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ABSTRACT

In this article we shall prove that every (n+l)-ary equivalence re-~

{n)

of all n-subsets of S, satisfying a special property ((ln), Lemma 2). We shall

lation on a set S unlquely determines one binary equivalence in the set S

also prove the converse, i.e. that there ls a bijection between these two sets
of relations. One of its consequences is {Corallary 11) that every lattice of
(n+1)~ary equivalences {or of partitions of type n) the finite set S is iso-
morphic to the quotient relative to one closure operation on the lattlce of
binary equivalences (or of partitions of type 1) on S(n).

Since every finite lattice is embeddable Into the lattice
of (nt1)-ary equivalences ([1]), this also proves that every finite lattice
is embeddable into the lattice of binary equlvalences, satlsfying the property
(1)) Gemma 2).

In (1] Hartimanis defined a partition of type n, and in [2] Pic-
kett gave a suitable definition of a corresponding (n+l)-ary equi-
valence relation on the same set. Some characterizations of these
equivalences were given in [4] . One class of (n+l)-ary quasior-
dering relations and a lattice of included (n+l)-ary equivalen-
ces wes considered in [5] (covering thus the contents of {3]),
and the corresponding generalized orderings were discussed in [6].
Some operations on the set of all (n+l1) ary relations on S#§ ,
inculuding some closure operators, were defined in [B]. In lﬁ],
it wes proved that every (n+l) ary equivalence can be represented
by the system of equivalences of any lower afity. '
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1. An (n+l)-ary relationp on the set S## is (i,3)-
reflexive, 1 # j, i, je {1,...,n+1}, iff

i-1 j-1 n+1 )

1
(Val,... 1 € S) ((ai 'ai'ai+1'ai'aj+1) €p) .

13410844173

p is reflexive 1iff it is (1,j)-ref1ex1vé for all {1i,je{l,...
ceeomil}, 1 #3523,

2. An (n+l)-ary relation p on S is n-symetric,m € 1,
ee.sn+l}! iff

~ n+l1
(Valy-..,an ea)((al ) € p => (a"(l)r---ra“(n+1))€p)'

+1
(Bﬂ) p is symmetric iff it is n-symmetric for allwe {1,...

weeyn+l} 1,

3. An (n+l)-ary relation p on § is iil—transitive3)

ie{l,...,n}, iff

i-1 n i-1 n+1l
(Vao.....an+1 € s)(a, ,a1a1+1) € p A (a] raja,.3)e p A

i-1 _n+1

(aj#ik, for j#k, j,k € {1,...,n})==>(ao ,ai+1)€ p).

41.[1] For set S with at least n elements, the family

P, of subsets of S is a partition of type n, iff
{l) each member of Pn has at least n elements, and .
(2) any n different elements from S belong to

exactly one number of Pn.

42. [2] An (n+l)-ary relation p is a generalized equiva-
lence relation of 8§ iff it satisfies:
Eln: (1,n+l)-reflexivity,

E2n: symmetry, and

E3n: nEl—transitivity.
q
1) a” stands for ap,ap+1,...,aq_1,
a<p; consequently, ag is ap, and instead of a,...,a(n times),
we write 4 ; 8 is, clearly, empty.

and it is empty when

2) In [2] an (n+l)-ary (1,n+l)-reflexive relation is called "reflexive".
3) In [2] : "transitive" stands for nil—transitive.
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PROPOSITION 1. Let S be a finite set, [S|>n, neN, and let
S(m={{al,...,an’}]al,...,an are different elements from S}

If p 78 an arbitrary (n+l)- ary equivalenée relation on
S, let us define a binary relation P (n) 2" S(n): If A,Bes(n)

. 1
(1) &,Blep . if  AUBRMig.

P (n) i8 a binary equivalence.relation of S(n) .
Proof.

o

17, p(’n) is reflexive:

1f Aes™ then (a,A) € p (n) 1ff AMl e p.|A|] =n and

1

ntl, e APl jee Xy =%y for some 1#3j, 1,7 €{1l,...,n+l}.

thus (x1

P is (i,j)-reflexive for all 4,j €{1,...,n+l} and thus ® (n)
is reflexive.

