ONE CONNECTION BETWEEN BINARY AND(n+1)-ARY EQUIVALENCE RELATIONS ON FINITE SETS

Branimir Šešelja, Janez Ušan Prirodno-matematički fakultet. Institut za matematiku 21000 Novi Sad.ul. dr Ilije Djuričića br.4.Jugoslavija

ABSTRACT

In this article we shall prove that every (n+1)-ary equivalence relation on a set S uniquely determines one binary equivalence in the set S $^{(n)}$ of all n-subsets of S, satisfying a special property $((i_n)$, Lemma 2). We shall also prove the converse, i.e. that there is a bijection between these two sets of relations. One of its consequences is (Corallary 11) that every lattice of (n+1)-ary equivalences (or of partitions of type n) the finite set S is isomorphic to the quotient relative to one closure operation on the lattice of binary equivalences (or of partitions of type 1) on S $^{(n)}$.

Since every finite lattice is embeddable into the lattice of (n+1)-ary equivalences ([i]), this also proves that every finite lattice is embeddable into the lattice of binary equivalences, satisfying the property (i_n) (Lemma 2).

In [1] Hartimanis defined a partition of type n, and in [2] Pickett gave a suitable definition of a corresponding (n+1)-ary equivalence relation on the same set. Some characterizations of these equivalences were given in [4]. One class of (n+1)-ary quasiordering relations and a lattice of included (n+1)-ary equivalences were considered in [5] (covering thus the contents of [3]), and the corresponding generalized orderings were discussed in [6]. Some operations on the set of all (n+1) ary relations on $S \neq \emptyset$, inculuding some closure operators, were defined in [8]. In [7], it were proved that every (n+1) ary equivalence can be represented by the system of equivalences of any lower arity.

AMS Mathematics subject classification (1980): Primary 06A15; Secondary 04A05.

Key words and phrases: n-ary relations.

1. An (n+1)-ary relation ρ on the set $S \neq \emptyset$ is (i,j)-reflexive, $i \neq j$, i, $j \in \{1, ..., n+1\}$, iff

$$(\forall a_1, \dots, a_{j-1}, a_{j+1}, \dots a_{n+1} \in S)$$
 $((a_i^{i-1}, a_i, a_{i+1}^{j-1}, a_i, a_{j+1}^{n+1}) \in \rho)^1)$.
 ρ is reflexive iff it is (i,j) -reflexive for all $i, j \in \{1, \dots, n+1\}$, $i \neq j^2$.

2. An (n+1)-ary relation ρ on S is $\pi\text{-symmetric}, \pi \in 1$, ...,n+1}! iff

$$(\forall a_1, \dots, a_{n+1} \in S) ((a_1^{n+1}) \in \rho \implies (a_{\pi(1)}, \dots, a_{\pi(n+1)}) \in \rho).$$

$$([2]) \rho \text{ is symmetric iff it is } \pi\text{-symmetric for all } \pi \in \{1, \dots, n+1\} !,$$

3. An (n+1)-ary relation ρ on S is $i\overline{\mathbb{A}}_1\text{-transitive}^3)$ i ε {1,...,n}, iff

$$(\forall a_{0}, \dots, a_{n+1} \in S) (a_{0}^{i-1}, a_{i}a_{i+1}^{n}) \in \rho \wedge (a_{1}^{i-1}, a_{i}a_{i+1}^{n+1}) \in \rho \wedge (a_{i} \neq a_{k}, \text{ for } j \neq k, j, k \in \{1, \dots, n\}) \Longrightarrow (a_{0}^{i-1}, a_{i+1}^{n+1}) \in \rho).$$

- 4_1 .[1] For set S with at least n elements, the family P_n of subsets of S is a partition of type n, iff
 - (1) each member of P_n has at least n elements, and
- (2) any n different elements from S belong to exactly one number of $\mathbf{p}_{\mathbf{n}}$.
- 42.[2] An (n+1)-ary relation ρ is a generalized equivalence relation of S iff it satisfies:

Eln: (1,n+1)-reflexivity,

E2n: symmetry, and

_E3n: $n\overline{A}_1$ -transitivity.

- 1) a_p^q stands for $a_p, a_{p+1}, \dots, a_{q-1}$, and it is empty when q < p; consequently, a_p^p is a_p , and instead of $a, \dots, a(n \text{ times})$, we write a_p^n ; a_p^n is a_p^n , empty.
- 2) In [2] an (n+1)-ary (1,n+1)-reflexive relation is called "reflexive".
- 3) In [2]: "transitive" stands for $n\overline{A}_1$ -transitive.

