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ABSTRACT

A cyclic square (C-square) is a matroid with exactly
four cyclic flats, which are not all in the same chain. In
this paper we give formulae for the number of all, the number
of self-dual and the number of binmary non-isomorphic C-squares

on an n-set.

PRELIMINARIES

An n-set is a set of cardinality n.

The cardinality of a set X is denoted by "[X|".

The whole part of a real number X is ‘denoted by
"x)e. [x] = [x] 4 1

Given k,n € N, the remainder of n, when divided by
k, is denoted by "restk(n)".

We assume familiarity with the notions "graph",
"vertex", "edge", "cycle" (the last three notions are related
to graphs), "lattice", lattice isomorphism", "chain" (type
of lattice).

AMS Mathematics subjeet classification (1980): 05835
Key words and phrases: Matroid, cycléc flat,'cyclzc square
(C-square), self-dual matroid, graphic matroid.
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An n~cycle is a cycle with (exactly) ‘n  edges.

An n+cycle is a cycle with at least n edges.

A loop of a graph is a l-cycle.

A bundle is a set B of edges of a graph, such that
each two edges of B constitute a 2-cycle.

The lattice q<:;> is denoted by '“Lo".

A matroid M on a finite set (the ground-set of M)
S is an ordered pair (S,f), where f is a function, which
maps the set 2S into itself and satisfies the following
conditions for each X, YC S and for each x,y € S:

(1) X C £(X)

(2) XC Y => £(X) C £(¥)

(3) f(E£(X)) = £(X)

(4) ye€ f(xUx\EEX =>x¢e £(xU y)

The set f(X) is the closure of the set X.

A flat of M is a subset X of S, which satisfies
f(X) = X. Two matroids are isomorphic if there is a bijection
between their ground-sets, which preserves their flats.

let Xo be the unique minimal flat of M (= the
intersection of all flats of M) and let

XOC: XIC: “an C:Xh =X

be a chain of flats of M with the property that there does
not exist a flat Y of M satisfying X CyYCXx; for
ahy i, 1 <i < h. Given the flat X, it is well-known ([9])
that the number h does not depend on the choice of chain.
We write

rank(X) = h
where the function "rank" is defined only for flats.

If X is an arbitrary subset of S, then we extend
the definition of rank with
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def
rank(X) = rank(f(X))

A subset X of S 1is independent in M if it sa-
tisfies rank(X) = |X|, otherwise it is dependent.

A base of M 1is a maximal independent set of M.
All bases of M have the same cardinality, which is called
"rank of M",

A circuit of M is a minimal dependent set of M.

A loop of M is a circuit of cardinality 1.

A flat of M is cyclic if it is also a union of
circuits. All the cyclic flats of M constitute a lattice
([6]), ordered by inclusion, which we call the CF-lattice
of M. Each finite lattice is the CF-lattice of a matroid
(.

It is well-known ([9]) that the complements with
respect to the ground-set § of all bases of a matroid M
are the bases of another matroid M* on S, which is called
the dual matroid of the matroid M. The same assertion holds
when the word "bases" is replaced by "cyclic flats" ([1]).
However, the cyclic flats themselves determine (uniquely up
to an isomorphism) a matroid on S only provided that their
ranks are given. Consequently, if we want to construct the
matroid M* by use of cyclic flats of M and their ranks,
then we need the formula which connects the rank-functions

of M* and M ([9]):

rank* (S\X) = |S| - rank(S) ~ |X| + rank(X)

It is obvious that (M*)}* = M.

A coloop of M is a loop of M*.

A matroid is self-dual if it is isomorphic to its
dual matroid.

Given a graph G, it is known ([9]) that the cycles
(polygons) of G are the circuits of a matroid on the_édge—
-set of G. This matroid is called the polygon~matroid of G
and is denoted by = "M(G)". The graph G is a graphical
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representation of M(G). A matroid is graphic if it has a

graphical representation.

If X 1is a subset of the edge-set of G, then rank(X)
in M(G) is determined as the maximal number of edges of X
which do not "completely cover™ a cycle of G.

A C-chain (cyclic chain) is matroid M which
satisfies:

If F1 and F2 are two different cyclic flats of
M, then either Flc: F2 or FZC: Fl
CF-lattice of M 1is isomorphic to a chain).

(equivalently, the

A C-square (cyclic square) is a matroid which has

exactly four cyclic flats, two Of which are incomparable by
inclusion (equivalently, the CF-lattice of which is isomorphic
to Lo).

REMARK: Graphic matroids are special binary matroids
(for the definition of binary matroids see,e.q., Eﬂ). However,
it is routine to show, in the same way as for C-chains in [2],
that each binary C-square is also graphic. Thus a C-square is
binary if and only if it is graphic.

