seen that $\Omega(f)$ is nonempty by Michael [6] (see [3], Theorem B.14) and $\Omega(f)$ is a closed bounded subset of C(M,E); therefore $\Omega: A \to CB(C(M,E))$.

Denote by Φ a choice function for the family $\{I^{-1}(g): g \in I[A]\}$; here $I^{-1}(g)$ stands for the inverse image of g under I. Let us put

$$G(g) = \Omega(\Phi(I^{-1}(g)))$$

for $g \in I[A]$. Evidently, $G : I[A] \rightarrow CB(I[A])$.

Choose a number k_0 with $k < k_0 < 1$. Suppose that $g_1, g_2 \in I[A]$. Let $g \in G(g_1)$. Since the mapping $x \mapsto F(\Phi(I^{-1}(g_2))(x), x)$ is continuous, by the Lemma, there exists $h_g \in G(g_2)$ such that

$$\begin{split} &\|h_{g}(x) - g(x)\| \leq k^{-1}k_{o} \cdot d(g(x), F(\Phi(I^{-1}(g_{2}))(x), x) \leq \\ &\leq k^{-1}k_{o} \cdot Dist_{E}(F(\Phi(I^{-1}(g_{1}))(x), x), F(\Phi(I^{-1}(g_{2}))(x), x)) \leq \\ &\leq k_{o}\|T(\Phi(I^{-1}(g_{1}))(x)) - T(\Phi(I^{-1}(g_{2}))(x))\| = \\ &= k_{o}\|(I(\Phi(I^{-1}(g_{1})))(x) - (I(\Phi(I^{-1}(g_{2})))(x)\| = \\ &= k_{o}\|g_{1}(x) - g_{2}(x)\| \end{split}$$

for $x \in M$; hence $\sigma(h_g,g) \leq k_o \cdot \sigma(g_1,g_2)$. Arguing again as above, it follows that if $g \in G(g_2)$ then there exists $h_g \in G(g_1)$ and $\sigma(h_g,g) \leq k_o \cdot \sigma(g_1,g_2)$. Thus

$$Dist_{I[A]}(G(g_1),G(g_2)) \leq k_0 \cdot \sigma(g_1,g_2)$$
.

Now, if we apply Nadler's contraction principle given in Sec.2 we conclude that there is g_0 in $G(g_0)$. Let $f_0 = \Phi(I^{-1}(g_0))$. Then

$$I(f_{o}) = g_{o} \in G(g_{o}) = \Omega(\phi(I^{-1}(g_{o}))) = \Omega(f_{o}),$$

and consequently

$$T(f_O(x)) \in F(f_O(x), x)$$

for each x in M.

Since f_0 is continuous, $\{T(f_0(u)) : u \in \overline{Q[K]}\}$ is compact. Therefore, by Schauder's theorem, $y \mapsto T(f_0(Qy))$ has a fixed point, say y_0 , in K. Hence $x_0 = f_0(Qy_0) \in X$ and

$$Tx_O \in F(f_O(Qy_O),Qy_O) = F(f_O(Qy_O),Q(T(f_O(Qy_O)))) =$$

$$= F(x_O,Q(Tx_O)),$$

which completes the proof.

4. MULTIVALUED SYSTEMS

Let M be a metric space, E a Banach space, and K a nonempty closed convex subset of E. Consider the multivalued system

(+)
$$\begin{cases} x \in F(x,y) \\ y \in G(x,y) \end{cases}$$

where F,G are two mappings from K \times M into, respectively, 2^K and 2^M (2^X denotes the collection of all nonempty subsets of X). Throughout this part, F is a closed mapping (i.e., $x_n + x$, $y_n + y$, $z_n \in F(x_n, y_n)$ for $n \ge 1$ and $z_n + z$ implies that $z \in F(x,y)$) with convex values and $F(K \times M)$ is conditionally compact in E.

Let us prove first: If (1) M is bounded closed subset of any Banach space B, (2) $G(x,y) \in CCB(M)$ for $(x,y) \in CK \times M$, (3) $x \mapsto G(x,y)$ is continuous on K for each $y \in M$,

and (4) $\operatorname{Dist}_{M}(G(x,y_{1}),G(x,y_{2})) \leq k \|y_{1} - y_{2}\|$ for $x \in K$ and $y_{1},y_{2} \in M$ and with a positive constant k < 1, then (+) has a solution in $K \times M$.