20
P (n)

1f for A,Bes'™, (a,B) ¢ P(n) them (A U g+l
(B U A)mhls

is symmetric:

cp i.e.
p, and thus (B,A) Cp(n) .

o
3 p(n) is trapsitive.

tet a,B,ces'™, (a,B) ¢ P(ny @4 (B,C) ep . Then
(a) (AU B)n+1 Sp .and (B UC)n+lsp.
Consider now an arbitrary (n+l)-tuple (a’l‘,a;ﬁ) € (n llC)n+l,
where a;,...,a, €A, ¢ 1s---sC ,, €C, k € {0,...,n+1}., If

k _n+l
al"“'ak'dk+1""'cn+1 are not all different, then (al,ck+1)

p, since pis (i,j)-reflexive for all i,j. If Ay reensdy,

Cr41? " 1Cny) are all different, we proceed in the following way:

Let k=1, and for all «, B €{1,...,n}! let aa(l)d; 51
A ’

cB(1)= cl""'cB(n) Sy - Now it follows from (a) that
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‘51'BT)€ 0 and (B?,El)ep,

where Bl,...,b are different elements from B.

n

Since p is nil-transitive and symmetric, we get (51,

B, ¢,) & p, that is,
(al) (3,,8,5] Heo.

From (a) we also have

-1 _
(a2) (cl,b1 ,czyep.

2

’

The transitivity now from (al) and (a2) gives (51,61,52'

c,) € p, (we can assume here that cf{bﬂ""'bn—l}' since

C# B and we choose El) and hence by the symmetry of p
= = = gh-2
(a3) (a;,c ¥Co/B ) € p.
Now we can assume that 61'62'51""'Sn—2 are all different

(since 52 can be equal to at least one of the n different elements
from B and we omit exactly this one, say En-l)' We now apply the
transitivity on (a3) and on

- - §£h-2 -
(ad) (CIIC2,b1 +C3) € p (by assumption (a))
and we get

-— - - - _3_

(al,clpﬁzpbln 1C3) € p.
It is now clear that this procedure in a finite number of steps)
gives

- -n, _
(bl) (al,cl)e p.
But if we start with 52. we get

(52,5?)e p 1i.e. (E?,Ez)é o,

which, with (b)) implies (a,,8} ',3,) € o.

The same application of transitivity, again in a finite number of
steps, finally gives
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=k =n+l
(al.ck+1)e Pe

proving by (ln) that (n) is transitive, 10,20 and 30 prove the

proposition completely.

LEMMA 2. Let P3P ) be as in Proposition 1., and

a,8€35™ . rhen,

(n)

(in) (AIB) ep(n) iff fOI‘ aZZ x,y,e (A U B) I} (X:Y) € O(n) .

Proof. If for all X,Yye (A U B)(n)

then it is clear that also (A,B) e °(n)"

’ (X,Y) €p (n)*

If (A,B) ¢ P(n)’ and X,¥ € (A U B)(n), then

xuvs aUB, (xuv)™a@aue ™so, ana thus by (1)
(X,Y) € p(n)‘

The following proposition describes the blocks of the
partition (of type 1) determined by;%n).

COROLLARY 3. If C e sMy, Axl be s™  ihen
{x?} (n)

)(n) 1)
n} *
1

o] = (Uc
ixl {x

)(n)

{xl}
ceer¥, € An for some Al,...,Ane o] . From (Al'Az) ep(n), by

n
bﬁ

. (n) .
Lemma 2., it follows that for some Ale (Al UAZ) ’ (Al,Az)

Proo f. Let ‘{y?} e (Uc . Then, y, €A, ,...

€ P(ny * with y,,y_ € A] . Also, since (A,,Aj)¢ %n : and since

)
o (n) 18 transitive, it follows that (A1!A3)'e°(n)' agd there

(n)

2

is A" € (Ai Ua

1 , such that (AIIA3) € p(n): and y1:y2:y3eA;.