PROPOSITION 1. Let S be a finite set, |S| > n, $n \in N$, and let $S^{(n)} = \{\{a_1, \ldots, a_n\} | a_1, \ldots, a_n \text{ are different elements from } S\}$

If ρ is an arbitrary (n+1)- ary equivalence relation on S, let us define a binary relation $\rho_{(n)}$ on $S^{(n)}$: If $A,B \in S^{(n)}$ (1_n) $(A,B) \in \rho_{(n)}$ if $(A \cup B)^{n+1} \subseteq \rho$. $\rho_{(n)}$ is a binary equivalence relation of $S^{(n)}$.

Proof.

1°. $\rho_{(n)}$ is reflexive:

If $A \in S^{(n)}$ then $(A,A) \in \rho_{(n)}$ iff $A^{n+1} \in \rho$. |A| = n and thus $(x_1^{n+1}) \in A^{n+1}$ iff $x_1 = x_j$ for some $i \neq j$, $i,j \in \{1,\ldots,n+1\}$. ρ is (i,j)-reflexive for all $i,j \in \{1,\ldots,n+1\}$ and thus $\rho_{(n)}$ is reflexive.

 2° $\rho_{(n)}$ is symmetric:

If for A,B \in S⁽ⁿ⁾, (A,B) \in $\rho_{(n)}$ then (A U B)ⁿ⁺¹ \subseteq ρ i.e. (B U A)ⁿ⁺¹ \subseteq ρ , and thus (B,A) \subseteq $\rho_{(n)}$.

 3° $\rho_{(n)}$ is transitive:

Let A,B,C \in S⁽ⁿ⁾, (A,B) \in ρ _(n) and (B,C) \in ρ _(n). Then

(a) $(A \cup B)^{n+1} \subseteq \rho \text{ and } (B \cup C)^{n+1} \subseteq \rho$.

Consider now an arbitrary (n+1)-tuple $(a_1^k, a_{k+1}^{n+1}) \in (A \parallel C)^{n+1}$, where $a_1, \ldots, a_k \in A$, $c_{k+1}, \ldots, c_{n+1} \in C$, $k \in \{0, \ldots, n+1\}$. If $a_1, \ldots, a_k, d_{k+1}, \ldots, c_{n+1}$ are not all different, then (a_1^k, c_{k+1}^{n+1})

 ρ , since ρ is (i,j)-reflexive for all i,j. If a_1,\ldots,a_k , c_{k+1},\ldots,c_{n+1} are all different, we proceed in the following way:

Let k=1, and for all $\alpha, \beta \in \{1, ..., n\}$! let $a_{\alpha(1)} \stackrel{\text{def}}{=} \bar{a}_1$, $c_{\beta(1)} = \bar{c}_1, ..., c_{\beta(n)} \stackrel{\text{=}}{=} \bar{c}_n$. Now it follows from (a) that

$$(\bar{a}_1, \bar{b}_1^n) \in \rho$$
 and $(\bar{b}_1^n, \bar{c}_1) \in \rho$,

where $\bar{b}_1, \ldots, \bar{b}_n$ are different elements from B.

Since ρ is $n\bar{A}_1^- transitive$ and symmetric, we get $(\bar{a}_1^-,\bar{b}_1^{n-1},\bar{c}_1^-)\in\rho,$ that is,

(a1)
$$(\bar{a}_1, \bar{c}_1 \bar{b}_1^{n-1}) \in \rho$$
.

From (a) we also have

(a2)
$$(\bar{c}_1, \bar{b}_1^{n-1}, \bar{c}_2) \in \rho$$
.

The transitivity now from (al) and (a2) gives $(\bar{a}_1, \bar{c}_1, \bar{b}_1^{n-2}, \bar{c}_2) \in \rho$, (we can assume here that $\bar{c}_1 \notin \{\bar{b}_2, \dots, \bar{b}_{n-1}\}$, since

 $C \neq B$ and we choose \bar{c}_1) and hence by the symmetry of

(a3)
$$(\bar{a}_1, \bar{c}_1, \bar{c}_2, \bar{b}_1^{n-2}) \in \rho$$
.

