ZBORNIK RADOVA Prirodno-matematičkog fakulteta Univerziteta u Novom Sadu Serija za matematiku, 14,2 (1984) REVIEW OF RESEARCH Faculty of Science University of Novi Sad Mathematics Series, 14, 2 (1984)

A NOTE ON THE CONVOLUTION OF FUNCTIONS WITH COMPATIBLE CARRIERS

Stevan Pilipović

Prirodno-matematički fakultet. Institut za matematiku, 21000 Novi Sad, dr I. Djuričića 4, Jugoslavija

ABSTRACT

In this paper the relations between the notion of $A(M_p)$ -compatibility and the convolution of smooth functions which satisfy suitable conditions of growth are investigated.

1.

Let f and g be locally integrable functions with A = supp f and B = supp g. If the sets A and B are compatible ([1]) i.e.

(1)
$$x_n \in A, y_n \in B, |x_n| + |y_n| \to \infty \iff |x_n + y_n| \to \infty,$$

then the convolution

$$(f*g)(x) = \int f(x - t)g(t)dt, x \in R,$$

exists in $L_{loc}^1(R)$ ([1], 3.2.1 Theorem).

Let A be a subset of R such that for every sequence (x_n) from A there are a sequence (\bar{x}_n) from A, $\delta > 0$ and a sequence of

AMS Mathematical Subject Classification (1980): 46F10. Key words and phrases: $A(M_p)$ -compatibility.

positive numbers (ϵ_n) such that

(*)
$$|\mathbf{x}_n - \overline{\mathbf{x}}_n| < \delta$$
, $n \in \mathbb{N}$; $\mathbb{U}[\overline{\mathbf{x}}_n - \varepsilon_n, \overline{\mathbf{x}}_n + \varepsilon_n] \subseteq \mathbb{A}$

(A denotes the interior of A and N is the set of natural numbers).

In this case we say that A satisfies condition (*).

Let us remark that if A is the support of a continuous function not identically equal to zero, then A satisfies (*). More generally, the support of a function of a locally bounded variation on R which is not identical to zero almost everywhere on R, satisfies condition (*). This follows from the fact that functions of locally bounded variations have no more than countable discontinuiteties.

In this note we shall prove that if A and B are subsets of R which satisfy condition (*) and if for every two smooth functions ϕ e D_A and ψ e D_B (see part 4), the convolution $\phi*\psi$ is a continuous function, then the sets A and B are compatible.

If locally integrable functions f and g belong to some subspace M of $L^1_{loc}(R)$, there is a question whether f*g belongs to M. In our investigations on the convolution in the space of generalized functions of $\mathcal{K}'\{M_p\}$ -type ([4], [5]), we obtain, particularly, the following result: If f and g are functions from $L^1_{loc}(R)$ such that for some p e N. f/M_p and g/M_p , are essentially bounded functions on R and such that the supports of f and g are $A_{max}(M_p)$ -compatible, then the convolution f*g exists and represents a locally integrable function such that for some p1, $f*g/M_p$ 1 e $L^\infty(R)$ 2. (Definitions of the spaces $\mathcal{K}\{M_p\},\mathcal{K}'\{M_p\}$ and of the notion of $A_{max}(M_p)$ -compatibility are given in [5].

If for a locally integrable function f there exists $p \in N$ such that f/M_p belongs to $L^{\infty}(R)$, we shall call this function an M_p -function.

We denote by MC the set of all the continuous functions which are M_p - functions or derivatives of the first order of M_p -functions on R.

In this note we shall prove the following assertion: Let

A and B be subsets of R which satisfy condition (*). If for any two smooth functions from K_A and K_B (see part 5), respectively, the convolution belongs to MC, then A and B are $A_{max}(M_p)$ -compatible.

2.

First, we shall recall from [5] the properties of a sequence ($M_{
m p}$) and a set A, which we shall assume in this article.