3
Continuing this procedure, we get ({yT},An) € P(py+ i.e.

({yT}.{xq}) € On) and hence ty? le i ny -
X
1

1) {x?}is the abbreviation of {xl,...,xn}.
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Thus, (UC n )(n)
{xl}

<C . It is obvious that C o (uc )(n)’
n n n
{x} {xl} {x}
and thus the proof is complete.
The following two propositions prove that the conne-
ction between (n+l)-ary equivalences on $§ and binary equiva-

(n)

lences on S is in fact a bijection.

Proposition 4. If p is anarbitrary (n+l)-ary equi-

valence relation on S, and P (n) i8 a binary equivalence on

S(n) defined in Proposition 1 (with (ln)), then

(4. o = o aup™?
n (a,B) €o(n)
n+l

Proof. (i) Let (x1 Y€ p. IEf xi=xj for some

i#3, 1, j€{1,...,n+1l}, then|{ x?+1}|_<_ n, and let Xe s(n),

n+l
1

(xrll.+l) e x1')+1 [

{x } e x.p(n) is reflexive, and (X,X) ep i.e.

(n)’

U (aus)™t!
(r,B)EP

If all XirveosX are different, then A={x1;}-es(n),

n+l

B={xn+1} €S(n) and (AUB)n+1 < p. Hence, by (1_) (A,B)€ p
2 n (n)
n+l € u n+l u 1
and (x;"") (A,B) €p (AUB) . Thus,p = (A,B)ep (a y gyl
(n) (n)
n+1l n+l
(i1) Let now (xl de (A,B)Ue om) (AUB) . Then,
(x;”'l) e (auB)™!, for some a,Bes™, such that (a,B)€ o).
Then by (1 ) (ruB™?! <, and (xr11+1)€ p 1i.e.
u (AU B)™! cp. Now (i) and (ii) prove the equality (3p)

(A,B)ep“.n)_'
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Proposition 5. Let P (n) be an equivalence relation on

S(n)

s satisfying (in) (Lemma 2). Then the (n+l)--ary relation
p on S, defined by (j,)(Corollary %), is an (n+l)-ary equiva-
lence relation on S.

Proof. (i) p is (1,n+l)-reflexive:

For all ays-.esay €S, (a?,al)e p, since there is

(n) n+l

A €S such that a ray €A, i.e. (a?,al)e A , and

1,-.{
(A,A) € p(n) .

(i1) p is symmetric:

n+l

n+l
If (a1

) € p then (al 1 (n)

) € (auB)™?! for some a,Be &P

such that (A,B) ep(n), and it is clear that for every-m e (i,
! n+l
eee,n+l}! (a1ﬂ1)""’aﬂ(n+1)) also belongs to (AUB) i.e.
to the union in (jn).
(iii) p is nil-transitive:
Let (ag) € p.and (alel)ep,(al,...,an are all diffe-

rent). Then, by (jn) and (in)

(@2 ¢ aUB ™ where {al7ll= a, {a]l=B, a,B)e 0 (n) *

Then also
+1 +1 +1
(@l e Buey™, (a3 3=c, (2,0 €0 (ny
But p(n) is transitive, and thus (A,C) ep(n). Hence for every

1

i-1 n+l 1) n-
and of course, (ao ,an+1)€ D

ief1,...,n} (ao R ai+1) € p,

We have thus proved that there is a bijection between’
the set of all (n+l)-ary equivalences.on S and the set of binary

equivalences on S(n)

satisfying (in).
The following corollary is its application to the
corresponding partitions, from which one can derive some com-

binatorial results (concerning, for example, the matroids[9]).