Indeed, let $g_0 \in C(K,M)$ and $k_0 \in (0,1)$. By the Lemma, there exists $g_n \in C(K,M)$ (n=1,2,...) such that

$$g_n(x) \in G(x, g_{n-1}(x))$$
 and

$$\|g_n(x) - g_{n-1}(x)\| \le k^{-1}k_0 \cdot d(g_{n-1}(x), G(x, g_{n-1}(x)))$$

for x in K. Hence we can write

$$\begin{split} \| \, g_n^-(x) \, - \, g_{n-1}^-(x) \| \, &\leq \, k^{-1} k_o \cdot \mathsf{Dist}_M^-(G(x, g_{n-2}^-(x))) \, , G(x, g_{n-1}^-(x))) \, \leq \\ &\leq \, k_o^- \| \, g_{n-2}^-(x) \, - \, g_{n-1}^-(x) \| \, &\leq \, \dots \, \leq \, k_o^{n-1} \| \, g_o^-(x) \, - \, g_1^-(x) \| \, \leq \\ &\leq \, k_o^{n-1} \cdot \sigma(g_o^-, g_1^-) \end{split}$$

and therefore the sequence (g_n) is uniformly convergent on K.

Let $f(x) = \lim_{n \to \infty} g_n(x)$ uniformly on K. For $x \in K$, we have

$$\begin{split} &d(f(x),G(x,f(x))) \leq \|f(x) - g_n(x)\| + d(g_n(x),G(x,f(x))) \leq \\ &\leq \|f(x) - g_n(x)\| + Dist_M(G(x,g_{n-1}(x)),G(x,f(x))) \leq \\ &\leq \|f(x) - g_n(x)\| + k\|g_{n-1}(x) - f(x)\| \end{split}$$

and since G(x,f(x)) is closed, it follows that $f(x) \in G(x,f(x))$.

Define: $\Omega(x) = F(x,f(x))$ for $x \in K$. It is easy to see that $\Omega: K + 2^K$ is a closed mapping with convex values in a compact subset of K. Therefore, by the fixed point theorem of Bohnenblust and Karlin [2], Ω has a fixed point in K^* . Let $x_0 \in \Omega(x_0)$ and $y_0 = f(x_0)$. Then

There is a more general fixed point theorem using condensing mappings. This suggests more general assumption on F and G giving the existence for (+).

and our proof is completed.

This proof suggests the following statement: Let M be complete metric space and $\phi: C(K,M) \to [0,\infty)$. Suppose that $y \to G(x,y)$ is a closed mapping on M for each $x \in K$. If for every $g \in C(K,M)$ there exists $h_g \in C(K,M)$ such that $h_g(x) \in G(x,g(x))$ on K and $\sigma(g,h_g) \leq \phi(g) - \phi(h_g)$, then (+) has a solution.

From the above as a corollary we obtain our first result about (+) when B is a uniformly convex Banach space.

As a matter of fact, let us assume that the conditions (1) - (4) are satisfied, and in addition, B is a uniformly convex space. Let $g \in C(K,M)$. By the immediate adaptation of Lemma 5.2 of Banks and Jacobs [1], there exists a uniquely determined sequence (g_n) of C(K,M) such that

$$g_n(x) \in G(x, g_{n-1}(x))$$
 and

$$\|g_n(x) - g_{n-1}(x)\| = d(g_{n-1}(x), G(x, g_{n-1}(x)))$$

for $x \in K$, where $g_0 = g$. Hence

$$\textstyle\sum\limits_{n\geq 1}\;\sigma(\textbf{g}_{n}^{},\textbf{g}_{n-1}^{})\;\leq\;\sigma(\textbf{g}_{1}^{},\textbf{g}_{0}^{})\;\sum\limits_{n\geq 1}\;\textbf{k}^{n-1}\;<\;\infty\;\;\text{.}$$

Putting

$$\phi(g) = \sum_{n \ge 1} \sigma(g_n, g_{n-1})$$

we shall have $\sigma(g,g_1) = \phi(g) - \phi(g_1)$ and we have finished. Finally, let us remark that similar results can be obtained also as coincidence theorems.

5. APPLICATION

Let $J = \{0,1\}$ and let D be the set of all $x \in \mathbb{R}^n$ (the n-dimensional Euclidean space with the zero element θ) such that $|x| \le C$. We shall consider a differential relation

$$u'(t) \in U(t,u(t),u(t)), \quad u(0) = \theta$$

where U is a given continuous mapping of $J \times D \times D$ into $CCB(\mathbb{R}^n)$.

Assume in addition that

Dist
$$\mathbb{R}^{n}$$
 (U(t,x,y), $\{\theta\}$) $\leq C$

and

$$\operatorname{Dist}_{\mathbb{R}^n}(\operatorname{U}(\mathsf{t},\mathsf{x}_1,\mathsf{y}),\operatorname{U}(\mathsf{t},\mathsf{x}_2,\mathsf{y})) \leq \operatorname{L}|\mathsf{x}_1-\mathsf{x}_2|$$

for $t \in J$ and x, x_1 , x_2 , y in D.