 $(M_p(x))$ is a sequence of even continuous functions on R such that:

- (2) 1 $\leq M_p(x)$, x e R, and $M_p(x)$ increases to infinity as $x \leftrightarrow \infty$, pen.
- (N'). For every p \in N , there is p' > p, p' \in N, such that $M_p/M_p \in L^1$ and $M_p(x)/M_p(x) + 0$ monotonically as $x \to \infty$; (L¹ is the space of Lebesque integrable functions.)
- (3) For every $p \in N$ there are $p' \in N$ and $C_{p,p'} > 0$ such that

$$M_p^2(x) \le C_{p,p} M_p(x) \text{ for } x > C_{p,p}.$$

We shall denote by A the set of non-negative functions defined on R^+ , bounded on bounded domains, directed according to the ordinary relation \leq (i.e. for every f and g from A there is an h e A such that $\max\{f(x),g(x)\} \leq h(x)$, $x \in R^+$) such that:

- (A₁) If a non-negative function ϕ defined on R⁺ satisfies the inequality $\phi(x) \leq \psi(x)$, $x \in R^+$, for some $\psi \in A$, then $\phi \in A$;
- (A₂) There are $\phi \in A$ and $x_0 \ge 0$ such that $\phi(x) \ge x$ if $x \ge x_0$;
- (A₃) For every ϕ 6 Å , m 6 N and n 6 N there is ψ 6 Å such that $m\phi(x+n) \le \psi(x)$, x 6 R⁺. (N₀ = N U {0}.)

We suppose that (M_p) and A satisfy the following condition:

(S) For every p \in N and $\phi \in$ A there are p \cap \in N and $x_{p,p}$ > 0 such that

$$M_p(\phi(x)) \leq M_p(x) \text{ if } x > x_{p,p}$$

Condition (S) implies the following one:

(4) For every p \mathbf{e} N , there are \mathbf{p}' \mathbf{e} N and $\mathbf{x}_{\mathbf{p},\mathbf{p}'}$ > 0 such that

$$M_p(px) \leq M_p(x) \text{ if } x > x_{p,p}$$

If (S) holds for (M_p) and A, we shall denote A by A (M_p) . From (4) it follows:

(5) For every p e N, there are p and $x_{p,p} > 0$ such that

$$M_p(x) \le M_{p'}(x-t)M_{p'}(t)$$
 if $x > x_{p,p'}$ and t e R.

As in [4] , we say that sets A,B $^{\mbox{c}}$ R are A-compatible if there exists φ e A(M_D) such that

$$x \in A, y \in B \implies |x| + |y| \le \phi(|x + y|).$$

We denote by $A_{max}(M_p)$ the set defined by

$$A_{\text{max}}(M_{\text{p}}) = U A(M_{\text{p}})$$

$$A e \mathcal{B}$$

where \mathcal{B} is the set of all the sets $A(M_p)$ for a given sequence (M_p) . We shall also assume that (M_p) satisfies:

(B) For every $p \in N$, $r \in N$ and and $\epsilon > 0$ there is $p' \in N$ and

$$x_{p,r,p',\epsilon} > 0$$
 such that $M_p^{-1}(M_r(x) \le \epsilon M_p^{-1}(M_{p'}(x)))$ if $x > x_{p,r,p',\epsilon}$.

Theorem 3 from [5] characterizes $A_{max}(M_{D})$.

3. Let Ω be a non-negative smooth even function with the support contained in [-1,1] such that $\int\limits_R \Omega(t)dt=1$. For a fixed $\varepsilon>0$ and a ε R we put

$$\delta_{\varepsilon}(t-a) = \varepsilon^{-1}\Omega(\varepsilon^{-1}(t-a)), t \varepsilon R.$$

Theorem 2.1.1. from [1] directly implies part (i) of the following lemma:

LEMMA 1. (i) $(\delta_{\epsilon_1}(t-a_1)*\delta_{\epsilon_2}(t-a_2))(x)$ is a smooth non-negative function such that

$$supp(\delta_{\epsilon_1}(t-a_1)*\delta_{\epsilon_2}(t-a_2))(x) c [a_1+a_2-\epsilon_1-\epsilon_2,a_1+a_2+\epsilon_1+\epsilon_2];$$

$$\int_{R} (\delta_{\epsilon_{1}}(t-a_{1})*\delta_{\epsilon_{2}}(t-a_{1}))(x)dx = 1.$$

(ii) The function $(\delta_{\epsilon_1}(t-a_1)*\delta_{\epsilon_2}(t-a_2))(x)$ has a maximum not smaller than $(\epsilon_1 + \epsilon_2)^{-1}$. (In the point $x = a_1 + a_2$.)

PROOF OF (ii). Since $\delta_{\epsilon_1}(t-a_1)$ and $\delta_{\epsilon_2}(t-a_2)$ are symmetric according to the lines $t=a_1$ and $t=a_2$, respectively, from

$$(\delta_{\epsilon_1}(t-a_1)*\delta_{\epsilon_2}(t-a_2))(x) = \int_{\epsilon_2} \delta_{\epsilon_1}(x-u-(a_1+a_2))\delta_{\epsilon_2}(u)du,$$

we obtain that the function $(\delta_{\epsilon_1}(t-a_1)*\delta_{\epsilon_2}(t-a_2))(x)$ has a proper maximum at $x = a_1 + a_2$. This maximum is not smaller than $(\epsilon_1 + \epsilon_2)^{-1}$ because the lentgh of $\sup(\delta_{\epsilon_1}(t-a_1)*\delta_{\epsilon}(t-a_2))$ is not greater than $2(\epsilon_1 + \epsilon_2)$.

If A is an unbounded subset of R which satisfies condition (*), we denote by D_{Δ} the set of smooth functions of the form

$$\sum_{i=1}^{\infty} \delta_{\varepsilon_{i}}(x - a_{i}), x \in R,$$

where (a_i) is a sequence from A such that $(|a_i|)$ strictly increases to ∞ , and where (ϵ_i) is a bounded sequence of positive num-

bers such that the intervals $I_i = [a_i - \epsilon_i, a_i + \epsilon_i]$, i e N, are disjoint and contained in A.

THEOREM 2. Let A and B be unbounded subsets of R which satisfy condition (*). If for any two smooth functions ϕ \bullet D_A and ψ \bullet D_B , ϕ * ψ is continuous, then A and B are compatible.

REMARK 1. If one of the sets A and B is bounded, then they are compatible ([1]).

PROOF. We shall use the idea of the proof of Theorem 5.1. from [3] (see [5] also).

If we suppose that A and B are not compatible, this implies that there are sequences (\mathbf{x}_n) and (\mathbf{y}_n) from A and B, respectively, such that $|\mathbf{x}_n| + \infty$ and $|\mathbf{y}_n| + \infty$ but $|\mathbf{x}_n + \mathbf{y}_n| \neq \mathbf{z}$. Condition(*) implies that there exist 6> 0 and sequences $(\mathbf{\bar{x}}_n)$, $(\mathbf{\bar{y}}_n)$, $(\mathbf{\varepsilon}_n)$, such that

Clearly, $|\bar{x}_n| \to \infty$, $|y_n| \to \infty$ and (\bar{z}_n) , where $\bar{z}_n = x_n + y_n$, is a bounded sequence. Without losing on generality, we suppose that

$$n < |\bar{x}_n| < |\bar{x}_{n+1}| - 2\delta$$
, $n < |\bar{y}_n| < |\bar{y}_{n+1}| - 2\delta$ and $\bar{z}_n \rightarrow \bar{z}$.