INTRODUCTI ON

C-chains are considered in paper [2] and, although not
explicitly, in Dﬂ and Eﬂ, p.-67. They are a very "natural®
class of matroids; this can be seen from the fact that there
are exactly 2" non-isomorphic C-chains on an n-set. The
number of all, the number of self-dual and the number of
binary non-isomorphic C-chains on an n-set are given in [2].
It is also proved, in that paper, that all C-chains are
transversal and, in addition, that all C~sguares are trans-
versal (for the definition of transversal matroids see, e.g.,
4] or [B]).

' This paper is a complement to paper [2]. We shall
solve here three problems for C-squares, which are analogous
to the first three problems solved for C-chains in [2]; that is,
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we shall enumerate all, self-dual and binary non-isomorphic
C-squares on an n-set.

Our interest in C-squares is threefold.

Firstly, C-chains and C-squares predominate among the
"small" matroids on at most 7 elements: all matroids on at
most 3 elements are C-chains; all matroids on at most 5
elements are C-chains or C-squares; among 474 non-isomorphic
matroids on at most 7 elements ———— only 107 are neither
C-chains, nor C-squares. However, when the non-isomorphic
matroids on an 8-set are considered, then the situation is
completely different: there are only 256 C-chains and 219
C-sguares among 1724 ([i]) such matroids.

Secondly, C-squares are'interesting, together with
C-chains, because of their relation to transversality. The
lattice L° is the first one beside the chains of all lengths,
which is known that, in the role of the "algebraic foundation”
of the CF-lattice, "guarantees" the transversality of the
corresponding matroids. Equivalently, chains and Lo are the
first examples of so-called Tr-lattices, which are
considered in the paper [{] and it seems natural to
start exploring Tr-lattices exactly from these two types of
lattices.

Thirdly, the enumeration of C-squares gives a good
insight into the complexity of enumeration of those non-iso-
morphic matroids, the CF-lattices of which are isomorphic to
a fixed lattice. The lattice Lo is the "simplest" lattice
different from a chain. However, although the class of
C-chains is by far more general and contains by far more -
matroids than the class of C-squares, nevertheless the enume-
ration of all non-isomorphic C-squares is by far more difficult
than the enumeration of all non-isomorphic C~chains. Almost
the same can be said for the enumeration of the self-dual
matroids in these two classes.
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A PARAMETRIC DESCRIPTION OF C~-SQUARES

C-squares can, similarly as C-chains in Eﬂ, be
completely (up to an isomorphism) determined by some numerical
parameters.

Six characteristic flats, the cardinalities and ranks
of which completely determine the corresponding general
C-square M, are denoted by the following diagram:

The set S 1is the ground-set of M. The cyclic flats
W and Z are 1 and 0 of the CF-lattice of M respecti-
vely, while the cyclic flats A and B are the "flanks" of
that lattice. The set T is equal to A () B. The elements of
the sets 2z and S\W are the loops and the coloops of M
respectively.

The denotations of the cardinalities and ranks of the
six considered flats are given in the following table:

set Z T A B W S
cardinality z i a b u n
rank 0 t P q w r

The dotted lines in the diagram denote that the flats S
and W, respectively, the flats T and 2, may coincide. If

this is not the case, then the flat S, respectively, the flat
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T, is a non-cyclic flat of the matroid M. This implies that
the cardinality differences on the intervals [W,S] and
[2,T] are equal to the corresponding rank differences, which
gives the equa;ities

n-u=r-w and i-z=1t

We may eliminate, for example, the parameters 1
and u. A C-square is completely determined by the remaining
nine parameters: z, t, a, p, b, g, w, n, r.

Since the "flanks" A-and B are in symmetric positions,
we may -assume, without any loss of generality, that p < gq
and that

P=4g implies a < b.

These denotations will be used in the next two sections.

THE NUMBER OF ALL C-SQUARES

THEQREM 1. The number 5Q(n) of non-isomorphic

C-squares on an n-gset is given by the formula:

8 7

_ 1 5 4 +
5Q(n) = Tgifﬁﬁ(n + 8n

+ 14n6 - 28n~ - 196n - 448n3 _

+ 496n2 + 1728n + 0, for n even )
- 134 + 468 + 315 , for n odd

(The coefficients of the last three summands depend on the
parity of n, while the remaining summands are common for

both cases).

Proof. We primarily determine the formulae for
the number of non-isomorphic C-squares of fixed rank and
cardinality of the ground-set, with which § = W (in this way
we fix the parameters n,r and also w = r, after which
there remain only six "partially free" parameters: z, a, b,
t, P, 4). We consider, in particular, the symmetric (p = q)
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and the non-symmetric case (p < q) (thus the symmetry is based
on the equality of "flank" ranks).

