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RANDOM NORMED STRUCTURES
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ABSTRACT '

The axloms for a random normed space are simplified and other si-
milar structures are defined and studied. In particular,it is shown that
the metrizable topological linear spaces coincide with the linear spaces
that admit a random H-structure.

1. INTRODUCTION

The introduction of the paper [2] in this journal gi-
ves all relevant definitions that are not given in this pa-
per. The trivial distribution function H is defined by:

H(x) =0 for x<0, and H(x) =1 for x 30,

DEFINITION 1.1. X is a linear spaces over Ror C
and Fis a funetion on X such that F(x) =F, i8 a dietribution
function. Let F={F :x€X} and let T be a t-norm. The triple
(X, F,T) 18 a random normed space if the following conditions
hold: ‘

(R1) F (0) = 0 for allx in X.

(R2) F =H tf and only if x=0,
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u .
(R3) le(u) =Fx( m ) for all u, all A #0 and all xinX.

(R4) Fx+y(u+v) ZT(F,;(“)' Fy(v)) for all x,y in X and
all u>0, v>0,

(RS) T(u,v) >max{u+v-1,0} for all u,v in [0,1].

A randam nqrmed space is a Menger space if we put
G, = . - -
X,y Fx-y If the t-nomm T is continuous, X is a T2 topo

logical linear space using the topology t(F).

DEFINITION 1.2, Suppose X is a linear space and for
each x in X we have a distribution funection Fx such that (R1l),
(R2), (R3a) :wnd (R3b) hold.

(R3a) 1f 0<|a]<1, F  (e) >F (e) .
(R3b)  For any x and any ¢ >0, chx(E) +1 qas a+ 0.

The triple (X, P is a randem pre~normed space (RPN-space).

REMARKS, (1) (R3) implies (R3a) and (R3b),

(2) F =F_,

(3) Nx(e:,l)=x+No.(e,x).

Proof. For (R3a), F(e)=( TET ) > F, () since

_ <£—>¢ when 0< |a] <1.
Ja] = e
For .(R3b), note that F-ax(e) =Fx('- -]—a—]— ) "_,1 as a+0 -
gince - + w,
© Jal

(2) F_ (e) >F (e) =F _,y(_y(€) :P_x_(s) .
(3) zeN_ (e,1) if and only if F,__ (e) »1-x if and only

if F

0 - (z-x) (e) » k-1 if and pnly if z.—xeNo(e,_)\)..
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EXAMPLES. In each case, it is easy to verify (Rl1),
(R2) and (R3) so that we have a RPN-space. The examples are
given so the reader will not have to look elsewhere for them.

(1} Let X be a linear space. G#H is a fixed distri-
bution function with G(Q) =1Q. x+Fx where F_.=H and Fx=G
for x #0.

o

(2) et (%, 1) be‘a_'normed linear space. G is a
fixed distribution flunction with G(0) =0 and G #H, Put Fop=H
and for x#Q, put F_(r) =G( £ .

! x 3]

2, BASIC RESULTS

Unless stated otherwise, we will assume that (X,F.=

= {F _:peX}) is a RPN-~space. Let G and 8§ =1{¢_ _:p,q
p P.q

p.a” Fp-q
eX}. Then (X,6) is a symmetric PPM structure. The natural
topology t(F) was defined earlier. t(F) is topological if for
each xe X and any > 0, Nx(s,s) ENx(e:) is aMod of
x in the topology t(F). It is natural to wonder when (X,t(F))
is a topological linear space.

THEOREM 2.1. FPor each €,A 7?0 we have
1) No(e,A) ts balanced,

(2) No(e,l) ia absorbing.

_ Proof (1) Let x eN,(e,2) and suppose Q< fa| <1.
Then qu(s)in('E) >1-} implies uxeNo(e,i'). (2) Let xeX, It .
suffices to show that there exists a#0 such that ax € Ny(e,1).

Frau (R3B), F_,(c) +1 as a0, Thus we can choose a# 0 such
that F (€) > 1. |

THEOREM 2. 2. Phe following conditions are equiva—-
~lent. _' '_ .
(1) t(F) is topological and (X,t(F)) is a topological
linear space. . '
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(2) For each €>0, there exista 0 <§ <e such that
NO(G) +N0(6)=N0(6) .

(3) For each € >0, there exists 0 < § <€ such that

F, (8) >1-8 and Fy(G) >1-§ implies Fot

.(IVh) For each € >0, there exitsts 0< 68 < e such that
Gx,y(a) >1-6§ and Gy’z(G) > 1-§ implies Gx’z(e) >1l-~g,

Y(e) >1-¢g,

Proo f. (1) implies (2). Assume (1) and let U* de-
note all balanced neighborhoods of 0. Then U*=>yU = {No(e) :e>0}
since t(F) is topol/ogical and each No(e) is balanced. Then
([7] page 96, Theorem 9.2) N, (¢) € U* implies there exists

VelU* such that V+Vc No(e) . Now 0 ¢V and V is a neighborhood
of 0 implies there exists & > 0 such that N, (§) =V. We may as-
sume § < c. Then KN, (8) +N0(6)cNo(e) .

(2) implies (1), Suppose (2) holds :and consider U .
(a) Each U in U is balanced and absorbing.

(b) If U€U there exists Vel such that V+ve U,
(c) No(el) n N, ()= N, (e) if € =min{el,ez}.

We again use Theorem 9.2, page 96 of [7] to obtain a unique
linear topology t having U as a base at 0. Clearly, t=t(F).

