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ABSTRACT

i In this paper the notions of Y-measure of noncompacf-
ness and (¢,y)-densifying mapping are introduced. Using these
notions some fixed point theorems in not necessarily locally

convex topological vector spaces are proved.

t. INTRODUCTION

Recently many results from the fixed point theory in
not neceséarily locally convex topological vector spaces have
been proved ([1},[2},03]1,04),0(5],06],071,08 ,09]),

One of these results is a generalization of the Scha-
uder fixed point theorem for paranormed spaces proved by Zi-
ma in [8] , and we shall prove some generalizations of it.

It is well known that in a Banach E space we have for every
bounded subset MCE that:

(1) a(co M) = a(M) (coM-the convex hull of M)
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(2) B(coM) < B8 (M)

where o is the Kuratowski measure of noncompactness and B is
the inner Hausdorff measure of noncompactness. In the caseof
a paranormed space we do not have, in general, (1) and (2).
Hence, we shall investigate, in the case of paranormed spaces
sone connections between a(coM) and o(M) and similarly bet-
ween B(coM) and B(M). First, we shall give some notations,
definitions and results, which will be used in the following
text. All topological vector spaces in this paper will be
assumed to be Hausdorff.

DEFINITION 1. Let E be a vector gpace over the real
or complex number field and || |[*:E~+ [0,=) so that the follo-

wing conditione are satisfied:

1. || x|| ¥ =0 <« x =0.
2. |I=x]] * = || x|] *, for every x€E.
3. ||x+y]] *< || x|]| *+ || yll *, for every x,y€E.

4. If || x - x|l *+0 and r ) then || A x -Ax|l *+0, nre.

Then (E, || ||* ) Zs a paranormed space and || ||* Zs a paranorm.

In a paranormed space (E, || ||*) the topology is intro-

duced by the family V=={Vr} of neighbourhoods of zero in E
where:

r>0

VvV ={x|x€E, || x| *<r} .
Then E is a metrizable topological vector space.
DEFINITION 2. Let (E, || |* ) be a paranormed space

and K a nonempty subset of E. We say that K has a Zima’s con-
stant C(K)» 0 Zf and only if:

|| tu]l *gc(x)t|| u|| * , for every u€K-K and every t€[0,1]
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Let us give an example of a subset KcE and (E, | [[*),
where K has a Zima“s constant C(K) [2].

Let E=S(0,1), where S(0,1) is the'space of all equ-
ivalence classes of finite,K real measurable functions on [0,1] with

measure 1 and for every %e€s(0,1) :(u - the Lebegue measure) :

1
&l * = | _1x® ] gy, k(o)) en.

1+ |x(t)]

It is known that S(0,1) is an admissible topological vector
space [3] and that the convergence in the paranorm is the
convergence in the measure.

Let a >0 and Ka={§:i§:es(0,1), |x(t) | <a, te (0,1 }.
Then C(Ka) =1+2a[2].

DEFINITION 3. Let E be a topological vector space,

U be the fundamental family of neighbourhoods of'zéro in

E and KcE . The get K <18 gaid to be of Zima’e
type if and only if for every VU there exists UEU
such that co(U Nn(K-K))cV ,

If K is a nonempty subset of E, where (E,| || *) is a

paranormed space, and K has 2Z2ima“s constant C(K) >0, then

for every r > 0.

coV N (R-K))ECV
TTR) t
and hence, K is of Zima“s type.

By R(K), KSE and E is a topological vector space,
we shall denote the family of all nonempty, closed and con-
vex subsets of K.

In [ 3] S.Hahn introduced the notion of an o-admis-
sible subset of a topological vector space and proved a fi-
Xed point theorem for multivalued mappings defined on og-ad-
missible subsets.

DEFINITION &, Let E be a topological vector space,
Z be a nonempty closed subset of E and 6(Z) a nonempty
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system of subsets of Z. The set 7 is said to be O-admissible

if for each compact mapping F:A +¢(2), where A ig a topolo-
gical space, and for each neighbourhood V of zero in E, the-
re exists a finite dimeneional vector subepace E;, of E and a

compact mapping F_:A -+ o (Z) such that

A
(1) FV(A) EEV

(ii) PFor every xeE, Fv(x)EF(x) +V.