We denote the corresponding number of non-isomorphic
C-squares with fixed n and r =w by §r(n) and ﬁr(n),

respectively.
def D
LEMMA 1.1 Let £(n) = 7§ i. Then
j=1 i=1
= pHg-r
N_(n) = ) f(n+t-p-g-1)
p+a>r t=0 ‘
1<p<g<r-1

P roof of the Lemma. We primarily, also, fix the
parameters p,q,t and introduce the denotations

h1 =a-z- (p+1) , hz =b -2z - (q+1)

The values of h1 and h2 are non-negative, for the
cardinality difference on an interval between some two
neighbouring cyeclic flats in the CF-lattice must be strictly
greater that the corresponding rank difference (the last
observation is an easy consequence of the definitions, it
should be applied to the intervals [ Z,A] and | z,B]
respectively).

Using the relations

laNsBl + [AaUB| =a +b ; [ANB| =2z +t ;

fAaUB| <n; a=2z2+p+ by +1; b=z+q+h, +1,

we derive the inequality
z +’h1 + h2 <n+t-p-qg-2

We denote shortly the right-hand side of it by "d".

Each of the parameters z,hl,h2 may have any integer
value between O and d inclusively, provided that the above
condition for z+h1+h2 is satisfied.

We conclude that the number F of non-isomorphic
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C-squares with fixed parameters n, r=w,p,q,t with which
p < d, equals the number of nonnegatiwve integer solutions of

0<z + h1 +h, <d

2

Namely, the role of the parameters a and b, for
enumeration purposes, can be fully performed by the parameters
h1 and h2. We must make a distinction between 'hl and h2
because of the permanent assumption that p < g. The existence
of C-squares with each particular ordered triple (z,hl,hz) of
parameters which satisfy the above inequality follows from the
fact that, when constfucting a C-square with the parameters
given above, each of d "free elements” may be either added
to the zero, or to a "flank" or not be used at all. On the
other hand, it is clear that the matroids with mutually dif-
ferent numerical parameters cannot be isomorphic.

An elementary calculation gives that

d L. d+l  j+1
F=_20()2)=_§1211=‘f(d+1)=f(n+t—p-q—1)

We have 1 < p < g < r-1 and because of the submo-
dular law for the rank-function (see,e.g., [4] or [9])

0 <t < ptg-w = pig-r

(we also have the condition p+g > r as a consequence).

Thus the given formula for ﬁr(n) arises primarily
by summing the expressions F for all possible values of t,
while p and q are fixed and, after that, by summing over
all ordered pairs (p,q) in the permissible area, which depends
on r. O

def 1 1 i+
Lewma 1.2, zet  g(m) 2T Y Li-%—lj
S j=1 i=1

r-1 2p-r
: § g{n + t - 2p - 1)
r+1, t=0
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Proof of the Lemma. We just have to point out
the differences from the previous, non-symmetric case

If p=g, then 4+ 1=n+t-2p -1 and
p+4qg-r=2p-r, while the area {(p,q)|1 < p < q < r-1A
Ap+q > r} becomes the interval ({p| l_%—lj <p <r-1} .

The main difference is that the roles of the parame-
ters h1 énd h2 do npt differ in the symmetric case.
Consequently the number G of non~isomorphic Casquares with

fixed parameters n, r =w, p = g, t, equals 2 gj, where
j=0

9 is the number of different non-negative integral solutions
of the eguation
z+h1+h2=J

under the condition that the solutions, which can be obtained
from each other just by the transposition of the values of f1
and h2, are considered to be equal.

] j+1
mos gy - ) 2221

z= i=1 2
d+1

Hence G = ] g, = g(d+1) ,
j+l=1 J

which implies the quoted formula for §r(n). O

Proof of the Theorem (continued). We shall use
the following denotations for the numbers of non-isomorphic
C-squares of special types on an n-set:

8Q(n) = the number of all C-squares
N(n) = the number of non-symmetric C-squares (p < q)
S(n) = the number of symmetric C-squares (p = q)

Nr(n) = the number of non-symmetric rank r C-squares

Sr(n) = the number of symmetric rank r C-squares

ﬁ;(n) = the number of non-symmetric C-squares of rank r,
which satisfy S = W

§;(n) = the number of symmetric C-squares of rank r,

which satisfy S = W.
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We primarily sketch the main steps.of the proof.
It is clear that

SQ(n) = N(n) + S(n)
On the other hand -

n-2 n=2
N() = } N_(n) and S(n) = ] s_(n)
r=3 r=2

Namely, the rank of a C-square on an n-set belongs
to [2,n-2] (there is a positiwve rank increase on each
elementary interval of the CF-lattice, which is strictly
smaller than the corresponding cardinality increase). Both
the flanks of a rank 2 C-sguare are of rank 1. It follows
that all such C-squares are symmetric.

We further observe that

Nr—l(n_l) + Nr(n) and

Nr(n)

Sr(n) = Sr_l(n—l) + Sr(n)

These equalities are the consequences of the bijec-
tion between all those rank r C-squares on an n-set, which
satisfy S # W and all rank (r-1) C-squares on an (n-1)-set.
This bijection is established by deletion (respectively, by
addition) of one coloop.