(2) 1is equivalent to (3). This follows from the de-

finiti fN dF =F__.
nition o Q(E)an p=Fp

(3) 1is equivalent to (IV,).This is immediate if you

rememb h =F .
emember that Gx,y x=y

COROLLARY 2.1, If t(F) g topological and (X,t(F))
tg a topolegical lineaqr space, then (X,t(F)) is metrizable
with an {npariant metric d euch that ]a] <1 implies 4(0,ax)
<d(0,x) for all xeX,

Proof. It is clear fram the proof of the theorem
that _{NO(%—) :n=1,2,3,...} is a countable base at 0 and
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(X,t(F}) is a T, topological linear space. Fram [3], page
111, one cbtains such a compatible metric.

DEFINITION 2.1. If (X,F) satiafiee R1,R2,R3,R3a,.R3b.
and IVy, F will be called a random H-structure for X and
(X,F) will be referred to as a random H-gpace.

Condition IV, arose earlier in [2] It is necessary

h
and sufficient to make the collection Iv(e,A):g,A >0} a base
for a uniformity where .
€ = :F = > 1=
vie, M) = {(p,q) p_q(e:) Gp,q(E) by

We have shown that every random H-space given rise to a me-
trizable topological linear space (X,t(F)). The next theorem
establishes the converse result,

THEOREM 2.3, Every metrizable topological linear
space (X,t) admits a random H-structure F such that t= %(F),.

Proof£. Let d be a translation invariant compa-
tible metric an X such that [af <1 implies d(0,0x) <d(0,x).
(see [3], page 111.) Define the distribution function Fp by

0 if _e_<_d(0,p), and

F (&)= {
P 1 if e>4(0,p) .
Then we clearly have the following:

(Rl.) 7 Fp(O) =0 for every pe X.

(R2) Fp(e) =1 for every et >0 if and only p=0.

(R3a) F__(e) >F (e) if |a] <1. This holds since
d4(0,ap) <d(0,p).

For (R3b), note that as g¢-+0, d(0,ap) + 0 Aand so Fap(E) +1 for
each fixed € and p.

{IVy) Let &> 0 be given and set.e =min{ % +1}.. Then

F (§) »1~5 .and Fy'(}) > 1-8 implies F_(8) =Fy(6) =1.  Thus
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d(0,x) <& and d(0,y) <&, d(x,x+y) <. Thus 4(0,x+y) <d(0,x) +

+ d(x,x+y) < 26 < e, Hence Fx+y(e) =]1>1l-¢ .

t(F) =t. No(e,x)={y:F (e) =Fy(e) >1-A}= {y:Fy(e) =

0-y
= 1} ={y:d(0,y) <e}=8(0;¢). Also, Nx(e,k) =x+N°(e,A) = x +

+ S(03e) = 8(x;¢e).
Consider the following condition:

(R4) ~ Fp+q(u+v)3min{Fp(u),Fq(v)} for u,v> 0. It is easy

to show that
(1) (R4) " implies IV, and

(2) (R4) “ is equivalent to G, ,(r+s) 3min{Gx'y(r),Gy’z(s)}

where G, ,=F,_,. This condition arose in Theorem 2.1 of [1].
’
THEQREM 2.4.  IFf (X,F) satisfies (Rl), (R2),
(R3), and (R4) *, (X,t(F)) i8 a locally conver metrizable to-
pological linear apace and d given by

sup{e:dex(e,e), 0O<e<1} ,

d(x,y) ={
0 if yeNx(e,e) for all €>0

18 a compatible translation invariant metric with d(0,Ax) hd
«d(0,x), <if |A]<1l. Also d(x,y) <t if and only if Fx_y(t) >
>1=t for O0<t<1l.

Proof. Let g= {Gx F :X,y e X}. Then (X,8)

Y Tx-y

is a symmetric PPM-space such that
Gx,z(r+5) Zmin(Gx'y(r) ,Gy'z(s)} .

From Theorem 2.1 of [1], @ is a compatible metric for t(G) =
= t(F),S(x,¢e) =Nx(e,e), and d(x,y) <t if and only if’
Fx_y(t) >1=t,
(1) d(x+y, z+y) ='d(x,z).
Since N, (¢) = {y:F _y(e) >1-¢g}, d(0,x-2) = gsup{e:
Fo— (xrz) (e) <1-e} =suple:F,_,(e) <1l-e} = d(x,z).
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Now d(x+y,z+y) = d(0,x+y-[z+y]) = d(0,x~z) =d(x,2).
(2) d4(o0,ix) <d(o,x) if [rx] <1,

1f [A| <1, F (e) <F, () by (R3a). Thus d(0,)p) =

= B“P{,“F;‘P(E) <1-€} _<_sup{e:Pp(e) <l-¢}=4(0,p).

(3) No(e) is convex.
Let y,,¥,€N_(g) and 0 <2 <1, 'i'henF (¢) >1=¢ and
1’¥2° "o Y,

F_(e) > 1-¢. Now 1f F ([1-2]€), we have

y2 Ayl (I‘X)Y2
(Ae+[1-1]e) > Min {F"Yl (Xe),F(l_”yz([l-x]e)} =

() < F

F
Xy1+(1-l)y2
FAYI(AE) = Pyl(e) > 1-g. Thus [y1 + (1-x)y2] e Nj(e).

COROLLARY 2.2. Suppose (X,F) is a RPN-space and
the t-norm T given by T(a,b) =min{a,b} satisfiece (R4). Then
the conclusions of Theorem 2.4. hold.

If one is in the setting of Theorem 2.4, we have
d(x,y) <t if and only if Fx-y(t) >1-t for D0<t<1., This pro-
vides a means of translating many fixed point thecrems and
other concepts fram metric spaces. See [1] for the details.

{
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REZIME

SLUZAJNE NORMIRANE STRUKTURE

Ispitane su sluXajne normirane strukture i pokazano
je da se metrizabilni linearni topolodki prostori poklapaju
sa linearnim prostorima koji dopustaju H-strukturu.



