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ABSTRACT

A characterization of the topologles induced by each of seweral
special types of pre-probabilistic metric structures is given. Regarding
metrization, we propose an axiom (Wh) which is easy to verify and at the
same time avoids the notion of a t-nom.

1. |NTRODUCTION

In numerous instances in which the theory of metric
" spaces 1s applied, the association of a single number as the
distance between a pair of elements 1s rather an over-ideali-
zation. Probabilistic metric spaces render the concept of
distance as a probabilistic rather than a determinate one.
Two basic problems in the theory of probabilistic metric
spaces have been dealt with rather unsatisfactorily. One of
these is the manner in which topologles are assoclated with
probabilistic metric structures which resulted in the study
of several types of generalized topologies. The other is the
approach to the metrization problem in probabilistic metric
spaces. A sufficient condition for the metrization of a pro-
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babilistic metric space postulates the existence of a cer-
tain kind of t-norm. Axiom (IVh) avoids this notion. Each
probabilistic metric space naturally gives rise to neighbo-
urhood-1like filters, which, in general, are not neighbour-
hood filters for any topology. This led to the study of ge-
neralized topologies. We show that each probabilistic metric
space gives rise to a topology in a very natural way and the-
refore it is not necessary to consider any generalized topo-
logies.

The authors are not suggesting that the idea of a t-
norm (or a triangle function) be abandoned. This idea, along
with same form of the triangle inequality, leads to the in-
trinsic geametry of probabilistic metric spaces.

DEFINITION 1.1. A funetion F:R+ [0,1] <{s a distri-
bution function if it i8 a non-deereasing, left continuous
funcetion with in{¥=0 and supf=1.

DEFINITION 1.2, Let X be a set and F be a function

on Xx X guch that F(x,y)==ny t8 a distribution function.
Conaider the following conditions:

I. ny(O) =0 for aqll x,y in X.
IT. ny(e) =1 for all e>0 iff x=y,.
3. *F_=F -
Xy yx
Iv. If ny(e) =1 and Fyz(a) =1,then F_,(e+8) =1,
IV, . For each ¢ >0 there existe a §>0 such that if

l-ny(d) <4 and l—Fyz(d) < & then l*sz(e)< £.

If ¥ satisfies conditions I and II then it is called
a pre-probabilistic metric structure (PPM-structure) on X and

the pair (X, F) is called a pre-probabilistic metric space (PPM-
space). An F satisfying condition III is said to be symmetric.
A symmetric PPM-structure F satisfying IV is a probabilistic
metric structure (PM-structure) and the pair (X,r) is a pro-

babilistic metric space (PM-space). A symmetric PPM-structure
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F satisfying IV, is called an H-structure and the pair (X,F)
is called an H~space. The quantity ny(s) is to be interpre-
ted as the probalility that the distance from x to y is less

than €.

DEFINITION 1.3, A real-valued function T on the
!
unit square I2 i8 called a t-norm if it satisfies the follo-

wing conditions:

. 0<T(a,b) <1.

. T(a,b) =T(b,a).

T(a,l) =a.-

. T(a,b) $T(c,d) if a<c'and b<d.
T(f(a,b) ,c) =T(a,T(b,c)).

[S IR VU S

DEFINITION 1.4, 4 PM-space (X,F) Ze& called a Men-

ger space if there exists a t-norm T such that
IVm: for all x,y,Z€X and for all r,s>0

F,(r+s) 3T(ny(r), F_,(s)).

Y

2, TOPOLOGIES INDUCED BY PPM-STRUCTURES

Let (X,F) be a PPM~space, For €,A >0 and x 6 X, defi-
ne
Ve, ) ={(y,z :l—Fyz (e) <A},
and
N (e,)) ={y:(x,y) 8 V(e,A}} .