Let

$$f(t) = \sum_{i=1}^{\infty} \delta_{\epsilon_i}(t - \bar{x}), t \in R.$$

and

$$g = \sum_{i=1}^{\infty} \delta_{\epsilon_i} (t - \bar{y}_i), t \in R.$$

These functions are from D_A and D_B , respectively. Clearly,

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} (\delta_{\epsilon_{i}}(t-\bar{x}_{i}) * \delta_{\epsilon_{j}}(t-\bar{y}_{j}))(x) >$$

$$\geq \sum_{i=1}^{\infty} (\delta_{\epsilon_{i}}(t-\bar{x}_{i}) * \delta_{\epsilon_{i}}(t-\bar{y}_{i}))(x), x \in \mathbb{R}.$$

We shall prove that the last series diverges in the point \bar{z} . Namely, there are two possibilities:

(i)
$$\inf_{\epsilon_i} = 0$$
 (ii) $\inf_{\epsilon_i} > 0$.
ieN ieN

In case (i) from Lemma 1 (ii) it follows that the series diverges. In case (ii) this follows trivially.

Thus we have proved that $(f*g)(\bar{z})$ does not exists because if it did, it would be equal to

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} (\delta_{\varepsilon_{i}}(t-\bar{x}_{i})\delta_{\varepsilon_{j}}(t-\bar{y}_{j}))(\bar{z}).$$

4.

Let (a_i) be a strictly increasing sequence of positive numbers such that $i < a_i$, $i \in N$, and let (ϵ_i) be a sequence of positive numbers such that

$$a_{i} + \epsilon_{i} < a_{i+1} - \epsilon_{i+1}$$
, i e N.

Then the following lemma holds:

LEMMA 3. (i) For a fixed P e N

t +
$$\alpha(t) = \sum_{i=0}^{\infty} M_p(a_i) \delta_{\epsilon_i}(t - a_i)$$
, t ϵR ,

belongs to MC.

(ii) A smooth function

t + β(t) =
$$\sum_{i=1}^{\infty} M_i(a_i) \delta_{\epsilon_i}(t - a_i), t \in \mathbb{R},$$

does not belong to MC.

PROOF. (i) We put

$$h(x) = \int_{0}^{x} (\sum_{i=1}^{\infty} M_{p}(a_{i}) \delta_{\epsilon_{i}}(t-a_{i})) dt, x \in \mathbb{R}.$$

If $x < a_1 - \epsilon_1$, h(x) = 0. If $a_n < x \le a_{n+1}$, $n \in \mathbb{N}$, we have

$$|h(x)| \le \sum_{i=1}^{n+1} M_p(a_i) \le nM_p(a_n) + H(x-a_{n+1} + \epsilon_{n+1})M_p(a_{n+1})$$

$$\leq (x+1) M_p(x+\varepsilon_{n+1})$$
 . $(H(x) = \begin{cases} 0, & x \leq 0 \\ 1, & x > 0 \end{cases}$

If x is sufficiently large (this means if n is sufficiently large), from (N') and (4) we have: $x < M_p(x)$ and $M_p(x+\epsilon_{n+1}) < M_p(x)$ for suitable p' ϵ N.

Thus, from (3) we obtain that there exists p $^{\prime\prime}$ e N such that h(x)/M_D $^{\prime\prime}$ (x) e L $^{\infty}$ (R).

(ii) Clearly $\boldsymbol{\beta}$ is not an $\boldsymbol{M}_{p}\text{-function, thus we must prove that$

R
$$\ni x \mapsto r(x) = \int_{0}^{x} g(t)dt$$
 is not an M_{p} -function.

If $x \in (a_n - \epsilon_n, a_n)$, $n \in N$, we have

$$r(x) > \frac{1}{2} M_n(a_n) > \frac{1}{2} M_n(x)$$
.

This means that for every p e N, $r(x)/M_p(x)$ is unbounded on the sequence of points $(a_n - \frac{\varepsilon_n}{2})$.