If Z=E then E is called a o-admissible topological
vector space and if o= {{x}|x€E} then E is admissible.
In[2] we proved that every closed and convex subset of Zi-
ma’s type is R-admissible.

If K is a nonempty closed, convex and R-admissible
subset of a topological vector space E and F:K+ R(K) a com-
pact mapping (F is upper semicontinuous and F(K) is compact)
then from [31it follows that there exists x € K such that
x€F(x).

2. Y-MEASURE OF NONCOMPACTNESS

Let E be a topological vector space, ¥:[0,>) + [0,«),
g#co K=KEE, M a family of nonempty subsets of K such that
AeM =>coAeM and y:M~+[0,x).

DEFINITION 5. The mapping Y 18 said to be a Y-mea-

sure of noncompactnese on K if and only if:
1. Y(A) =0<> A s compact (aeM).

2. y(con)<y(y(n)) (neM).

The next propositions also give examples of VY-mea-
sures of noncompactness. If E is a Banach space from (l)and (2) it
follows that a and 8 are {t}-measures of noncompactnes's,
which means that ¥(t)= t



Fixed point theorems ... 3]

PROPOSITION 1. Let (E,|| || *}pe a complete paranormed
space, K a nonempty bounded and convex subset of' E whiech
hae Zima ‘s constant C(K), M the family 2K of all nonempty
subsets of K, and y= B where B(A) =infl{ele >0 , there ewi-

sts a finite e-net {xl,x_z,...,xn}d\:of A} (AcK).Then B <8 the

{C(K)t]l measurs of noncompactness.

Proof. let us prove that for every A cK:
B(coA) <C(K)B(A).
Let €>0 and {xl"."'xn} <A be a B(A) +e-net of A. The set
co{xl,xz, ...,xn} is precompact and so there exists B= {ul,
uz,...,ur}Eco{xl,xz,...,xn} thich is an e-net of the set
co{xl,xz,...,xn}. We shall show that for every y€ coA the-

re exists u, (ke {1,2,...,r}) so that:
Iy -u ll *<C(K)IB(A)+e[C(K) +1] .

Let y€ coA . Then there exist Yy €A and ti
s s
-..,8}) so that i'-2=1 t; =1 and y=izltiyi. Since y, €A, there

exists Xp (1) (n(i) e {1,2,...,n}) so that:

>0 (ie{1,2,...

174 = %ngy Il * <8 + €.
S

Let x= ] t,x

IPRNEIR Then xeco{xl,xz,...,xn} and so there

exists u €B so that ||x-—uk|| *<e. Since ||ly-x|| * <
s

121” to(y;=x, q)) [l *<C(K) [B(B) + €], it follows that:
Ny -wll * <|ly=x|] *+ ||x-u || *<C(K) [B(A) +€] +¢ .

Since € is an arbitrary positive number it follows that
BicoA ) <C(K)B(A).
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PROPOSITION 2. Let (E,|| || *) be a complete para-
normed space, K a nonempty bounded and convex subset of E
which has Zima’s constant C(K), M=2K and y=a0a, where:

a(A) =inf{e|le >0, there existe a finite cover {Bj}jGJ

of A such that dia.mBj < e, for every j€Jl.
Then o 28 the {[C(K)] "t} -measure of noncompactness.

Proof, Let us prove that for every ASK:
(3) alcon) < C(KIZa@) .

Let €¢>0 and a(A) < €. Then there exists a cover
{Bl'BZ'”"Bn} of A such that diam(B£< e , ie{1,2,...,n}

and let e€” >0 be such that diam(Bi) <eg“<g, 1€{1,2,...,n}.

