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ABSTRACT

The main result of this paper is contained in the Lemma,
in which a sufficient condition is given such that all positive

- -

decreasing solutions of equation y = f(x)y are slowly or
rapidly or regularly varying functions.By using the Lemma some In-

equalities for the solution of the above equation are obtalned.
1. INTRODUCTION
The asymptotics of solutions of the equation
(1.1) y77 = £f(R)y
with f(x) continuous and positive for x > 0 has been thoroughly
studied by a large number of authors (Cf. e.g. [1], [2], [3]1).

Among the wealth of results, we quote the following three as
typical - at least for our purposes:
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PROPOSITION 1. ([1, Ch. IV, Th. 14 ]).
If

JI£7 )£ (1) |at < =
a

then the equation (1.1) has a fundamental eystem of solutions
satisfying, for z + «,

y(x) v £ (x) exp(s [ £¥(t)at)

(1.2)

vo(x) v £ (x)e exp( [ £¥2(t)dt) .

e~ X p ~— X

PROPOSITION 2. ([2, Ex. 9.9.b]).
If

o0
[ 2P 1P ryat <
a

8

for some p € [1,2] then the eéuation (1.1) has a fundamentul
8yastem satiefying, for x + =,

x vy (x)
y(x) ~ exp(- [ t £(t)dt), = 0(1/x)
y(x)
(1.3) 2
x vy (x)
y(x) ~ texp( [ t £(t)dt), ~ 1/x.
a yix)

PROPOSITION 3. ({4, Satz 23]).
Let o > 0; if
o
[ t1£e) - F2) at <
a
then equation (1.1) has a fundamental system of esolutions satis-—
fying for x + =
B.=1

. B
y(x) v x T, y7(x) ~ Byx T, i=1,2,
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where B; are roots of the equation r(r-1) = a.

Obviously, the conditions of Proposition 1 - 3 differ
strongly among each other but lead to the same type of conclu-
sions. Is there any intrinsic reason for that or, in another
words, what would be the relations - if any - between the clas-
ses of functions satisfying the conditions? It is also a natu-
ral question whether one could equélize the requirement imposed
on function f(x) in the above propositions by relaxing these,
yet still obtain some information about the asymptotics of
solutions.

At it is pointed out by Omey [5], the behavior of x2f(x)
is crucial in that respect. (For a result in a somewhat similar
direction, cf. Read [6]).

We shall also assume that %i&xzf(x) = ¢ exists as a fi-
nite or infinite one, and show that the set of all positive
decreasing solutions of (1.1) can be split into three disjoint
subsets, according as ¢ = 0, ¢ = @, or ¢ € (0,»).

The properties pertinent to asymptotics of functions
belonging to one of these classes differ essentially from the
ones belonging to the other two. This enlightens the first prob-
lem. As for the second, we derive, using the previous fact, some
asymptotic properties of the solutions in question.

To formulate our results we need the notion of slowly and
regularly varying functions as introduced by Karamata [7] and of
rapidly varying functions as introduced by Bekessy [8]. These
classes of functions are of increasing use in analysis and in

stochastic processes in general.

DEFINITION 1. A positive continuoue function L défined
on (a,») 28 said to be slowly varying (s.v.f) at infinity if for
all t > 0

L(tx)

1lim =1,
x+»o L{x)
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DEFINITION 2. A funetion g of the form
glx) = x®*L(x), & real

18 8s8aitd to be regularly varying (o-r.v.f) at infinity with the

regularity index a.