The last two recurrence relations immediately give:

N _(n) =
£ 3

It =~
il e~

Nj(n-r+j) and Sr(n) =

§.(n-r+j)
3 3 J

2

Finally, the formulae for ﬁr(n) and §r(n) which
are given by Lemmas 1.1 and 1.2, should be applied.

* * * * *

If £ and g denote the auxiliary functions,
which are introduced in the lemmas, then we observe primarily
that for n € N
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2

f(n) = %(n3 + 3n“® + 2n) ;

3 + 9n2 + 10n I 27 for n even

_ 1
g(n) = 55(2n ! for n odd ’

24
We denote these two polynomial formulae by T(n)

and g(n), respectively.
We find and, later on, use the auxiliary sums of

the forms
T 3
I ok, 0 <3 <7 ;
k=1

n n 3

7 ok, 0<j<3 7] kK3, 0<jy<3
k odd T k even
k=1 k=1

(the expression for the last two types of sums depend on
the parity of n). '

ptg-r
We find the expressions +? f(n +t-p~qg-1)

t=0
2p-r
and ? g(n + t - 2p - 1) in the developed forms.
. +=0 .
The (dewveloped)sums of the form ‘ )) piq:l .
p+q>r
1<p<g<r-1
r-1 .
0 < i+j < 4, respectively, of the form I pl,0<3<a,
_1r+l
p=|~5"]

are substituted into these expressions (these later sums are
among the auxiliary sums for the evaluation of the former).
let E = {(p,q)|{p,q € NU{O} A p+q > T A
Al <p <q<r-1} .
We use the following development:

15 erlj i . r-1 i TP .
plad = § ot § el s D - ¢S S
(p,q)€EE p=1 k=1 g r+l k=1

p‘l 2 J

In order to find 30 such sums (15 for r even and
15 for r odd), we find primarily the auxiliary sums of the:
form
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r=1
L 2 3 r-1 3

X P . Z P” . oijis

=1 r+l

P p= |-

(separately for r even and r odd), and the sums of the
form
, ‘ rp
§ (x-x)3 , ) (r-k)j r 0 <34
k=1 k=1

The evaluation of coefficients gives:

I _ 1 6 5 4 - 3004 + 84 2 + 48_+ O
Nr(n) = iﬁﬁﬁ(-a4r + 252r™ - 45r° _ 360° + 174F + 108° - a5 *
5 4 3 + 360__2 - 32 + 0 2 4
+ 192nr” - 480nr" + 20nr” | ,onrT _ 1oAY _ 4N 150n"r" +
2.3 22-1202_ + 02 33 3.2 3+
+ 300n"r” + 60n r _ 300" ¥ + 90" + 40n"r” - 60n"r - 40n"r

+ 0.3 , r even )

+ 60 R r odd
oL -1 .05 4 + 30 3 - 120 2 + (48,-42)_+ 0
S.(n) = 3545 (~78xr" + 165r" | Lor” _ Slox" | 18 A

4 3- 60 2+ 60 _+ 0 _ 2.3 2.2 +
+ 165nr° - 240nr” _ o X 5, Nr _ g0 120n"r~ + 90n"r"
+ 30.2_+ O ? + 30n3r2 + 0.3 , r even

+ 120" T - 9o -3" | r odd '

EXPLANATIONS: If a summand has two alternatives for
its coefficlients, then the upper. one relates to the case when
r 1is even, while the lower one relates to the case when r
is odd. If a coefficient is replaéed by an ordered pair of
numbers, then the first (respectively, the second) element
relates to the case when n 1is even (respectively odd). Such
denotations are also used with the formulae which follow.

The addit¥onal indices I are introduced since the
above formulae for Nr(n) and Sr(n) are valid for
n > 2r-4 only. The reason is that
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f(n) # £(n)

]
o

for n < -3 and

1}
=]

for n < -4 , while

g(n) # g(n)

for relatively large values of p and gq the functions f
and g in the formulae for ﬁr(n) . and §r(n), respectively,
have negative arguments smaller than -2, respectively -3.

The 'summands with the smallest arguments in the deve-
lopments of N (n) and S (n} a£g f(n-2r+2) and g(n-2r+1),
respectively. This 1mplies that- N (n) = N (n) and E:(n) =
= Sr(n) if and only if n-2r+2 > 72, respectively
n-2r+l > -3, that is, in both cases for n > 2r-4.

