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ABSTRACT

We consider the problem of ascertaining the minimum number of weighi-
ngs which suffice to determine all counterfeit (heavier) coins in a set of n
coins of the same appearance, given a balancescale and the information that
there are exactly four heavier coins present. A procedure which is elther opti-
mal or suboptimal is constructed for an infinite set of n"s. For another in-
finite set of n"s a procedure is constructed for which the maximum number of
steps differs by just two from the information-theoretical lower bound. We
also consider a slightly modified problem, i. €. the case when we are given
a certain number {not greater than n) of additional coins for which we know
that they are all good (not counterfeit). For that case, and arbitrary n, we
determine an upper bound for the maximum number of steps of an optimal pro-
cedure which differs by just four from the informatlion-theoretical lower bound.

The proofs are given by an effective construction of a procedure.

1. INTRODUCTION
Let X={c1,c2,...cn} ke a set of n coins indistinguishable

except that exactly m of them are slightly heavier than the rest.
We suppose that all heavier (counterfeit) coins are of equal wéi—
ght, and so are all light (good) coins. If X is the weight of a
light coin, then the weight of a heavy coin is less than

m+l ), so that the larger of two numerically unequal subsets of
m

X is always the heavier.
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Given a balance scale, we want to find an optimal weig-
hing procedure, i. e, a procedure which minimizes the maximum num-
ber of steps (weighings) which are required to identify all heavi-
er coins. It is clear that no information is gained by balancing
two numerically unequal sets., We also suppose that the scale re-
veals which, if either, of two subsets of X is heavier.but not by
how much. '

Step (A,B) will mean the balancing of A against B, where
A and B are two disjoint subsets of X of the same cardinality. The
possible outcomes are:

(a) A=B (the sets balance),
“(b) A#B (the sets do not balance) .

We use the notation A<B, A>B, where < and > between two
sets mean "is lighter than" and "is heavier than” respectively.

If ASX h(A) =t will mean that A contains exactly t
heavier coins. By |A{ we denote the cardinality of the set A.

By Pﬁ(i) we shall denote any procedure which enables us

~ to identify all the heavier coins, if there are exactly m of them
in the set of n coins, £ being the maximum number of steps to be

required. Pﬂ(( £ ) will mean a procedure for which the maximum num-
ber of steps to be required is not greater than ¢ . A procedure

Pz(lf is sgid to be optimal 1if no one procedure Pﬁ(r) exists for
some r < £. We write um(n)= £ if there is an optimal procedure
pﬁ(z). A procedufe_Pﬁ(t) is said to be suboptimal if Uy, (n)=2-1.
.It follows by information—theoretical reasonings that
a2 rlog3(m)], where: fx] denotes the least integer » x.
Remark that for any procedure P (2), we have the dual

procedure P (2), because by identifying m heavier coins, we also
identify n—m lighter coins, ’

o - It is well known that ul(n) rlog n]. For some discu-
ssion of these matters in greater detail, see [1],[2},[3],[4)and :
[5]. In [6] it is proved that
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rlog3(2)1 y(mg 1 +rlog3(2)1

and a corresponding procedure is constructed. such that the lower
bound is reached for an infinite set of n”s. In [B8] it is proved

that for n—3k+3k 1, k31,

n
u3(n)%floga(3)]
and, for n=2-3%, k»2,
n n
[log4(3)Tsus(n)¢1+{log,(3)].,

In this paper we have some results for the problem of
four counterfeit coins. ’

2, RESULTS
k .k

Theorem 1. If n=3+3"1,k#3, then
rloga(:)'l € uy (n)<1+rlog3('4')-] .

k, -k~1
P r oo f. It is easy to check that 34k 2<(3 +3lo ) <

. k. k-1 . .
['Iog3 3 I )1= 4k-1, for k4. Now, the statement will be proved

by the inductive construction of a procedure P4k k_1(g4k) , for
. : 3T+3
k31, .
4
For k=1, we have a trivial procedure P,(0).