If A is an unbounded subset of R which satisfies condition (*), we denote by ${}_1K_A$ the set of smooth functions of the form

Rat
$$\rightarrow \sum_{i=1}^{\infty} M_{p}(a_{i}) \delta_{\epsilon_{i}}(t-a_{i}), p \in N,$$

where (a_i) is a sequence from A such that $(|a_i|)$ strictly increases to ∞ , and where (ε_i) is a bounded sequence of positive numbers such that the intervals $I_i = [a_i - \varepsilon_i, a_i + \varepsilon_i]$, i **e N**, are disjoint and contained in A. We shall denote by ${}_2K_A$ the set of functions of the form $\delta_{\varepsilon}(t-a)$ where a **6** A and $[a-\varepsilon,a+\varepsilon]$ c A. We put

$$K_A = {}_1K_A U {}_2K_A$$
.

THEOREM 4. Let A and B be subsets of R which satisfy condition (*). If for any two smooth functions φ e K_A and ψ 6 K_B the convolution $\varphi*\psi$ belongs to MC, then the sets A and B are $A_{\max}(M_p)\text{--compatible}.$

REMARK 2. If the convolution $\phi * \psi$ belongs to MC for any $\phi \in K_A$ and $\psi \in K_B$, than $\phi * \psi$ is a continuous function for any $\phi \in D_A$ and $\psi \in D_B$. It means that the sets A and B (given in Theorem 4) are compatible.

REMARK 3. If one of the sets A and B is bounded, then these sets are A $_{\max}(M_p)$ -compatible.

PROOF OF THEOREM 4. Let us suppose that the sets A and B are not $A_{max}(M_p)$ -compatible. We shall construct a function h from K_A and a function r from K_B such that h*r does not belong

to MC and it will be a contradiction. Our construction is similar to the one given in [5] (Theorem 5., see also [3] Theorem 5.2.).

Since we suppose that A and B are not A $_{max}(M_p)$ -compatible it follows that there exist sequences (x_n) from A and (y_n) from B such that

(6)
$$|x_n| + |y_n| > 2^n (1 + M_p^{-1} (M_{p_n} (|x_n + y_n|)), n e N,$$

 $(M_D^{-1}$ is the inverse function for M_D).

where p e N is fixed and (p_n) is a sequence of natural numbers such that $M_n(x) \le M_p(x/2)$ if $x > L_n$. The existence of sequences (p_n) and (L_n) follows from (4) and B (see Theorem 3 in [5]).

Condition (6) implies that $|x_n| + |y_n| \rightarrow \infty$ and therefore, $|z_n| = |x_n + y_n| \rightarrow \infty$ if $n \rightarrow \infty$.

There are three possibilities:

(i)
$$|x_n| \to \infty$$
, $|y_n| \to \infty$; (ii) $|x_n| \to \infty$, $|y_n| \neq \infty$; (iii) $|x_n| \neq \infty$, $|y_n| \to \infty$.

We first consider case (i). Since A and B satisfy condition (*) there exist sequences, (\bar{x}_n) from A, (\bar{y}_n) from B, $\delta > 0$ and (ϵ_n) with the same properties as in the proof of Theorem 2. From (6) we have

$$|\bar{x}_{n}| + |\bar{y}_{n}| > |x_{n}| + |y_{n}| - 2\delta >$$

$$> 2^{n} (1 + M_{p}^{-1} (M_{p_{n}} (|x_{n} + y_{n}|)) - 2\delta >$$

$$> 2^{n} (1 + M_{p}^{-1} (M_{p_{n}} (|\bar{x}_{n} + \bar{y}_{n}| - 2\delta))) - 2\delta.$$

Since $|\bar{x}_n| + \infty$, $|\bar{y}_n| + \infty$, $|\bar{x}_n + \bar{y}_n| + \infty$, if $k_n > n$, n & N, we have

$$|\bar{x}_{k_n}| + |\bar{y}_{k_n}| > 2^{k_n} (1 + M_p^{-1} (M_{p_{k_n}} (|\bar{x}_{k_n} + \bar{y}_{k_n}| - 2\delta))) - 2\delta >$$

$$> 2^{n}(1 + M_{p}^{-1}(M_{p_{n}}(|\bar{x}_{k_{n}} + \bar{y}_{k_{n}}| - 2\delta))) - 2\delta.$$