Now we can assume that $\bar{c}_1, \bar{c}_2, \bar{b}_1, \ldots, \bar{b}_{n-2}$ are all different (since \bar{c}_2 can be equal to at least one of the n different elements from B and we omit exactly this one, say \bar{b}_{n-1}). We now apply the transitivity on (a3) and on

(a4)
$$(\bar{c}_1, \bar{c}_2, \bar{b}_1^{n-2}, \bar{c}_3) \in \rho$$
 (by assumption (a))

and we get

$$(\bar{a}_1, \bar{c}_1, \bar{c}_2, \bar{b}_1^{n-3}, \bar{c}_3) \in \rho.$$

It is now clear that this procedure in a finite number of steps) gives

(b1)
$$(\bar{a}_1, \bar{c}_1^n) \in \rho$$
.

But if we start with \bar{a}_2 , we get

$$(\bar{a}_2,\bar{a}_1^n) \in \rho$$
 i.e. $(\bar{c}_1^n,\bar{a}_2) \in \rho$,

which, with (b_1) implies $(\bar{a}_1, \bar{c}_1^{n-1}, \bar{a}_2) \in \rho$.

The same application of transitivity, again in a finite number of steps, finally gives

$$(\bar{a}_1^k, \bar{c}_{k+1}^{n+1}) \in \rho$$
,

proving by $\binom{1}{n}$ that $\binom{n}{n}$ is transitive. $\binom{1}{n}$, $\binom{2}{n}$ and $\binom{3}{n}$ prove the proposition completely.

LEMMA 2. Let $\rho, \rho_{(n)}$ be as in Proposition 1., and $A, B \in S^{(n)}$. Then,

$$(i_n)$$
 (A,B) $\epsilon^{\rho}(n)$ iff for all x,y, ϵ (A UB) (n) , (x,y) $\epsilon^{\rho}(n)$.

Proof. If for all X,Y \in (A U B) $^{(n)}$, (X,Y) \in $\rho_{(n)}$, then it is clear that also (A,B) \in $\rho_{(n)}$.

If $(A,B) \in \rho_{(n)}$, and $X,Y \in (A \cup B)^{(n)}$, then

 $X \cup Y \subseteq A \cup B$, $(X \cup Y)^{(n)} \subseteq (A \cup B)^{(n)} \subseteq \rho$, and thus by $(1_n)^{(n)} \in \rho(n)$.

The following proposition describes the blocks of the partition (of type 1) determined by $\rho_{(n)}$.

COROLLARY 3. If $C_{\{x_1^n\}} \in S^{(n)}/\rho_{(n)}, \{x_1^n\} \in S^{(n)}, \text{ then}$

$$C_{\{x_1^n\}} = (UC_{\{x_1^n\}})^{(n)}$$
.

Proof. Let $\{y_1^n\} \in (UC_{\{x_1^n\}})^{(n)}$. Then, $y_1 \in A_1, \ldots$

..., $y_n \in A_n$ for some $A_1, \ldots, A_n \in C$. From $(A_1, A_2) \in \rho_{(n)}$, by Lemma 2., it follows that for some $A_1' \in (A_1 \cup A_2)$ (n), (A_1', A_2)

 ϵ $\rho_{(n)}$, with y_1,y_2 ϵ A_1^{\prime} . Also, since (A_2,A_3) ϵ $\rho_{(n)}$, and since

 $\rho_{(n)}$ is transitive, it follows that $(A_1, A_3) \cdot \epsilon \rho_{(n)}$, and there

is $A_1'' \in (A_1' \cup A_3)^{(n)}$, such that $(A_1'',A_3) \in \rho_{(n)}$, and $y_1,y_2,y_3 \in A_1''$.

Continuing this procedure, we get $(\{y_1^n\}, A_n) \in \rho_{(n)}$, i.e.

$$(\{y_1^n\},\{x_1^n\}) \in \rho_{(n)}$$
, and hence $\{y_1^n\} \in C$.

¹⁾ $\{x_1^n\}$ is the abbreviation of $\{x_1, \ldots, x_n\}$.

Thus,
$$(UC_{\{x_1^n\}})^{(n)} \subseteq C_{\{x_1^n\}}$$
. It is obvious that $C_{\{x_1^n\}} \subseteq (UC_{\{x_1^n\}})^{(n)}$,

and thus the proof is complete.

The following two propositions prove that the connection between (n+1)-ary equivalences on S and binary equivalences on S⁽ⁿ⁾ is in fact a bijection.