DEFINITION 3. A positive continuous function g defined
on (a,») is said to be rapidly varying (r.v.f) at infinity if
for all t > 1

g(tx)

lim =0, or = =,
x»  g(x)

Positive functions tending to positive constants or iterated
logarithmic functions are examples of s.v.f and interated expo-
nential functions are the ones of r.v.f The fundamental proper-
ties of s.v.f and of o-r.v.f can be found in [9] and those of

the r.v.f in [8]. Among these we need the following

PROPOSITION 4. Let g(x) be positive and differventiable,
for x > 0 and put
xg (%)
lim ———— = &3
x+e  g(x)
then g(x) t8 slowly, regularly, rapidly, varying according as
2 =0, R =c, (0 < ¢ < ™), & = #ow,

DEFINITION 4. A function g(x) is said to be almost
increasing tf there exists a constant A > 1 such that x2 < X1
imites g{x2) < Ag(x1); almost decreasing functions are defined

likewise.

The fact that g(x) is almost increasing to infinity
or almost decreasing to zero for x + «» will be denoted by

g(x)~E7 =, glx)~g 0, respectively.
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Throughout the paper all minorizihg constants are deno-
ted by the same letter m, and the majorizing ones by M, unless

their exact values are needed.

2. RESULTS

We consider positive decreasing solutions y(i) of (1.1),
which always exist [ 10 Th. 1] . Since f(x) > 0, y(x) are also
convex and y(x) + ¢ (2 » 0) and y“(x) + 0,

The following result is fundamental:

LEMMA. Let
(2.1) x*f(x) +¢c, x -+ o

then all positive decreasing 8olutions of (1.1) are 8slowly or
raptdly or regularly varying functions, wtth index

a) ¢ =0, b) ¢ = =, e) c € (0,=),

PROOF. a) By integrating both sides of equation (1.1)
over (x,=), using (2.1), and since y(x) is decreasing, one
obtains for each ¢ > 0 and x @ x,(¢)

-xy “(x)
0 € ——————n. g ¢
y{x)
and Proposition 4 applies with £ = 0.
b) From (1.1) we derive, using (2.1), b)

‘ kx : .
- 2A (kx)
(2.2)  y*2(x) >2 [ £)y(e)(=dy) > 2 vy - (Ly(m-m
X

with an arbitrary large A, and for x > x,(A2). On the other hand

we have . kx 1 1
€2.3) - y7Go) 2yt [ £(0)At > Ay (k) - )

X



6 V. Marié¢, M. Tomié

Now, for each sequence {xn} such that y(kxn) = O(y(xn)),

inequality (2.2) implies for x > xo
-xy“(x)
(2.4) —_— 2 A
y(x)

where A& is arbitrarily large. Also for any other ‘sequence {in}
for which, on the contrary, there holds y(kin) > my(in), m> 0,
the inequality (2.3) leads to the same conclusion as before.

Thus for all x, there follows - xy (x)/y(x) + ©, x » o
and Proposition 4 appliés with & = =,

c) We first show .that y(x) is regularly varying and
then determine the index.

First of all - xy“(x)/ y(x) is bounded. By using (2.1),

c¢) and arguing as in part b), one obtains for x > xq

-xy " (x)
<c+ e,

y(x)

On the other hand
® y(t)
y23x) 2 (c-¢e) - (-y“(t))dt, x 2 xo
t
b'd

or by partial integration, and since y{(x) decreases

y2(x)  y(x) © y(x)
y2(x) > (c - e){ - i dt} .

2 2
2x b4 x t
But
* y(t)
- [ ——dt 3 (c - e)y"(x)
t2
X
80 that the previous inequality reduces to
y(x) c-g y2(x)
vy 2(x) - ‘ > 0.

y - ee——
2 X

2x

Hence, y“(x) being negative,
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-xy “(x)
——— ((2¢ + 1 - e)ll2 - 1) >0, X Xy

Nl

>
y(x)

Thus the quotient under consideration is bounded, and
if it is also monotone, it tends to a positive limit. If it os-
cillates, we use the following device of Omey (loe. eit.): From
(1) there follows

Xy o (B ye o (D - xrr(x)
y y y
so that at the points of extrema X, of - xy“(x)/(y(x)) one has
<5§:)2 - <§§:) - x£(x) = 0.