This means that without losing on generality, we can suppose that sequences (\bar{x}_n) and (\bar{y}_n) have the following properties:

$$\mathbf{M}_{\mathbf{p}_n}(|\bar{\mathbf{x}}_n + \bar{\mathbf{y}}_n| - 2\delta) > \mathbf{M}_n(|\bar{\mathbf{x}}_n + \bar{\mathbf{y}}_n|)$$

and

$$|\bar{x}_{n}| + |\bar{y}_{n}| \ge 2^{n}(1 + M_{p}^{-1}(M_{n}(|\bar{x}_{n} + \bar{y}_{n}|))) - 2\delta \ge$$

$$\ge M_{p}^{-1}(M_{n}(|\bar{x}_{n} + \bar{y}_{n}|)).$$

Now we put

$$h(x) = \sum_{i=1}^{\infty} M_{p}(|\bar{x}_{i}|) \delta_{\varepsilon_{i}}(t - \bar{x}_{i})$$

and

$$r(x) = \sum_{i=1}^{\infty} M_{p}(|\vec{y}_{i}|) \delta_{\epsilon}(t - \vec{y}_{i})$$

where we choose p' such that

$$\mathbf{M}_{p^*}(|\bar{\mathbf{x}}_{\mathbf{n}}|)\mathbf{M}_{p^*}(|\bar{\mathbf{y}}_{\mathbf{n}}|) \geq \mathbf{M}_{p}(|\bar{\mathbf{x}}_{\mathbf{n}}|+\bar{\mathbf{y}}_{\mathbf{n}}|) \quad \text{if} \quad \mathbf{n} \geq \mathbf{i}_0 \, .$$

The existence of such a p' follows from (5) (see [5], the proof of Theorem 5). These functions are from K_A and K_B , respectively, but h*r# MC. We shall prove this. We have

$$(r*h)(x) > \sum_{i=1}^{\infty} M_{p'}(|\bar{x}_{i}|) M_{p'}(|\bar{y}_{i}|) \delta_{\epsilon_{i}}(t-\bar{x}_{i})*\delta_{\epsilon_{i}}(t-\bar{y}_{i}) >$$

$$> \sum_{i=i}^{\infty} M_{i}(|\bar{x}_{i} + \bar{y}_{i}|) \delta_{\epsilon_{i}}(t-\bar{x}_{i})*\delta_{\epsilon_{i}}(t-\bar{y}_{i}), x \in \mathbb{R}.$$

The last series is not an element from MC as it is proved in Lemma 3 (ii). Since h*r is a non-negative function, it follows that this function does not belong to MC.

Case (ii) From condition (*) it follows that there exist a sequence (\bar{x}_n) from A, $\bar{y}_i \in B$, $\delta > 0$ and (ϵ_n) sucu that

$$\begin{split} |\overline{x}_{n} - x_{n}| < \varepsilon_{n}, & |\overline{y}_{1} - y_{1}| < \delta, \varepsilon_{n} < \delta, n \in \mathbb{N}, \\ & \cap [x_{n} - \varepsilon_{n}, \overline{x}_{n} + \varepsilon_{n}] \subseteq \mathring{A}, [\overline{y}_{1} - \varepsilon_{1}, \overline{y}_{1} + \varepsilon_{1}] \subseteq \mathring{B}, \\ & n=1 \\ & n < |x_{n}| < |x_{n+1}| - 2\delta, \quad n < |z_{n}| < |\overline{z}_{n+1}| - 2\delta, \end{split}$$

where

$$\bar{z}_n = \bar{x}_n + \bar{y}_1, \quad n \in \mathbb{N}.$$

From (6) we obtain

$$|\bar{x}_{n}| + |\bar{y}_{1}| > |x_{n}| + |y_{1}| - 2\delta$$

> $2^{n}(1 + M_{p}^{-1}(M_{p_{n}}(|\bar{x}_{n} + \bar{y}_{1}| - 2\delta))) - 2\delta.$