1) In fact, 'we have proved that p satisfies iI-\I—transitivity.
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Corollary 6. Let p be an arbitrary (n+l)-ary equiva-
lence relation on S, and Pn)y ¢ eorregponding (in the aenae
(n)

of (ln)) binary equivalence on S . Let ¢{xn} €S/o where
1

(n)/

def n
Y € ¢{xr11}<=§=>(y,x1) € p. Lat also C{xrll} €S 0 (n)

Then
a) P ny= UC, . n H

{xl} {xl}

(n) ’
b) C,.n, =

{xl}

Proof. a)ye ¢{er1} 1££ (y.x]) ep iff (by (1))
(y,x,™ e (aUB) ™! and (a,B) €0 LEE (by (1))
n
y €A and (A,{xl})e ® (n) iff

y €A and A €C 1ff y e C, ny .
{x]} {x)}

(n)

b) Let A ¢ S . Then A eC{xn} 1ff
1

(A,{xrl‘}) €0 (n) iff (A U{xlll}.)n*-lg p 1ff Ac ¢, ny 1ff
1

(n
A €¢(x%} -
* * *

In the following we shall construct some closure ope-
rations on the set of all binary relations on S(n), and we shall
prove that if we restrict one of them to the lattice of binary
equivalences, the closed elements are exactly the relations
satisfying (in).

For an arbitrary binary relation;%n),on S(n),

({s|> n), define a new binary relation B(n) on the same set
S(n):
‘Ie X,¥ es(®),

(X,Y) ¢ B(n) iff there are A,B es™ guch that X,Y e (AUB) (n)

and (A: B) ep(n) .
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LEMMA 7. p(n) +5(n) ‘i8 a closure operation on

p((s(™)?

).

Proof.

(130 (5)S P (n)

Really, if (X,Y) Ep(n) then trivially (X,Y)e P(n) *

(since X,¥Ys xWy).
(11) I1f D(n) S %(n)’ then P(n) € P(n)"

Really, let (X,Y)e B(n). Then there are A,Be 5™ ,

such that X,Y€ AUB, and (A,B) € p ) - Then (sincep, ) < o))

(A,B) o(n) and (X,Y) 9(n)

oI
-

(141 o) = Pln)

Really, if (X,Y) e ;(n)' then there are A,B€ S(n)' such

(n) = :
that X,Ye (AUB) and (A,B) € 0 (py - But then there}are A ,B

(n) (n)
€S 1)

1
, such that A,B e(A1 UB , and (Al'Bl) €P(n)° Clearly

(n)
1)

X,Y ¢ (A,UB and hence (X,Y) "-‘_’(n)'

Thus ;(n)-c—s(n)' and with (1) it gives ;(n) =5(n)'

LEMMA 8. Let p(n) eP((S(n))z). Then, f (n) gatis-

fies (1n) iff P(n) = °(n)"
Proo f. If P(n) satisfies (in), then we have to
prove the following logical equivalence:

S.(n)

(X,Y) € P(n) iff there are A,Be¢ such that

)(n)

(1) X,Y €(AUB and (A,B) ¢ P(n)*

a) = This is trivial: A=X and B=Y ;
b) =>» Assume (A,B) é.p(n) and (X,Y) € (2UB) (n)_- By (in)

(XIY) € P(n) .



13
8 Branimir Se3elja, Janez UZan

Suppose now that E(n) = fny+ Then (1) holds. If

B e 8™ such that A,Bee (AU B,) (n)

(A,B) ¢ P (n) " there are A ,B)

and (Al,Bl) € p(n) . Now let X‘Y be two arbitrary elements from

(n) (n)

(AiU'B) . Obviously, X,Y e (AluBi) , and thus (X,Y) €P(ny?

i.e. (1n) is satisfied.

LEMMA 9. If P (n) 18 an equivalence relation on S(n),

then

a) i8 a tolerance relation (i.e. reflexive and

)
(n)
symmetric) on S(n);
b) f % (n)
tiefying (in), and if © (n) = (n)* then °(n) = (n)

(n)

18 an equivalence relation on S s also sa-

(n)

Proof. a) AS P(n) (A-diagonal on § ) sin_ce p'(h)

is reflexive. By Lemma 7 (i) o = E(n) and hence 4 S E(n)'

i.e. F(n) is reflexive.