It is clear that {v(e,A):e>0, A >0} is a filter -
bass on XxX and if 0<e <¢c and 0 <), <} then V(g ;) =
<V(e,)). Therefore this filter-base is clearly equivalent
to (i.e. it generates the same filter as) the filter-base
{v(e,e):e >0} or even {V( %, JE'): n a positive integer}. Simi-

larly for each x € X, the collection (N, (e,2)ze,2 >0} is also

a filter-base and is equivalent to the filter-base {Nx(%'%) n
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a positive integer}. We note that for any xeX

o
on L E)=x) .

A PPM-space (X,F) induces a T, topology T(F) on X as
follows: U e t(F) 1f for each xeU, there exists some >0
such that Nx(e,e)c U. In particular, each of the special ty-
pes of PPM-spaces (X,F) defined above induces a topology. A
PPM-space (X,F) 1s said to be topological if for each xeX
and any ¢ >0 the set Nx(e,e) is a neighbourhood of x in the
topology T(F).

Now we attempt to characterize the topologies indu-
ced by each of the special types of PPM-spaces defined above.

" DEFINITION 2.1. A topological spage (X,1) is said
to be weakly firat countable if there exists a function
B: w x X+P(X) , the power-det of X, such that for each
x €X:

1) N B(n,x) = {x},
Ney
2) B(n#+l,x) = B(n,x), and
3) U= X 78 open iff for each x € X, some B(n,x) ts

eontained in U.
A funetion B satisfying thege conditions is called a wfe-

funetion for (X,1).

THEOREM 2.1. A topological space (X,1) is weakly
firet countable (resp. T, and first countable) iff its to-
pology ie induced by a PPM-structure (regp. a topologieal
PPM-structure) on X,

Proof. Suppose (X,T) is weakly first countable
and let B be a wfc-function for (X,T). Without loss of gene-
rality we may assume that B(0,x) =X for all x &€ X. For any
X,yeX, x#y, let n(x,y) denote the smallest integer n such
that y # B(n,x) and x ¢ B(n,y). For any real number r and any
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x,y€X, x#¥y define

1
f‘ (r} = { ° H rim
xy 1  otherwise .
0 if r<o
Obviously, we define Fogl¥) = { 1 if r>o0

It is easy to verify that for any positive integer n, and any
xeX,
1

= 1
B(n,x) = Nx( n’ n) N

Clearly, {ny} = F is a PPM-structure with t(F) =1. If (X,F)

is T, and first countable, each B(n,x) is open. Thus Nx( ;l‘-,%)

is open and 1 (F) is topological.
If t=1(fF) where f is a PPM-structure, put B(n,x) =

x( i—. %) and B is a wfc-function on (X,t). Also, if T(F)
is topological, Nx(%' -:’;) et(F) =1 and 1 is T, and first coun-
table.

=N

DEFINITION 2.2, A symmetric on a set X 18 a real-
valued function d on XXX such that

1) d(x,y) 20 and d(x,y)=0 <Zff x=y; and
2) dix,y) =d(y,x) .

Let d be a symmetric on a set X and for any >0
and any x e X, let S(x,e) = {y € X:d(x,y) <¢}. We define a topo-
logy 1{(d) on X by: Uet(d) 1ff for each xeU, some S(x,ec) =U.
A symmetric d is a semi-metric if for each x eX and each ¢ > §
S{x,e¢) is a neighbourhood of x in the topology 1(d). A topo-
logical space X is said to be symmetrizable (semi-metrizable)
if its topology is induced by a symmetric (semi-metric) on X.

THEOREM 2. 2. 4 topologiecal space (X,T) i8 symmetri-
zable (semi-metrizable) iff its topology is induced by a sym-
metric (symmetric and topological) PPM-structure on X.
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Proot. Let (X,F) be a symmetric PPM-space and
let

1 1 1
[max{ E‘Y¢Nx(ﬁ"ﬁ)}
dix,y) =

1 o if yen (1, L) for all n.
Then d is a symmetric and S(x, ili)= » (%, %) . Thus 1(F) = t(4d).
1

If 1(F) is also topological, S(x, =)= N (l, l) is an open
n x'n' n
neighborhood of x and d is a semi-metric with t(F) =1(d).