Proposition 4. If ρ is anarbitrary (n+1)-ary equivalence relation on S, and $\rho_{(n)}$ is a binary equivalence on $S^{(n)}$ defined in Proposition 1 (with (1, 1)), then

$$(j_n) \qquad \rho = \bigcup_{(A,B)} \bigcup_{\epsilon \rho_{(n)}} (AUB)^{n+1}$$

Proof. (i) Let $(x_1^{n+1}) \in \rho$. If $x_1 = x_j$ for some $i \neq j$, i, $j \in \{1, ..., n+1\}$, then $|\{x_1^{n+1}\}| \leq n$, and let $x \in S^{(n)}$,

 $\{x_1^{n+1}\} \subset X.\rho_{(n)}$ is reflexive, and $(X,X) \in \rho_{(n)}$, i.e.

$$(x_1^{n+1}) \in x^{n+1} \subseteq \bigcup_{(A,B) \in \rho_{(n)}} (AUB)^{n+1}$$

If all $x_1, ..., x_{n+1}$ are different, then $A = \{x_1^n\} \in S^{(n)}$,

 $B = \{x_2^{n+1}\} \in S^{(n)}$ and $(AUB)^{n+1} \subset \rho$. Hence, by (1_n) $(A,B) \in \rho_{(n)}$

and $(x_1^{n+1}) \in (A,B) \in \rho_{(n)}$ (AUB) $(A \cup B)^{n+1}$. Thus, $\rho \subset (A,B) \notin \rho_{(n)}$ (A $\cup B$) $(A \cup B)^{n+1}$.

(ii) Let now
$$(x_1^{n+1}) \in (A,B)^U \in \rho_{(n)}$$
 (AUB) $^{n+1}$. Then,

 $(\mathbf{x}_1^{n+1}) \in (\mathtt{A} \cup \mathtt{B})^{n+1}$, for some $\mathtt{A},\mathtt{B} \in \mathtt{S}^{(n)}$, such that $(\mathtt{A},\mathtt{B}) \in \rho_{(n)}$.

Then by (1_n) $(A \cup B)^{n+1} \subset \rho$, and $(x_1^{n+1}) \in \rho$ i.e.

U (AUB)ⁿ⁺¹ $\subset \rho$. Now (i) and (ii) prove the equality (j_n). (A,B) $\in \rho$ (n).

Proposition 5. Let $\rho_{(n)}$ be an equivalence relation on $S^{(n)}$, satisfying (i_n) (Lemma 2). Then the (n+1) -ary relation ρ on S, defined by (j_n) (Corollary 4), is an (n+1)-ary equivalence relation on S.

Proof. (i) ρ is (1,n+1)-reflexive: For all $a_1,\ldots,a_n\in S$, $(a_1^n,a_1)\in \rho$, since there is $A\in S^{(n)}$ such that $a_1,\ldots,a_n\in A$, i.e. $(a_1^n,a_1)\in A^{n+1}$, and $(A,A)\in \rho_{(n)}$.

(ii) ρ is symmetric:

If $(a_1^{n+1}) \in \rho$ then $(a_1^{n+1}) \in (AUB)^{n+1}$ for some $A, B \in S^{(n)}$ such that $(A, B) \in \rho_{(n)}$, and it is clear that for every $\pi \in \{1, \dots, n+1\}$! $(a_{\pi(1)}, \dots, a_{\pi(n+1)})$ also belongs to $(AUB)^{n+1}$ i.e. to the union in (j_n) .

(iii) ρ is nĀ,-transitive:

Let $(a_0^n) \in \rho$ and $(a_1^{n+1}) \in \rho$, $(a_1, \ldots, a_n$ are all different). Then, by (j_n) and (i_n)

$$(a_0^n) \in (A \cup B)^{n+1}$$
 where $\{a_0^{n-1}\} \subseteq A$, $\{a_1^n\} = B$, $(A,B) \in \rho_{(n)}$.

Then also

$$(a_1^{n+1}) \in (BUC)^{n+1}, \{a_2^{n+1}\} \subseteq C, (E,C) \in \rho_{(n)}.$$

But $\rho_{(n)}$ is transitive, and thus $(A,C) \in \rho_{(n)}$. Hence for every $i \in \{1,\ldots,n\}$ $(a_0^{i-1}, a_{i+1}^{n+1}) \in \rho$, and of course, $(a_0^{n-1}, a_{n+1}) \in \rho$.