We define the two sequences of natural numbers:

def 3

w(n) = z(n

2 0, n even def 1. + 0, n even
1,

+
*2n ). odd)r Y = 3" L ead

It is easy to show that

_ 2r-2
N.(n) = } w2r-1-k£f(n-k)
k=r+l1

2r-1

§.m) = ] y(r-klgh - k)
k=r+1

Using this, and also the relations
F(-n) = -T(n-2) ; g(-n) = -g(n-3)

we find that the functions ﬁr(n) and S (n) in the area
{(n,r¥]n,r € NA r+2 < n < 2r-4} should be represented by
the transformed expressions ﬁil(n) and SiI(n), where

ﬁi{n) = ﬁi(n) +A_(n) ; §£I(n) =‘§i(n) +B_(n) ,
while
2r-4~-n
A ()= J w2r-3-n- FIE(F)
j=1
2r-4-n

I  y2r-3-n- 933
j=1

Br(n)
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The evaluation gives the formulae:

4 + 180 3 - 124 2 - 48_ +

WT(n) = ogpp(aar® - 132r° +735c® | 10003 T 12002 T 1o T
I Egi;?é) - 192nr° + 480nr? - 1d0nr3 - iggnrz r 172 nr t ign +
+ 330n2r4 - 660n2r3 + 180n2r2 I 2;8 2r : ginz - 280n3r3 +
+ a20n%c? - son’r ] ®0n? + 120n*r? - 120n"r + sn* - 24071 4
+12m° + 20 ¢ I even,
i = gt < et B0 Dt D R -
- 75nr? + 240nr3 - lggnrz . 18gnr I (;;?:i;)n + 120n%e3 -
- 270022 7 0% F 9002 - gon?e? + 12007 T 003 + 30nr -
- 15n? - a° rorosEn

The formulae for N (n) and Sr(n) also appear in
two forms: Nr(n) and S (n) for n > 2r-4, respectively
(n) and S (n) for n < 2r-4, This difference is a
consequence of the corresponding difference with the formulae
for ﬁr(n) and §r(n). Namely:

r r
NI(n) = ) Wi(n - r + ) sl(n) = ) St -+ 3)
r - j r j=2 3
n-r+4 r
NiI(n) = ) Nl(h - r + j) + ) 8 ltn-r+ )
j=3 J j=n-r+5 J
n-r+4 r
SE,I(I.I) = 3 I(n-r+J) + ) "II(n—r+J)
j=2 j=n-r+5

The evaluation gives:
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‘N

+ +

++

SI
r

+ +

+

+

+

+

I
r

]

i(n)

5

(-256r’ + 308r° + 1316r

1
40320

812 2 + 144 5

+ 0
1442 + 564t

- 31§ - 504nr

+ 616nr6

1344
2604"

nr2

0

336
- 420n

1596

2

- 504n%r°

3

+ 140n r4

2 - 3362

+ 0.2
- 1596"

2
840n"r + 630n

r

4 - 180

(n) = gmes(- 84r® + 36r° + 375r

576

(144,-36)
84

0

+ (135,45) + 30nr

r + 192nrs

2

- 120n r3

88
448"

+ 0n

30

2

150n r4

3.3

40n"r 32

+ 60n"r 3

- + ’
40n7r _ o, . r

7 5.2

(-4n’ + 56nr - 336n°r

40320

1176nr® + 256r’ - 14n°

2240n3r3 4

3150n2r? + 2184nr° - 588:°

3.2

1680n°r 3

5

2380n%r> + 1680nr?

~ 476r

2

3360n°r? 3

4 -
+ 224

3500nxr~ + 1365r

364 3 476 2 + 1568nr - 1092 2 + 144
s6° + 154" + 308 - 462% - 276"

I 6 _ 24n°r + 120n%r?

_ 1
(n) = 3555 (2n

192nr° + 44:° + 6n° - eonr + 300n3r2

3 3r - 270n2r2

156xr~ - 25n4 + 160n

- 540

2 +300.3+ 682~
- 720°F

184
+ 360 - 112"

300_2
480"

+ 210n“r

- 560n°r

- 120%

4

+ 330n"r

+ 1120n r

+ 168n r - 840n'r

196n3 r iggnZI

- 280n"r

+ 160nr3

+ 176"T

1204 3 +

4
1435r 1624F &+

+
+

3

- 2800nr? + 2100nr

2 4 2

+ 2100n r3

3.2 + even

odd

0 3,

+ 420" )

[4

3 + (-156,—246)r2
+ (-426,-336)

+ +

3 0+ 180nr

+ 0

+

- 640nr +

2.2 - 60n2
+ 120

0 .2
n

+

r_ 180" %

r even)

odd

4 3 3

- 2100n r4

+

4 2 .

4

+ 56ns - 560n r +

3

+ 175n% - 1400n3r +

- 10082 +
+ 252°F

144
+ 276%

+ (0,315), r even
+ (-315,0),r odd

3.3

+ 330n2r4

2 3

- 600n"r 4

+ 510nr

4 - 60_3 +
- 120" +

25r

+ (116 ,26)
+ (- 154 —64)

2 +

+

)
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+ (144, 54)n 144 + (0,~-45) , «r even)
+ (114,24) + (- 204,-24)T + (135,0) , r odd

REMARKS : It is convenient to use the substitution
d = n - r when counting N (n) and Sil(n).