Now suppose (X,T1) is syli\metrizable and let d be a sy-
mmetric on X such that t(d) = 1. We may assume that d(x,y) <1
for all x,y € X. For any x,y € X, define:

{0 if e<d(x,y),

F. (g) =
Y L1 if e>dix,y) .

It is easy to show that (X,F) is a symmetric PPM-
space, Moreover, for any 0<e<1l, S(x,e) = Nx(e,e); and there-
fore 7(F) =1(d). If 4 is a semi-metric, it is clear that (X,F)
is also topological. We note one other fact that will be used
in the next theorem. If d is a metric IV holds and (X,F) is
a PM-space. For suppose ny(e) =1 and _Fyz(d) =1, Then d(x,y)<e
and d(y,z) <é. Thus d(x,z) <e+§ gives sz(e+6) =1,

The reader can compare Theorem 2.2 and its proof with
the main theorem in [:5] .

Now we turn our attention.to those PPM-structures
which induce a metrizable topology. The result we have in this
direction contrasts sharply with all known results of this
type., in that we do not even postulate the existence of t-
nom. The metrizability results known so for require the exi-
stence of a t-norm T satisfying the Menger triangle inequali-~
ty Ivm and some additional conditions on T like sup{T(x,x):
0<x<1 =1}(see [5],[7], and [8]).

THEOREM 2.3. 4 topological space (X,1) 8 metriza-
ble if and only if there exists an H-gtructure on X which in-

duces T.
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Proof. Suppese (X,T) is metrizable and let 4

be a metric on X such that 1=1(d). For x,y e X, define ny

as in Theorem 2.2. We showed in the proof of Theorem 2,2
that = ny satisfies I,IY,IXI,IV and T=1(F). It is easily
seen that for any 0<e <1, the set V(e,c) turns out to be the
same set as {(x,y):d(x,y) <e}. Frem this, it can be easily'

seen that IVh holds, Thus (X,f) is an H-space.

Now suppose that (X,F) is an H-space. Note that con-
dition IVh can be restated as: For each € >0 there is a § >0
such that v(§,8)°V(§,8)&V(s,8). Therefore, the colleection

{V(L L) :n a positive integer} is a countable base for a uni-

formity which induces the topology t(F).Thus (X,T(F)) is met-
rizable.

REMARKS. (1) Not every PPM-gtructure inducing a met-
rizable topology is an H-structure.

(2) Condition IVh is necessary and sufficient to make
the collection {V(e,A):¢,2 >0} a base for a uniformity.

(3) The Menger spaces with sup T(x,x) =1 are the
x<1l

spaces that have been studied extensively. These satisfy IVh
[7]., so the H-spaces contain them.

(4) The axioms for the H-spaces do not refer to a
t-norm, thus they are easier to verify. The equilateral spa-
ces of [7], and other examples, can easily be shown to sati-
sfy IV,. Another way of making a metric space into an H-

space is to define ny by

0 1f ex0, and
ny(c) = o «
1--885Y) 0 46 e,

e+dlx,y)

(5) Given a symmetric PPM-structure F.on a set X, it
is possibly to modify F to obtain two symmetric PPM-structu-
res F, and F, such that (1) F, satisfies axiom IV but F,
does not, and (ii) t(F) =1(F1) =1 ) - Therefore, each symme-
trizable topology is induced by a PM-structure as well
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as by a symmetric P?H—structure not satisfying axiom IV.
(6) The sufficiency of the condition in Theorem 2.3
is implicit in the proof of the metrization theorem in [7].
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REZIME

VEROVATNOSNE METRICKE STRUKTURE: TOPOLOSKA
KLASIFIKACLJA

Data jé karakferizacija toéologija kojé su indukova-
ne nekim specijalnim tipovima pre-probabilistitkih metrikih
struktura.