We have thus proved that there is a bijection between the set of all (n+1)-ary equivalences on S and the set of binary equivalences on $S^{(n)}$ satisfying (i_n) .

The following corollary is its application to the corresponding partitions, from which one can derive some combinatorial results (concerning, for example, the matroids[9]).

¹⁾ In fact, we have proved that ρ satisfies $i^{\overline{A}}1$ -transitivity.

Corollary 6. Let ρ be an arbitrary (n+1)-ary equivalence relation on S, and $\rho_{(n)}$ a corresponding (in the sense of (1_n)) binary equivalence on $S^{(n)}$. Let $\phi_{\{x_1^n\}} \in S/\rho$ where $Y \in \phi_{\{x_1^n\}} < \frac{\text{def}}{\{x_1^n\}} < (y, x_1^n) \in \rho$. Let also $C_{\{x_1^n\}} \in S^{(n)}/\rho_{(n)}$ Then

a)
$$\phi_{\{x_1^n\}} = UC_{\{x_1^n\}}$$
;

b)
$$C_{\{x_1^n\}} = \phi_{\{x_1^n\}}^{(n)}$$
.

Proof. a)
$$y \in \phi_{\{\mathbf{x}_1^n\}}$$
 iff $(y, \mathbf{x}_1^n) \in \rho$ iff $(by (1_n))$ $(y, \mathbf{x}_1^n) \in (A \cup B)^{n+1}$ and $(A, B) \in \rho_{(n)}$ iff $(by (i_n))$ $y \in A$ and $(A, \{\mathbf{x}_1^n\}) \in \rho_{(n)}$ iff $y \in C_{\{\mathbf{x}_1^n\}}$ b) Let $A \in S^{(n)}$, Then $A \in C_{\{\mathbf{x}_1^n\}}$ iff $(A, \{\mathbf{x}_1^n\}) \in \rho_{(n)}$ iff $(A \cup \{\mathbf{x}_1^n\})^{n+1} \subseteq \rho$ iff $A \subseteq \phi_{\{\mathbf{x}_1^n\}}$ iff $A \in \phi_{\{\mathbf{x}_1^n\}}$.

In the following we shall construct some closure operations on the set of all binary relations on $S^{(n)}$, and we shall prove that if we restrict one of them to the lattice of binary equivalences, the closed elements are exactly the relations satisfying (i_n) .

For an arbitrary binary relation $\rho_{(n)}$ on $s^{(n)}$, $(|S| \ge n)$, define a new binary relation $\bar{\rho}_{(n)}$ on the same set $s^{(n)}$:

 $(X,Y) \in \overline{\rho}_{(n)}$ iff there are A,B \in S⁽ⁿ⁾ such that X,Y \in (AUB) ⁽ⁿ⁾ and $(A,B) \in \rho_{(n)}$.

LEMMA 7. $\rho_{(n)} + \overline{\rho}_{(n)}$ is a closure operation on $P((S^{(n)})^2)$.

Proof.

$$(1)^{\rho}(\mathbf{n}) \subseteq \overline{\rho}(\mathbf{n})$$

Really, if (X,Y) ϵ_{ρ} then trivially (X,Y) ϵ_{ρ} (n) (since X,Y \subseteq XUY).

(ii) If
$$\rho_{(n)} \subseteq \sigma_{(n)}$$
, then $\overline{\rho}_{(n)} \subseteq \overline{\rho}_{(n)}$.

Really, let $(X,Y) \in \overline{\rho}_{(n)}$. Then there are $A,B \in S^{(n)}$, such that $X,Y \in AUB$, and $(A,B) \in \rho_{(n)}$. Then $(since \rho_{(n)} \subseteq \sigma_{(n)})$, $(A,B) \quad \sigma(n)$ and $(X,Y) \quad \overline{\sigma}_{(n)}$.

(n).

(iii) $\stackrel{=}{\rho}_{(n)} = \stackrel{-}{\rho}_{(n)}$;

Really, if $(X,Y) \in \overline{\rho}_{(n)}$, then there are $A,B \in \overline{\rho}_{(n)}$, such that $X,Y \in (A \cup B)$ and $(A,B) \in \overline{\rho}_{(n)}$. But then there are $A_1,B_1 \in S^{(n)}$, such that $A,B \in (A_1 \cup B_1)^{(n)}$, and $(A_1,B_1) \in \rho_{(n)}$. Clearly $X,Y \in (A_1 \cup B_1)^{(n)}$ and hence $(X,Y) \in \overline{\rho}_{(n)}$.