In the same way as in case (i) of this proof, we can suppose that (\bar{x}_n) satisfies the following properties:

$$M_{p_n}(|\bar{x}_n + \bar{y}_1| - 2\delta) > M_n(|\bar{x}_n + \bar{y}_1|)$$

and

$$|\vec{x}_n| + |\vec{y}_1| > M_p^{-1}(M_n(|\vec{x}_n + \vec{y}_1|)).$$

We put

$$h(x) = \sum_{i=1}^{\infty} M_{p_i}(|\bar{x}_i|) \delta_{\epsilon_i}(t - \bar{x}_i), x \in R.$$

and

$$r(x) = M_{p}(\bar{y}_1)\delta_{\epsilon_1}(x - \bar{y}_1), x \in R.$$

In the same way as in case (i), we prove that r(x)*h(x) & MC.

Case (iii) is symmetric to (ii); thus the proof is complete.

We say that the set A c R satisfies condition (**) if for any sequence (x_i) from A there exist a sequence (\bar{x}_i) , from A and bounded sequences of positive numbers (ε_i) and $(\bar{\varepsilon}_i)$ such that

(**)
$$|\bar{x}_n - x_n| < \bar{\epsilon}_n$$
, ne N; $|\bar{x}_n - \epsilon_n, \bar{x}_n + \epsilon_n| < A;$

$$\inf_{n \in \mathbb{N}} \epsilon_n = \epsilon > 0.$$

If this condition holds for the set A then functions in \boldsymbol{K}_{A} are $\boldsymbol{M}_{p}\text{-functions,}$ because

$$\sup_{\substack{n \in \mathbb{N} \\ \text{teR}}} \delta_n (t - \bar{x}_n) < \infty.$$

Thus from Theorem 4 directly follows:

THEOREM 5. If A and B satisfy condition (**) and if for any two M_p -functions ϕ e K_A and ψ e K_B the convolution $\phi*\psi$ is a function from MC, then the sets A and B are $A_{max}(M_p)$ -compatible.

If A and B are $A_{max}(M_p)$ compatible, this holds for C and D where C = A, D = B, and this also holds for sets A_{ϵ} and B_{δ} $\epsilon > 0$, $\delta > 0$ (see [4] and [5]).

 $(A_{\varepsilon} = \{x | d(x,a) < \varepsilon \text{ for some a } \varepsilon A\}.)$

Clearly, A satisfies condition (**). From the preceding theorem we obtain:

THEOREM 6. If for any two functions ϕ e $K_{A_{\epsilon}}$ and ψ e $K_{B_{\epsilon}}$ where A c R, B c R, ϵ > 0, the convolution $\phi*\psi$ belongs to MC, then A and B are $A_{\max}(M_{_{\rm D}})$ -compatible.

REFERENCES

- [1] P. Antosik, J. Mikusiński, R. Sikorski, Theory of Distributions - The Sequential Approach, Elsevier and PWN, Warssava, Amsterdam (1973).
- [2] M.I. Gelfand, G.E. Shilov, Generalized Functions, Vol. 2, Acad. Press, New York, London (1968).
- [3] A. Kamiński, On the Rényi theory of conditional probabilities Studia Math., LXXIX (1984), 151-191.
- [4] S. Pilipović, On the Convolution in the Spaces of K'{M_p} - type, Math. Nachr. 120 (1985), 103 -112.
- [5] S. Pilipović, On the A-compatibility of Supports of Distributions of the K'{M_p}-type, Publ. Inst. Math., Beograd, 38 (52) (1985), 157 -

Received by the editors October 3 ,1984.

O KONVOLUCIJI FUNKCIJA SA KOMPAKTNIM NOSAČIMA

Dokazujemo da ako f*g postoji za svako f i g sa osobinama: f,g e C[∞] supp f⊂A, supp g←B, f i g su odgovarajuće brzine rasta u beskonačnosti, tada A i B zadovoljavaju odgovarajući uslov kompatibilnosti.