(n)

B(n) is symmetric: if there are A,Be § such that

)(n)

X, Y € (AyB and (A,B) ep(n), then clearly (X,Y) and (Y¥,X)

both belong to P(n) {this proves that B(n) is symmetric, even

if P (n) is not).

h) By assumption p(n) S %(n)” and hence by Lemma 7 (ii)

Pn)S%m)" Since % (n) =°(n) (Lemma 8), it follows that
P(n) €%n)-
Since the closure B(n) does not preserve the transi-

tivity (see Example 1.), we shall define a new operation

R (n),2
P (n) S(n) on P((s'™)

closure defined above (B(n)) and the transitive closure of the

), as a successive application of the

binary relations (p(n)), i.e.
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A def £
p

P (n) )

(n)
A
14

A i
Also, when applied i times, letp(n) = e(n)

Proposition 10. For an arbitrary equivalence rela-

)

tion p(n) on S(n , the relation

~ = U i
P(n) ieN S (n)

(n)

18 a minimal relation on S which satisfies (in) and con-

tains p(n) as a subrelation.

(n)

Proof. (x) 3( is a relation on 8 ', since
n

for every 1 €N %i(n) is a subset of (S(n))z, and so is their

union,

(xx) B(n) is an equivalence relation:
~ o) ~
(r)  8gp(n)+ since &0 () S P (y)
(s) From Lemma %a), and from the properties of the
transitive closure it follows that 3 (n) and hence G(n) preser-

ves the symmetry of P(n)"

n ~
(t) If (X,Y)e ° (n) ,.(Y,Z) €0 (n)’ then for some
1,jen (x,v) € 41 , (¥,2) €fI . If k=max{1i,j} both pairs

(n) (n) h
/ Ak

belong to the transitive relation ﬁk(n), and thus (X,2)e o (n)

o)
i.e. (X,2)€ p(n).

(xxx) ’B(n) satisfies (i ):

If (X,Y) eS(n), then (X,Y) belongs to some
(n)

Al
P (n) i.e.
such that (A,B) € ei and X,Y e(AUB)(n).

The union now has the same property.

there are A,B€S _(n)

(xxxx) ?(n) is a minimal equivalence with the pro-

perty (1n):
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Let ) S %(n)’ where o© is an eguivalence satis-

(n)
. - A
fying (1n) . Then by Lemma 9,b), p(n) [ U(n) , and hence p(n)‘-:—:‘ﬁ(n)

(the transitive closure). Itis the same with the finite applica-
tion of these operators, i.e. for every i € N,‘A,

i ¢ o
; ~ (n} (n}
implying p (n) €°

(n)*
Consider now the lattice of all binary egquivalences

(n)

on S ,<E(S(n)),_>.

From the construction, it follows that p(n)+’6 (n) is

a closure operation in that lattice. The partially ordered set

of the closed element is (see, for example,[9]) also a lattice
(in general a complete one), so called the quotient relative to
that closure operation. We denote it as follows:

def
(n)) (n))

<E(S , € >= {p(n){p(n)sa(s and ’p‘(n) = p(n)},5> .

(n)

(the infimum in that lattice is the same as in <E(S ,=>).

Let <En+1(S) » € > be the lattice of all (n+l) ary

1)

equivalences on S
Corollary 11.

(n)

e
<En+1(s)’ < > 2 <E(ST), = >

Proof. From Propositions 1,4, and 5, it follows

(n))’

that the mapping f£: E 1(S) ~E(s such that f£(p)

=P (m)
(whare ® (n) is defined in (ln)) 4s 1-1 and ontc. Both f and

+

its inverse préserve the order’ :

Let p,0 € En l(S)’ and p € o. Then

+
(a) (xln+l) € p implies (xxlu'l) € 0o,
= u n+l1 = U (a y Byl
Since p (A:B)Ep(ngA U B) and o (A,B)€.c(n) ) ’

(a) is equivalent with

1) The fact that this poset is a lattice is a trivial consequence
of the fact that the poset of all the partitions of type n on
S is a lattice.
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(k) (a,B) e P (n) implies (A,B) €0 nyr

proving the statement.
Thus we have proved that the lattice of (n+l)-ary
equivalences is up to the isomorphism contained in a lattice
of binary equivalences as a quotient of a described closure.
We shall finally give an example, illustrating the appl-
ication of defined closure operations on a kinary equivalence,
and its connection with the (n+l)-ary one.