Thus $\bar{\rho}_{(n)} \subseteq \bar{\rho}_{(n)}$, and with (i) it gives $\bar{\rho}_{(n)} = \bar{\rho}_{(n)}$.

LEMMA 8. Let $\rho_{(n)} \in P((S^{(n)})^2)$. Then, $\rho_{(n)}$ satisfies (i_n) iff $\bar{\rho}_{(n)} = \rho_{(n)}$.

Proof. If $\rho_{(n)}$ satisfies (i_n) , then we have to prove the following logical equivalence:

 $(X,Y) \in \rho_{(n)}$ iff there are $A, B \in S^{(n)}$ such that

(1)
$$X,Y \in (A \cup B)^{(n)}$$
 and $(A,B) \in \rho_{(n)}$.

a) \Rightarrow This is trivial: A=X and B=Y; b) \Rightarrow Assume (A,B) $\in \rho_{(n)}$ and (X,Y) \in (AUB) ⁽ⁿ⁾. By (i_n) (X,Y) $\in \rho_{(n)}$. Suppose now that $\bar{\rho}_{(n)} = \rho_{(n)}$. Then (1) holds. If $(A,B) \in \rho_{(n)}$, there are $A_1,B_1 \in S$ such that $A,B \in (A_1 \cup B_1)$ and $(A_1,B_1) \in \rho_{(n)}$. Now let X,Y be two arbitrary elements from $(A_1 \cup B_1)^{(n)}$. Obviously, $X,Y \in (A_1 \cup B_1)^{(n)}$, and thus $(X,Y) \in \rho_{(n)}$, i.e. (1_n) is satisfied.

LEMMA 9. If $\rho_{(n)}$ is an equivalence relation on $S^{(n)}$, then

- a) $\rho_{(n)}$ is a tolerance relation (i.e. reflexive and symmetric) on S $^{(n)}$;
- b) If $\sigma_{(n)}$ is an equivalence relation on $S^{(n)}$, also satisfying (i_n) , and if $\rho_{(n)} \subseteq \sigma_{(n)}$, then $\bar{\rho}_{(n)} \subseteq \sigma_{(n)}$.

Proof. a) $\Delta \subseteq \rho_{(n)}$ (Δ -diagonal on $S^{(n)}$) since $\rho_{(n)}$ is reflexive. By Lemma 7 (i) $\rho_{(n)} \subseteq \overline{\rho}_{(n)}$ and hence $\Delta \subseteq \overline{\rho}_{(n)}$, i.e. $\overline{\rho}_{(n)}$ is reflexive.

 $\bar{\rho}_{(n)}$ is symmetric: if there are A,Be S⁽ⁿ⁾ such that X,Y ϵ (AUB)⁽ⁿ⁾ and (A,B) ϵ $\rho_{(n)}$, then clearly (X,Y) and (Y,X) both belong to $\rho_{(n)}$ (this proves that $\bar{\rho}_{(n)}$ is symmetric, even if $\rho_{(n)}$ is not).

b) By assumption $\rho_{(n)} \subseteq \sigma_{(n)}$, and hence by Lemma 7 (ii) $\overline{\rho}_{(n)} \subseteq \overline{\sigma}_{(n)}$. Since $\overline{\sigma}_{(n)} = \sigma_{(n)}$ (Lemma 8), it follows that $\overline{\rho}_{(n)} \subseteq \overline{\sigma}_{(n)}$.

Since the closure $\bar{\rho}_{(n)}$ does not preserve the transitivity (see Example 1.), we shall define a new operation $\rho_{(n)} + \bar{\rho}_{(n)}$ on $P((s^{(n)})^2)$, as a successive application of the closure defined above $(\bar{\rho}_{(n)})$ and the transitive closure of the binary relations $(\hat{\rho}_{(n)})$, i.e.

$$\stackrel{\Delta}{\rho}_{(n)} \stackrel{\text{def}}{=} (\stackrel{\Delta}{\rho}_{(n)})$$

Also, when applied i times, $\det^{\Delta}_{\rho(n)} = \Phi^{i}_{(n)}$

Proposition 10. For an arbitrary equivalence relation $\rho_{(n)}$ on $S^{(n)}$, the relation

$$\widehat{\rho}_{(n)} = \bigcup_{i \in \mathbb{N}} \widehat{\rho}^{i}_{(n)}$$

is a minimal relation on $S^{(n)}$ which satisfies (i_n) and contains $\rho_{(n)}$ as a subrelation.