We observe an interesting regularity with the dif-
ferences between "alternative coefficients":

The differences between the upper and the lower coeffici-
-ents beside J (1,J €N, 0 <i+j < 3) ' coincide
within each of the pairs of functions- (N (n), I{n)),
@), 855, whm), M), (i), sI (). Moreover,
this coincidence extends to all the four functions beginning
in "N", respectively "S" after the divisors in front of the
brackets are taken into account.

* * * *

We find the formulae for N(n) and S{n) by summing
through both the areas (n > 2r-4 and n < 2r-4):

ln+4
n=2 II
N(n) = 2 N (n) + ) N_"(n)
r=3 re= n+6
r=|>>]
ln+4J _
_ n=-2 IT
S(n) = { st () + I s (n)
r=3 r_ln+6

We denote the sums in these expressions by NI(n)
and NII(n), respectively, by SI(n), and S 7 (n).
We need the following auxiliary sums for this summation:

n+4
l J . n-2 .
23 , ¥ ] r, 0<j<7 and also
r= n+
==~
[n+4 [n+4
. n-2 . n-2 P
r. , Z _r]' E rJr 2 rJr 0 <j<3
r ‘even J r odd r even r odd
r=2 r=3 ) r=[n+6 ln+6
2
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The expressions for the last four types of sums
depend on rest4(n), and so the same holds for the sums NI(n),
NII(n), SI(n), SII(n). However, we find it interesting that

after the summing N(n) = NI(n) + NII(n) and S{(n) = SI(n) +
SII(n), the differences between the cases rest4(n) = 1 and
rest4(n) = 3, respectively, between the cases rest4(n) =0

and rest4(n) =2 » disappear completely, while the dif-
ferences between the cases n even and n odd remain only
with the coefficients beside nz,n,l (this last difference
with N(n) only). When the formulae for NI(n), NII(n),
SI(n), SII(n) are considered, however, then the differences
exist with all the coefficients beside 1,n,n2,...,n7.

We have the following formulae as a result:

_ 1 8 7 _ 6 _ 5 4 3 _
N(n) = Tgiiga(n + 4n 28n 98n~ + 2?4n + 616n

_ 2 - 1152 + 0 , n even
312n" _ "5%2™ 4315 , n odd
_ 1 7 6 5 _ 4 _ 3+
S{(n) = T€T5§§(4n + 42n° + 70n 420n 1064n~

+ 1008n2 + 2880n , n even)
+ 378 + 990 , nh odd

REMARK: Almost all non-isomorphic C-squares on a
fixed large ground-set are non-symmetric, since N{(n) is
given by the formula of a higher order than the formula
for Ss(n). .

The required formula for SQ(n) is obtained by summing
the last two formulae. O )

We shall give a list of the valued of the function
SQ(n) for n between 1 and 24 (inclusively). These values )
are in order:

0, o, o, 1, 6, 25, 80, ’ 219,
530, 1171,‘ 2400, 4630, 8484, 14886, 25152, 41130,
65340, 101178, 153120, 227007, 330330, 472615, 665808, 924781.
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THE NUMBER OF SELF-DUAL C-SQUARES

THEOREM 2. There are war(n® + 4n> - 4n® - 16m)
non-igsomorphic self-dual C-squares on an n-get, for each

even n.

Pr oo f. First of all, it is obvipus that there
are no self-dual matroids on odd ground-sets.

Iet SS(n) and NS(n), in this order, denote the
numbers of non-isomorphic self-dual C-squares on an n-set,
with which a = b, respectively a < b (we could call these
self-dual C-squares symmetric, respectively non-symmetric,
but this time the symmetry is based on the eguality of flank
cardinalities).We shall show that the above partition of
self-dual C-squares is in accordance with the general assump-
tion that p < q, for the following implication holds with
self-dual C-squares:

p<g=>acxb

Let there be given a self-dual C-square, which is
determined by the parameters 2z, t, a, b, p, 4, u, n, r. The
self-duality gives some additional connections among these
parameters:

The complement of the zerd of a C-square is the unit
of the CF-lattice of the dual C-sgquare. This gives the con-
nection 2z + u = n, in the self-dual case, and we use it to
eliminate the parameter u.

There are two possibilities for the ."flanks" A and
B of a self-dual C-square M on S: when establishing an
isomorphism with the matroid M", they can be mapped (in or-
der) either to the "flanks" S\A and S\B (Case (1)) or to
the "flanks"™ S\B and S\A respectively (Case (2)).

Case (1): The equalities. |a| = |s\a|l and

B| = |$\B| glve a=b=1
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Case (2): The equality |A| = |s\B| implies
a+b =n, Besides, we have

rank (3A)

o
il

rank® (S\B) = |S| - rank(s) - |B| + rank(B) =

=n -

[M}-)
[}

b+q=%-b+q(

If p = q, then this case also gives a =b = ;.

Case (2) ig the only possible one for a < b,
Case (1) is the only possible one for a =b and p < g.
For a=b and 'p = q there can be realized any of the
Cases (1) and (2).