Suppose that a procedure P4k—1 k_2(<4k-4) is constructed.
Then, a procedure PAk k-1 (€4k) can be.constructed as follows.
3743 o :

Let '”x,fx|=3k+3k l, be partitioned into four subset, i.e.

X= AUBUCUD, where |A|—|B|=|C[=|D|— 3k 1o1e is clear that
h(A)+ h(B)+ h(c)+ ‘h(D)=4.

‘Step- 1. (A,B)..

Step. 2. 1C,D)."

Step 3. (a,C).

It suffices to consider seven cases ((a)-(g) below); any
other possible case is quite analogous to one of these seven.
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(a) If A=B, C=D, A=C, then h(A)=h(B)=h(C)=h(D)=1. We
continue by the successive application of a procedure Plk_l(k-l)
3

four times, to the sets A, B, C and D independently.
(b) If A=B, C=D, A<C, then h(C)=h(D)=2, We continue
by the successive application of a procedure sz_l(zk-z) two ti-
© 3

mes, to the sets C and D respectively. The constructién of a

procedure sz(Zk) is given in [6].
3
(c) A=B, C<D, A<C, then h(C)=1 and h(D)=3. We conti-
nue by the successive application of two independent procedures
1 k-2 (£3k=3) to the sets C and D’ respecti-

3
P _,(k=1) and P7, _
e * L3

vely, where D’=DuA’, A’ being a set of good coins from A and
jal= 3k_2. The construction of a procedure P3k k_1(_<_3k) is
37+3
given in Dﬂ.
(d) If A=B, C<D, A=C, then h(D)=4. Let A’ A guch that
|A’|=3k-2. Then, ]DUA'|=3k_1+3k—2 and h(D A’)=4, We apply a

procedure P4 (<4k-4), which can be constructed by the
k-1+3k-2 -
induction hypothesis, to the set DuS’.

(e) If A=B, C<D, A>C, then h(A)=h(B)=1 and h(D)=2. Now,
we apply a procedure Plk_l(k—l) two times, to the sets A and B
independently, and a p%ocedure sz;l(zk-Z) to the set D.

(f) If A B, C<D, A<C, 2hen h(B)=h(C)=1 and h(D)=2.
We continue similarly as in case (e).

In each of these six cases ((a)-(f)), all the heavier
colins will be found after at most 4k-1 steps.

(g) If A<B, C<D, A=C, then h(B D)=4, h(B)>1 and h(D)>1.
Step 4.'(B,D).

(ga) If B<D, then h(B)=1 and h(D)=3. We continue
quite similarly as in case (c¢).

(gb) If B=D, then h(B)=h(D)=2, We continue quite
similarly as in case (b). ‘ '

(gc) If B>D, then h(B)=3 and h(D)=1. This case is
quite analogous to case (ga).
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In each of these three cases, all the heavier coins will
be found after at most 4k steps.

A procedure P4k k- 1(<4k) is constructed. The theorem
is proved. +3

REMARK 1. It is easy to see that the constructed pro-
cedure, for k>4, is in fact either an optimal or a suboptimal
procedure P4k k- (4k). For k=1, we have the trivial optimal

343571

procedure P4(0), and for k=2, the constructed procedure is in
fact either an optimal or a suboptimal procedure P42(7), since

in (g), instead of p? (2k-2) and p3 (<3k-3) we actually

k-l k 1, k—2

use the procedures P (1) and P (2) It is - an open quesﬁion
whether P 2(7) is an optimal procedure.

It is also an open question whether the theorem holds
for k=3, i.e. for n=36.

THEOREM 2, If n=2'3k, k_1, then

[1093(2)1 < uym) <2 4 Ylog3(r;)].

4k-1 4k

. 2K
Proof. It is easy to check that 3 <(243
k
|1og3(243 ) |=4k, for k>2. Now, the statement will be proved by
the inductive construction of a procedure P4 k(_<_4k+2), for
2-3

)<3

k>1.
For k=1, it is easy to construct a procedure Pg(3),
which is in fact a procedure P2(3). The construction of a pro-

cedure P2 | (2k+1) is given in [6].
2-3

Suppose that a procedure P4 k_1(_<_4k-2) is constructed.
2-3
Then a procedure P4 k(i4k+2) can be constructed as follows.
2.3

Let X, X =2'3k, be partitioned into six subsets, i.e.