Proof. (x) $\hat{\rho}$ is a relation on $S^{(n)}$, since for every $i \in N \hat{\rho}^{(n)}$ is a subset of $(S^{(n)})^2$, and so is their union.

 $(xx) \beta_{(n)}$ is an equivalence relation:

(r)
$$\Delta = \hat{\rho}_{(n)}$$
, since $\Delta = \hat{\rho}_{(n)} = \hat{\rho}_{(n)}$

- (s) From Lemma 9a), and from the properties of the transitive closure it follows that $\hat{\rho}_{(n)}$ and hence $\hat{\rho}_{(n)}$ preserves the symmetry of $\rho_{(n)}$.
- (t) If $(X,Y) \in \widehat{\rho}_{(n)}$, $(Y,Z) \in \widehat{\rho}_{(n)}$, then for some i,j $\in \mathbb{N}$ $(X,Y) \in \widehat{\rho}^{i}_{(n)}$, $(Y,Z) \in \widehat{\rho}^{j}_{(n)}$. If $k=\max\{i,j\}$ both pairs belong to the transitive relation $\widehat{\rho}^{k}_{(n)}$, and thus $(X,Z) \in \widehat{\rho}^{k}_{(n)}$ i.e. $(X,Z) \in \widehat{\rho}_{(n)}$.

$$(xxx) \hat{\rho}_{(n)}$$
 satisfies (i_n) :

If $(X,Y) \in \widehat{\rho}_{(n)}$, then (X,Y) belongs to some $\widehat{\rho}^{\underline{i}}_{(n)}$ i.e. there are $A,B \in S^{(n)}$ such that $(A,B) \in \widehat{\rho}^{\underline{i}}_{(n)}$ and $X,Y \in (AUB)^{(n)}$. The union now has the same property.

 $(\text{xxxx}) \ \widehat{\rho}_{(n)} \ \text{is a minimal equivalence with the property } (i_n) \text{:}$

Let $\rho_{(n)} \subseteq \sigma_{(n)}$, where $\sigma_{(n)}$ is an equivalence satisfying (i_n) . Then by Lemma 9,b), $\bar{\rho}_{(n)} \subseteq \sigma_{(n)}$, and hence $\bar{\rho}_{(n)} \subseteq \sigma_{(n)}$ (the transitive closure). It is the same with the finite application of these operators, i.e. for every $i \in N, \bar{\rho}_{(n)} \subseteq \sigma_{(n)}$ implying $\hat{\rho}_{(n)} \subseteq \sigma_{(n)}$.

Consider now the lattice of all binary equivalences on S $^{(n)}$, <E(S $^{(n)}$), ->.

From the construction, it follows that $\rho_{(n)} + \widehat{\rho}_{(n)}$ is a closure operation in that lattice. The partially ordered set of the closed element is (see, for example, [9]) also a lattice (in general a complete one), so called the quotient relative to that closure operation. We denote it as follows:

$$\langle E(S^{(n)}), \subseteq \rangle \stackrel{\text{def}}{=} \{ \rho_{(n)} | \rho_{(n)} \subseteq E(S^{(n)}) \text{ and } \widehat{\rho}_{(n)} = \rho_{(n)} \}, \subseteq \rangle \ .$$
 (the infimum in that lattice is the same as in $\langle E(S^{(n)}, \subseteq \rangle)$.

 $\label{eq:Let_sigma} \mbox{Let $<$E_{n+1}(S)$, $\subseteq >$ be the lattice of all (n+1) ary equivalences on s^1}$

Corollary 11.

$$\langle E_{n+1}(S), \subseteq \rangle \cong \langle \widehat{E}(S^{(n)}), \subseteq \rangle$$

Proof. From Propositions 1,4, and 5, it follows that the mapping $f: E_{n+1}(S) \to \widehat{E}(S^{(n)})$, such that $f(\rho) = \rho_{(n)}$ (where $\rho_{(n)}$ is defined in (1_n)) is 1-1 and onto. Both f and its inverse preserve the order:

Let
$$\rho, \sigma \in \mathbb{E}_{n+1}(S)$$
, and $\rho \in \sigma$. Then
(a) $(x_1^{n+1}) \in \rho$ implies $(x_1^{n+1}) \in \sigma$.