Let r > max(1,2L). We put:

$$X = \{ w \in C(J,\mathbb{R}^n) : |w(t)| \le C \quad \text{for } t \in J \}$$
,

$$K = \{w \in C(J,\mathbb{R}^n) : |w(t)| \le C \cdot \exp(-rt) \quad \text{for } t \in J\}.$$

Define mappings T and Q by

$$(Tw)(t) = exp(-rt)w(t),$$

$$(Qw)(t) = \int_{0}^{t} exp(rs)w(s)ds$$

for we $C(J,\mathbb{R}^n)$. Moreover, for $u \in X$ and $v \in \overline{Q[K]}$ (the closure of Q[K] in $C(J,\mathbb{R}^n)$), we denote by F(u,v) the set of all functions $t \mapsto \exp(-rt)f(t)$ such that $f \in C(J,\mathbb{R}^n)$ and $f(t) \in U(t, \int\limits_0^t u(s)ds, v(t))$ on J.

The set $E = C(J,\mathbb{R}^n)$ will be considered as a Banach space with the supremum norm $\|\cdot\|$. It is easy to see that K is a closed convex bounded subset of E, $T[X] \subset K$, $M = \overline{Q[K]}$ is compact, and $F[X \times M] \subset T[X]$. The closed convex bounded set F(u,v) is nonempty by Michael [6], and therefore F is a mapping from $X \times M$ to CCB(E).

Suppose that u_1 , $u_2 \in X$ and $v \in M$. Let $f_1 \in F(u_1,v)$. Let $f_1(t) = \exp(-rt)z_1(t)$ with $z_1 \in E$ and

 $z_1(t) \in U(t, \int_0^t u_1(s)ds, v(t))$ for $t \in J$. By the Lemma, there

is
$$z_2 \in E$$
 such that $z_2(t) \in U(t, \int_0^t u_2(s)ds, v(t))$ and $|z_1(t) - z_2(t)| \le 2 \cdot d(z_1(t), U(t, \int_0^t u_2(s)ds, v(t))) \le 2 \cdot Dist_{\mathbb{R}^n} (U(t, \int_0^t u_1(s)ds, v(t)), U(t, \int_0^t u_2(s)ds, v(t))) \le 2 \cdot Dist_{\mathbb{R}^n} (U(t, \int_0^t u_1(s)ds, v(t)), U(t, \int_0^t u_2(s)ds, v(t))) \le 2 \cdot 2L \int_0^t |u_1(s) - u_2(s)| ds = 2L \int_0^t \exp(rs) |(Tu_1)(s) - (Tu_2)(s)| ds \le 2 \cdot Dist_{\mathbb{R}^n} (Tu_1 - Tu_2) \int_0^t \exp(rs) ds < 2L \cdot r^{-1} \cdot \exp(rt) ||Tu_1 - Tu_2|| \le 2L \cdot r^{-1} \cdot \exp(rt) ||Tu_1 - Tu_2||$

$$Dist_{F}(F(u_{1},v),F(u_{2},v)) \leq \frac{2L}{r} \|Tu_{1} - Tu_{2}\|$$

for all u_1 , $u_2 \in X$ and $v \in M$. Modifying the above reasoning, we obtain that $v \Rightarrow F(u,v)$ is a continuous mapping from M to CCB(E) for every $u \in X$.

Now, according to the Theorem applied to $E = C(J,\mathbb{R}^n)$ and our X, K, T, Q, F and $M = \overline{Q(K)}$, there exists $u_0 \in X$ such that $Tu_0 \in F(u_0,Q(Tu_0))$; therefore

$$u_{o}(t) \in U(t, \int_{0}^{t} u_{o}(s)ds, \int_{0}^{t} u_{o}(s)ds$$

for t & J, and we are done.

REFERENCES

- [1] H.T. Banks and M.Q. Jacobs, Differential calculus for multifunctions, J. Math. Anal. Appl., 29 (1970), 246-272.
- [2] H.F. Bohnenblust and S. Karlin, On a theorem of Ville,

 Contributions to the theory of games, I. Ann. Math.

 Studies, No.24, Princeton (1950), 155-160.
- [3] J. Dugundji and A. Granas, Fixed point theory, Vol.I,
 PWN, Warszawa (1982).
- [4] M.A. Krasnoselskii, Two remarks on the method of successive approximations, Uspehi Mat. Nauk, 10 (1955), 123-127 (in Russian).
- [5] W.R. Melvin, Some extensions of the Krasnoselskii fixed point theorems, J. Diff. Equations, 11 (1972), 335-348.
- [6] E. Michael, Continuous selections I, Ann. Math., 63 (1956), 361-382.
- [7] S.B. Nadler: Multi-valued contraction mappings, Pacif.J. Math., 30 (1969), 475-488.

Received by the editors August 10, 1984.

REZIME

TEOREMA KOINCIDENCIJE ZA VIŠEZNAČNA PRESLIKAVANJA U BANAHOVOM PROSTORU

U ovom radu dokazano je jedno uopštenje teoreme Melvina [5] za relaciju Tx & F(x,Q(Tx)) gde F uzima vrednosti u familiji nepraznih zatvorenih ograničenih podskupova Banahovog prostora. Data je primena dobijenih rezultata na diferencijalne relacije.