=AuBUCUDUEUF, where |A|r13|=|c|=|c|=|g|=|p1- 3*71, 1t is clear

that h(A)+h(B)+h(C)+h(DQ@h(E)+hﬂF)=4.

~—
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Step 1. (A,B).
Step 2. (C,D).
Step 3. (E,F).

It suffices to consider four cases ({(a)-(d) below); any
other case is quite analoguous to one of these four.
(a) A<B, C<D, E<F. We conclude that h(B)+h(D)+h(F)=4,
h(B)>1, h(D)>1, h(F)>1.

Step 4. (B,D)
(aa) If B<D, then h(B)=h(F)=1 and h(D)=2. We con-
tinue by the application of a procedure Plk_l(k-l) two times,
3
to the sets B and F independently, and a procedure sz_l(Zk-Z)

to the set D. A procedure sz(Zk) is constructed in [6].
3

(ab) If B=D, then h(B)=h(D)=1 and h(F)=2,
(ac) If B>D, then h(B)=2, h(D)=h (F)=1.

Cases (ab) and (ac) are quite analoguous to case (aa).
In any of these three cases, all the heavier coins will be found
after at most 4k steps. ‘
(b) A=B, C<D, E<F.

Step 4. (A,C).

(ba) If A<C, then h(C)=h(F)=1 and h(D)=2. This
case is quite analoguous to case (aa).

(bb) If A>C, then h(A)=h(B)=h(D)=h(F)=1, We con-
tinue by the application of a procedure Plk_l(k—l) four times,

3 .

to the gsets A, B, D and F independently. All the heavier coins
will be found after 4k steps.

(bc) If A=C, then h(DVEUF)=4, h(D)>1 and h(F)>1.

Step 5. (D,F). '

(bca) If D>F, then h(F)=1'and h(D)=3, We con-

tinue by the successive application of two procedures
plk_l(k-l) and P3k_1 k;2(<3k-3), to the sets F and DvA’
3 37 +3 -
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k-2

respectively, where A’ A and |A’|=3" °. A procedure P;k+3k-1(53k)

is constructed in [8]. All the heavier coins will be found after
at most 4k+1 steps.

(bcb) If D=F, then h(D)=h(F)=2. We continue by
the application of a procedure sz_l(Zk-Z) two times, to the sets
D and F independently. All the hdavier coins will be found after
4k+1 steps.

(bcc) If D F, then h(D)=1, h(E F)=3 and h(F)>2,
. Step 6. (D,E).
Now, there are two possibilities.

(bcca) If D=E, then h(D)=h(E)=1 and h(F)=2.
We continue quite similarly as in case (aa).

(bccb) If D>E, then h(D)=1 and h(F)=3. We
continue quite similarly as in case (bca).
In both cases, all the heavier coins will be found after
at most 4k+2 steps. ‘

(c) A=B, C=D, E i?.
Step 4. (A,0).
(ca) If A<C, then h(C)=h(D)=1 and h(F)=2,
(cb) If A>C, then h(A)=h(B)=1 and h(F)=2.

In both cases, we continue quite similarly as in case
(aa). All the heavier coins will be found after at most 4k steps.

(cc) If A=C, then h(E F)=4. We continue by the
application of a procedure P: 31‘;_1(541:-2) to the set EVF. This

procedure can be constructed by the induction hypothesis. All
the heavier coins will be found after at most 4k+2 steps.
(d) A=B, C=D, E=F. We conclude that h(AVCUE) =
=h (BUDUF)=2,
Step 4. (A,C).

Step 5. (A)E).
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It suffices to consider four cases ((da)-(dd) below);
any other possible case is quite analoguous to one of these
four.

(da) If A=C, A>E, then h(A)=h(B)=h(C)=h(D)=1.