Thus, because of (2.1), ¢) for x = X, there holds

-xy~° . vIthc - 1
y 2

s n -+ o«

again -xy“(x)/ y(x) tends to a positive limit for x + «. Whence,
by Proposition 4, y(x) is regularly varying of index -qg which
is. negative since y(x) -+ 0; accordingly, by Definition 2,

(2.5) y{x) = x %L(x).

To determine the index we proceed as follows:

- yix) = x IO £7T0 L (tx)dt, x + e,
1
where L,(z) = zzf(z)L(z) or by applying Th. 2.6 of [ 9]

c 4
- yUx) v — X TTL(x), x + .
a+l

By repeating the procedure one gets

o]
y(x) & = ——— x %L{x), X + w
ala+l)

and so a(a+l) = ¢, due to (2.5). The positive root of this equa-
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tion gives the wanted index.

REMARK. The corresponding linearly independent soluti~"
ons y(x) tend to infinity for x + « in all cases a), b), c).

In the firstbone, these are the regularly varying of
index one, in the second one of index 1 + vI+hkc. This is obtai-
ned by using

X
F(x) = y(x) [
a

dt

y2(t)

and by applying the L°Hospital rule to the quotientv

X dt

[ vy

a % .
¥Z{x)

In the third case, y(x) are again rapidly varyihg which is obta-
ined as in the case of y(x), with only the first part of the proof
needed.

2.1, Asymptotic estimates. It is now possible to obtain, almost
as corollaries of the Lemma, some inequalities for solutiong of
(1.1) which are less precise than (1.2) and (1.3), but require

milder hypotheses.

THEOREM 1. For any poeitive decreasing solution y(x)
of (1.1}, the condition

(2.6) - x2£(x) \2‘0, X > o

implies that there exist a @ X9, 6 > 0 8uch that

X @ X &
(2.7) exp(- [ f £(u)du dt) < y(x) < exp(-(1 -8)[ [ flu)du dt)

at at

and condition
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(2.8) X f (X)L yo, X + @

implies that there exist a @ x,,6 > 0 such that
‘ b4
(2.9) y(x) < exp(- M [ /I(TY dt).
a

PROOF. The left hand side inequality in (2.7) follows
trivially by integrating '
-;5(’;-%3‘—)- < [ f(t)dt
X
over (a,x).
To prove the right hand'sidg one, notice that (2.6)
implies k flkx)/ £f(x) < A/k, whence for sufficiently large k

kx ® ©
(2.10) [ f(t)at = [ £(t) {1 -k FEP }dt > (1 - £)f £()ae.
X X X .

On the other hand,

: kx
-y (x) (kx) :
(2.11) . -%(—;T—>¥T;5—I f(t) at.
x-

But y(x) is, due to Lemma 1, a s.v.f 8o that y(kx)/ y(x) =+ 1,
X + » so that (2.10) and (2.11) together give for x » X

-]
- vy (x) A
-—Ly(v> (1 - E)(i + €) I f(t)dat
. X .
and the result follows by integrating over (a,x) as before.
Inequality'(2.9) is an easy consequence of the Lemma.

For,
T kx
“2(x) > [ £( 2(eyyat > mEGOyi(x) {1 - LK)
y X I t)y(t)("y t))dt mri{x)y (x % .
Cx 7
Thus

-y )(cX) >n /TxX), x > X,
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since y(kx)/ y(x) + 0, x + =, y(x) being a r.v.f due to the
Lemma. The result now follows by integrating the last inequality
over (a,x).
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REZ IME

O TRIHOTOMIJI RESENJA LINEARNE DIFERENC|JALNE
JEONAZ INE DRUGOG REDA

Osnovni rezultat ovog rada je sadr¥an u lemi, u kojoj
je dat dovoljan uslov takav da sva pozitivna opadajuéa resenja
jedna&ine y“” = f(x)y su sporo ili brzo ili regularno promen-
1jive funkcije.. KoriS€enjem leme dokazane su neke nejednakosti

za redenje gornje jednadine .
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