Example 1. S={a,b,c,d,e}, n=2.

(2)

s = {{a,b},{b,c},{a,c},{a,d},{b,d},{c,d},{a,e},

{b,e},{c,e},{d,e}

(2)

P(2) is an egquivalence relation on § which does not sati-

sfy the property (in), and the application of closure opera-

tions is illustrated by the table:

P2y {a,b} {b,c} {a,c} {a,d} {b,d} {c,d} {a,e} {b,e} fc,e} {d,e}
{a,b} 1 1 I
{b,c} 1 1 I 1T
{a,e} 1 1 I11
{a,d} I II 1 1
{b,a} 1 1
{c,d} ITI 1
{a,e} 1
{b,e} . 1
{c,e} 1
{4,e} 1
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A
1:p ’ I:S , IX:p ’ III:é =p =‘B .
(2) (2) (2) (2) F(2) (2)

The corresponding ternary equivalence p 1is

p = dz‘ uUn(a,b,c) y.v(a,b,d)

1)
yn(a,c,d) gy nib,c,d)

S/p ={{a,b,c,d},{a,e}, {b_le} {c,e},{d,e}}.

1)

=

lirh

{(a!lﬁ'l) Ial,...,am'1 € s and a;=a, for some i#9,

1,3 € {1,...,n+1} (see [5]).

n+1) def

“(xl (x"(l),oo-'x“(n_'_l))l m € 1'---,n+l}l{ (See

also [5]).

REFERENCES

(1]

(2]
(3]
(4]

(5]

Le]

[7].

Hartmanis, J.: Generalized Partitione and Lattice Embedding Theorems,
Proc, of Symposia in Pure Mathematice, Vol. II, Latt-
tce Theory, Amer. Math.Soe. (1861) 22-30.

Pickett, H.E.: 4 Note on Generalized Equivalence Relations, Amer.
Math.Monthly, 1966, 7?3, No. 8, 860-61.

U3an,J.,Se3el ja,B. ,Vojvedié,G. : Generalized Ordering and Partitions,
Matematidki Vesnik, 3(18) (31), 1979, 241-47.

U%an,J.,%e%el ja,B. ;Transitive n—ary Relations and Characteriaations
of Generalized Equivalences, Zbornik radova Prir.-Mat.Fak.
u Novom Sadu,Ser.Mat. 11(1981), 231-245.

SeZelja,B.,U8an,J.: Structure of Generalized Equivalences contained
in (2,nA1)-RT Relations, Zbornik radova Prir.-Mat.Fak.
u Novom Sadu,Ser.Mat., 11(1881), 275-286.

U%an,J.,%e%el ja,B. :0n Some Generalizations of Reflexive Antisymmetric,
and Transitive Relations, Proceeding of the Symposium
on n-ary Structures, Skopje 1982, 175-184.

Se3elja,B.,U%an,J. :0n one Representation of Generalized Equivalences,
"lgebratie Conference"”, Novi Sad, 1981. 155-162,



14
One connection between binary.... 3

(8] uzan,J.,%e3elja,B.: On Some Operations on the set P(Sn+1),PriZoai
MANU, Skopje, 1983, (to appear).
[8] Aigner,M.: Combinatorial Theory, Springer-Verlag, 1979.

Received by the editors June 27, 1984,

REZIME

JEDNA VEZA IZMEDJU BINARNIH I (n+1)-ARNIH
RELACIJA EKVIVALENCIJE NA KONACNIM SKUPOVIMA

UoZena je veza izmedju (n+l)=-arnih ekvivalencija na
kona&nom skupu S, i binarnih ekvivalencija na skupu S(n) svih
n-podskupova od S,

Pokazano je da postoji izeamorfizam izmedju mreZe
(n+l)-arnih ekvivalencija i1 mreZe koli&nika po posebno konstru-

isanom zatvorenju na mreZi svih binarnih ekvivalencija na
(n)
S .