(db) If A<C, A<E, then h(C)=h (D)=h(E)=h(F)=1.
(dc) If A=C, A<E, then h(E)=h(F)=2.
(dd) If A>C, A>D, then h(A)=H(B)=2.

Cases (da) and (db) are quite analoguous to case (bb) and
cases (dc) and (dd) are quite analoguous to case (bcb). In each
case, all the heavier coins will be found after at most 4k+1 steps.

A procedure P4 k(_<_4k+2) is constructed. The theorem is
proved. 2+3

REMARK 2., It is easy to see that the constructed proce

dure, for k>3, is in fact a procedure P4 k(4k+2). For k=1, we
2-3
construct an optimal procedure P4(3) (which is at the same time

an optimal procedure P2(3)). For k=2, our construction gives a

procedure P18(9), because sz 1(<2k 2) in (bcca), sz k=2

+3

(<3k-3) in (bcch) and P k_1(<4k-2) in (cc) become P3(1),
- 2-3 - :

P2(2) and Pg(B) respectively. Since [log3(haﬂ = 8, it remains
an open question whether P18(9) is an optimal procedure.

3. A MODIFICATION OF THE COUNTERFEIT COINS PROBLEM

Suppose that in addition to the given set X={c1,c2,...,cn}
containing exactly m counterfeit coins, we have at our disposal
a sufficiently large number of coins for which we know that they
are all good (not counterfeit). The sets involved in balancing
may contain some additional good coins.

In such a modified problem we use the notation Pém(z)

and u&(n) instead of Pg(z) and y_(n) respectively, It is clear
that uﬁ(n)ium(n).
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THEOREM 3, Let n>4. Then

. [10g3(f;)} <ugn) < 4+ [10g3(2).| .

Proo £f. If n=3¥+3"1 or n=2-3k, k>1, then the state-
ment follows from Theorems 1 and 2.

If 2-3k_1<n<3k+3k-1, we add 3k+3k-1—n good coins to the
set X, and obtain a set X' of 3k+3k_1 coins. Now, for k>2, we

construct a procedure P'ﬁ k—1(i4k) as in Theorem 1. The state-
. +3

ment follows since |-log3(;1)]l4k-—4.

If 3k+3k-1 n 2-3k, we add 2'3k-n good coins to the set

X, and obtain a set X" of 2-3k coins. Now, for k>1, we construct

a procedure P’4 k(i4k+2) as in Theorem 2. The statement follows
2-3 .

since [log3(2)134k—1. (Moreover, 4 may be replaced by 3 as an

upper bound).

REMARK 3. It is easy to see that we need at most n-2
additional good coins if 2-3k-q<n<3k+3k_1, and at most E%E
additional good coins if 3k+3k-1<n<2-3k, for any k.

REMARK 4. The construction of a procedure P3k(3k) (given
3

in [7]) seems to be more complicated than the construction of a

procedure P3k k_1(_<_3k). That is why in the proofs of Theorems
3743

1 and 2, we use some coins already identified as good coins in

order to enlarge the set containing three counterfeit coins.

Instead of a set containing 3k—1 coins, we use an enlarged set

containing 3k-1+3k-2 coins.
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REZIME

CETIRI NEISPRAVNA NOWSICA

Posmatra se problem odredjivanja minimalnog broja mere-
nja dovoljnih za odredjivanje svih neisprawmih nowEiéa u skupu
od n novtidéa, uz predpostavku da su u tom skupu ta¥no &etiri
neispravna. Konstruisan je jedan algoritam koji je optimalamn ili
skoro optimalan za jedan beskona¥an skup vrednosti parametara n.
Za jedan drugli beskonafan skup vrednosti od n konstruisan je
algoritam za koji je maksimalan broj koraka samo za 2 wveéi od
informaciono-teorijske donje granice. Izufavan je, takodje,
neito modifikovan problem, tj. slufaj kada se raspolaie s# iz-
vesnim brojem nowtida za koje sigurno znamo da su isprawmi. Do-
kazi su dati efektivnom konstrukcijom odgovarajuéih alocoritama.