Suppose that a > b. Then we have Case (2) and it
follows

a>b=>%>b=>%—b+q>q=>p>q,

which contradicts the general assumption p < q.

REMARK: The necessary equality [A () B| = |(s\a)(
N(s\B)| is always satisfied, since |[AUB| + AN B| =
- (al + 8 = Is].

LEMMA 2.1, PFor each even n € N,

32 -
SS(n) = z Z (p+q +z - % + 1)
z=0 15p§q<r—21'-z
P25z

Proof of the Lemma. Since symmetric self-dual
C-squares satisfy a =b =r = %, it follows that only four
"partially free" parameters remain for a fixed n: z, p, q, t.
We change primarily (one value after another) the parameter
t for z, p, g fixed, then p and g for fixed 2z, and
finally z.

The rank of the gset A|J B is % - 2z, It is obvious

that t < p-1 and the submodular law implies.
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0<tx< p+q-'(2 - 2). Since g+l ¢ D.z implies

N

p~-1 > ptg- (— - z), it follows that the first restriction for
t is superfluous and there exist p + g - f + 2z + 1 possi-
bilities for t, when the parameters z, p and g are fixed.

It is easy to check that the only restrictions for
the parameters p and g, when z is fixed, are

l1<p<gqc«< % - z and ptq > % -z

Finally, rank(W) =5 - z > 2 implies 0 <z <3 ~ 2
{condition z < n-4, which can be derived by comparing cardi-
nalities, is superfluous, for n > 4 implies % - 2 < n-4).

This completes the formula for SS(n). O

LEMMA 2.2. For each even n € N,

2.3 o
2 z a-z-1

NS(n) = J§ I ] @p-a+2z+1)
2=0 a=z+2 p=ra-z

2

Proof of the Lemma. Since the equalities
b=n-a, g=p=-3+b=p+3

N3

-a, w=n-2 and r = %
are valid in the non-symmetric case, we can again leave only
four "partially free" parameters, for example, z, a, p, t.
We change primarily the parameter t for =z, a, p fixed,
then p " for fixed =z and a, after that a for fixed z
and finally =z. '
 The restrictions for t are t < p-1 and

0 <t <p+g - (% -z)=p + (p-a+ g) - % +z=2p-a+z

Since  a-z > p+l implies 2p-a+z < p-1, it follows
that the first restriction for t is superfluous. Thus
there exist 2p - a + z + 1 possibilities for t, when the
parameters z, p, a are fixed.

The used restriction for t has the inequality
0 < 2p-a+z as.a consequence, which implies p > 555. The
parameter p also satisfiles the restriction p < a-z-1
(because of ramk(A) < |A\Z]).
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Since a < b implies a < %, we conclude that the

only restrictions for a, when z 1is fixed, are

z+2<a<z-1

—The last prolonged inequality implies the restriction

0 <z < % - 3 for the parameter z. The Lemma is proved. O

In what follows we shall transform the expressions
given in Lemmas 2.1 and 2.2 into formulae of a polynomial type:

LEMMA 2.3,

- _1 4 3 2 _ + 0 , for (n/2) even
SS(n) = 5gg(n’ + Bn™ + Bn™ - 32n _ .0 " o (h72) odd )

for each natural number n.

Proof of the Lemma, We introduce the substitution
d=2- 2. We denote
: 2
D

= {(p,QIP)g €NA 1 <p <q<dA ptq > d}

n
2
Then SS(n) = § J(p+qg-4+ 1
d=2 D
. = 1,42 +0, d even
We find gl—4(d_1'dodd)
_1,.3+0 , 4 even 1 3 _ 2 2. + 0 d even
EP_E(d—d d oda 'r 19 ==3g(58 - 38" "3 137 3 c4q

This implies

Je+a-a+1 =224 +3a% - 24
D N

The summation with respect to d gives the result. O

LEMMA 2.4,

2+ 0, for (n/2) even

1.4
NS (n) = -
nl = oyggn - 1607 L 48 ! for  (n/2) odd )

for each even natural number n.
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Proof of the Lemma. We introduce the substitu-
tion h =a ~- z - 1 in the expression for NS(n), which is
given in Lemma 2. Thus the expression is transformed into

2
] (2p - h)
z=0 h=1 _l’h+l-l
p=1=7"
n n
h 5-2-2 -i-3
We denote 1 by 1, ) by ], and ] by 5.
h+1 h=1 z=0
p=[=].