Since $\rho = \bigcup_{(A,B) \in \rho} (A \cup B)^{n+1}$ and $\sigma = \bigcup_{(A,B) \in \sigma} (A \cup B)^{n+1}$,

(a) is equivalent with

The fact that this poset is a lattice is a trivial consequence of the fact that the poset of all the partitions of type n on S is a lattice.

(b) (A,B)
$$\epsilon$$
 $\rho_{(n)}$ implies (A,B) $\epsilon \sigma_{(n)}$, proving the statement.

Thus we have proved that the lattice of (n+1)-ary equivalences is up to the isomorphism contained in a lattice of binary equivalences as a quotient of a described closure.

We shall finally give an example, illustrating the application of defined closure operations on a binary equivalence, and its connection with the (n+1)-ary one.

Example 1.
$$S=\{a,b,c,d,e\}$$
, $n=2$.
$$S^{(2)}=\{\{a,b\},\{b,c\},\{a,c\},\{a,d\},\{b,d\},\{c,d\},\{a,e\},\{b,e\},\{c,e\},\{d,e\}$$

 $ho_{(2)}$ is an equivalence relation on $S^{(2)}$ which does not satisfy the property (i_n) , and the application of closure operations is illustrated by the table:

The corresponding ternary equivalence p is

$$\rho = d_2 \quad \forall \pi(a,b,c) \ \forall \pi(a,b,d)$$

$$\forall \pi(a,c,d) \ \forall \pi(b,c,d)$$

$$S_0 = \{\{a,b,c,d\},\{a,e\},\{b,e\},\{c,e\},\{d,e\}\}.$$

1)
$$d_2 \stackrel{\text{def}}{=} \{(a_1^{n+1}) \mid a_1, \dots, a^{n+1} \in S \text{ and } a_i = a_i \text{ for some } i \neq j, i, j \in \{1, \dots, n+1\} \text{ (see [5]).}$$

$$\pi(x_1^{n+1}) \stackrel{\text{def}}{=} (x_{\pi(1)}, \dots, x_{\pi(n+1)}), \pi \in 1, \dots, n+1\}! \{ \text{ (see also [5]).}$$

REFERENCES

- [1] Hartmanis, J.: Generalized Partitions and Lattice Embedding Theorems,

 Proc. of Symposia in Pure Mathematics, Vol. II, Lattice Theory, Amer. Math. Soc. (1961) 22-30.
- [2] Pickett, H.E.: A Note on Generalized Equivalence Relations, Amer.

 Math. Monthly, 1966, 73, No. 8, 860-61.
- [3] Ušan, J., Šešelja, B., Vojvodić, G.: Generalized Ordering and Partitions,
 Matematički Vesnik, 3(16) (31), 1979, 241-47.
- [4] Ušan, J., Šešelja, B.: Transitive n-ary Relations and Characterizations of Generalized Equivalences, Zbornik radova Prir.-Mat. Fak. u Novom Sadu, Ser. Mat. 11(1981), 231-245.
- [5] Šešelja, B., Ušan, J.: Structure of Generalized Equivalences contained in (2,nA1)-RT Relations, Zbornik radova Prir.-Mat.Fak. u Novom Sadu, Ser. Mat. 11(1981), 275-286.
- [6] Ušan, J., Šešelja, B.: On Some Generalizations of Reflexive Antisymmetric, and Transitive Relations, Proceeding of the Symposium on n-ary Structures, Skopje 1982, 175-184.
- [7] Sešelja, B., Ušan, J.: On one Representation of Generalized Equivalences, "Algebraic Conference", Novi Sad, 1981. 155-162.

- [8] Ušan, J., Šešelja, B.: On Some Operations on the set $P(S^{n+1})$, Prilozi MANU, Skopje, 1983, (to appear).
- [9] Aigner, M.: Combinatorial Theory, Springer-Verlag, 1979.

Received by the editors June 27, 1984.

REZIME

JEDNA VEZA IZMEDJU BINARNIH I (n+1)-ARNIH RELACIJA EKVIVALENCIJE NA KONAČNIM SKUPOVIMA

Uočena je veza izmedju (n+1)-arnih ekvivalencija na konačnom skupu S, i binarnih ekvivalencija na skupu S $^{(n)}$ svih n-podskupova od S.

Pokazano je da postoji izomorfizam izmedju mreže (n+1)-arnih ekvivalencija i mreže količnika po posebno konstrutisanom zatvorenju na mreži svih binarnih ekvivalencija na $\mathbf{s}^{(n)}$.