Using the auxiliary sums:

= L *
y'1 1 =5t

0 , h even
2 1

+
hoda 't 1P =g g

22 1= %(n -4) -z ;

22 h = %(nz— 6n + 8) + %(-n + 3)z + %22 ;

I, 0% = 2hm? - 9n® + 26n - 24) + L5(-3n% + 180 - 26)z2 +
+ %(n - 3)z2 - %z3 ;

23 1= %(n - 4) ; 23 z = %(n2 - 10n + 24) ;

I, 2% = 55m? - 150% + 74n - 120)

3

- 20n3 + 148n? - 480n + 576)

!
we obtain the above formula for NS(n) simply. O

The proaf of Theorem 2 is completed by summing the
expressions given in Lemmas 2.3 and 2.4,

The differences between the cases rest4(n) = 0 and
rest4(n) = 2 disappears after this summing and so we obtain
the unigue polynomial formula for each even n. O

REMARK: We observe that NS(n) = SS(n-2) for each
even n > 2. It wouid be interesting to establish the cor-

responding one-to-one .correspondence.
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THE NUMBER OF GRAPHIC (= BINARY) C-SQUARES
1,3 2
THEOREM 3. There are E(n - 8n“ + 21n - 18) non-
-tgomorphic graphic (= binary) C-squares on an n-get. (n > 2)

LEMMA 3.1. The polygon-matroid of graph G 118 a
C-square if and only if all the 2+cycles of the graph G
appear in one of the following combinations:

a) two edge-disjoint bundles with x and y edges,
regpectively

b) one 3—cycle, two‘edges of which are replaced by
bundles with x and y edges, respectively

c) one bundle with x edges and one 3+cycle with
y edges, which are mutually edge - disjoint

d) - two edge-disjoint 3+cycles with x and y edges,
regpectively

e) two 3+cycles with x and Y edges respectively,

which have exactly one edge in common.

Proof of the Lemma. Cases a) and b) correspond
to the situation when both "flanks" are of rank 1. The closure
of their union is a rank 2 cyclic flat. This closure is in
the graphic case either equal to the union of the "flanks"
(case (a)) or has just one element more (case (b)).(*)

Case ¢) relates to the situation when one "flank" is
of rank 1, while the other' one is of a higher rank.

If both "flanks" are of ranks higher than 1, then
each of the corresponding sets contains, beside the loops,
the edges of a 3+cycle. Let these two cycles be denoted
by C and C2 and the set of all loops by . 2. The cycles

1

C1 and C2 either have no common edges (case (d)) or have

exactly one common edge (case (e)). Namely, if C1 and C2

(*) the only possibility . to add an edge to a set of e&ges

without raising the rank of the set i8 to close a cycle.
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have more than one common edge, then the set
((CllJ Cz)\(c1 N c,)) U 2 is a cyclic flat, which is not
comparable with any of the cyclic flats CI{J Z and CZL} z.
In this case, however, the corresponding polygon-matroid is
not a C-square. O .
Proof of the Theorem. Let a graph G, with n
edges, have 2z 1loops and t edges, which do not belong to
any cycle. These two kinds of edges, respectively, correspond
to the loops and coloops of the polygon-matroid M(G). If x
and y have the same meaning as in the assertion of Lemma
3.1., then it is easy to show that the number of non-isomorphic
graphic C-sqguares on an n-set, which correspond to the cases
a) - e), is equal to the number of (different) integral non-
-negative solutions of the following equations, which satisfy
the corresponding restrictions:

equation restrictions
a) x+y+z+t=n xX>2, yY2>x
b) XxX+y+z+t=n-1 X222, y2>x
c) X+y+2z2+t=n x>2, y>3
d) x+y+2z+t=n x>3, y2>x
e) x+y+2+t=n+1 x>3, yY>x

Case c) is unique in that it is the only case in
which the variables x and y play different roles. It
follows that they are mutually independent, which immediately
gives that the number of solutions in that case is equal
to (°3%).

We denote the number of different solutions in case a)
by F(n). It is easy to check that the numbers of different
solutions in cases b), d) and e) are given by F(n-1), F(n-2),
F(n-1), respectively. In order to determine the function F(n),
we divide (n;;) integral non-negative solutions to the
equation x +y + z + t =n, withwhich x>2 and y > 2,
into three pairwise disjoint classes, depending on which of
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the relations x >y, x =y and x <y 1is satisfied. Let the
number of different solutions in these classes be denoted by
K(n), L(n), K(n), respectively. It is easy to find that

mn)=%m-m2 for n even and
L(n) = %(n - 1)(n - 3) for n odd. Hence we have
+

According to Lemma 3.1., the required number of non-
—isomorphic graphic C-squares on an n-set can be found as

™33 4+ Fa) + 2F(m -~ 1) + F(n - 2)

This sum does not depend on the parity of n and
equals the polynomial in the assertion of Theorem 3. O

REMARK: It is easy to prove that K(n) = F(n - 1),
n > 1.
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REZIME
O PREBRAJANJU CIKLIZKIH KVADRATA

Cikli&ki kvadrat (C-kvadrat) je matroid sa ta&no &e-
tiri cikli&ka potprostora, koiji nisu svi u istom lancu. U
ovom radu dajemo formule za broj svih, broj samodualnih 1
broj binarnih neizomorfnih C-kvadrata na n-skupu.