We shall suppose that B, &KX, for every i€ {1,2,...,n}. It

i
is easy to see that diam(co Bi) <C(K)dia.m(Bi) for every
ie{1,2,...,n}. Let:

. n
S={OsAyrcusrp) Ay >0, 1€{1,2,...,n}, 121A1=1}
and for A €S:

ie{1,2,...,n}}.

n
Y)‘={x|er, X = Z_ AjX4» X, €COB,,

i=1
Let us prove that diam(Y)‘) < [C(K)] 28 .
Let x,yGY)‘. Then
' n fi
X= A, X,y Y= Ay
i-z-l 171 i=1 i
where )\ = O‘l')‘2","’)‘n) and (xi,yi) GcoBi xcoBi for every
ie{1,2,...,n}. Then:

n n
-y *= | Ag(x -y )] *< Ay (x,=y) || *
AV YRRl

n
< C(K) §

diam(co B, ))\1<C(K) ‘max diam(coBi )y < [C(K)]ze‘ .
i :

1 ie{1,2,...,n}

it is easy to see that coA <UY,. For every X<E and
A€es

N
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n>0 let X"= y B(x,n) (B(x,n) ={z|z€E, |jz-x||* <n}.
x€X

Let n=€;€ {c (K)]2 and 6=a%ﬁ where

n
T=sup{ } |Ix,[l *, x, €coB,, 1€ {1,2,...,n}}. Further
i=1

for A€ ®": |||Alll-wn = max (A |

IR 1€{1,2,...,n} 1" Let us suppose
that O0€ K and prove the following implication:
(4) Ma=xll < 6§ = YAEY;

We shall prove that for every xGYA there exists
YE€Y,, IIA=X]}] < 6 such that

n
|x-y|l *<n. Let "=121"1x1€.¥>" A= Ayedgreaasry), xiecoB‘i,

n
ie{1,2,...,n} and Xes such that [[|A-X|| <6 . If y= § Xixi
then: =1

: n
eyl == Il 3 Oyl * <

n _ X, APX
< Y Ia-R e Iz ], %, = S
1= 1 i i -x,, A;<i
i’ i i
since 0E€ K => x, €K-K. Since Hiill * = ||x (| * it follows

that:
[Ix=y|] *< |]|A=X]|l C(R)T <8 TC(R) =n

and so (4) is proved. Further, the set S is compact and so
there exists a finite set '{Xl.,iz,...,'):r}ss, such that for
every A €S there exists 1€ {1,2,...,r}, so that |||7‘1—A||| <8,
This implies that

r
and so coAS U Yf
i=1 A

in

i=1 X

(o]

vy ec

res A 1

i
From the inequality d:l.am(YEi) <diam(Y_i) + nwe obtain that:
A

A

atam(¥") < e 27 +2 - £ cw12< cmde .
X
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Since € is an arbitrary number such that €>a(A) it follows
(3).

Suppose that O¢ K and that x€K. Then O€EK-x=K and
C(K) =C(K). From AcK it follows that A- xCK and so for
A=A-x we have that:

a(coi) =a(cod+x)) =a(coA+x) =

= a(cod) < [C(K)] 2a(a) = [C(K)] %a(A)

and so (3) is proved also if O¢K.

3. FIXED POINT THEOREMS

First, we shall introduce the notion of a (¢,y)-den-
sifying mapping.

DEFINITION 6. Let Y be a Y-measure of noncompactness
on a subset K of a topological vector gpace E, F:K+2X and
¢:[0,=) > [0,»). If A€ M(Def.5) impliee that F(A) e M and for
every A€ M:

YIF ()] <4 {y(A)]

then the mapping F is said to be (¢,v)-densifying.

THEOREM 1. Let E be a topological vector sgpace, G
a nonempty closed and convex subget of E such that every com-
pact convex subset of G i R-admissible, ¢:[0,=) + [0,=),
Y: [0, ) + [0,o) monotone nondecreasing, F:G~+ R(G) an ~upper' ge-
micontinuous mapping and Y:2G+ [0,«) a y-measure of noncom-—
pactnegs on G 8o that for every z€G and A=G:y(AU {z}) =

= y(A). If the mapping F i8 (¢,v)~densifying and:
Vod (t) < t, for every te€ (0,=)

then there exists x€ G such that x€F(x).



Fixed point theorems ... 35

Proof. Let z€ G and:

o={YsG: z€Y, Y=coY, F(Y)SY} .

Since G€ o it follows that o# @. Using the Zorn lemma we con-
clude that there exists a minimal element Z of the family ¢
and Z=co(F(Z) U{z}). From this we have that:

Y(2) =v(co(F(2) u{z})) < ¢(y(F(Z) U{z})) =
=¥ (y(P(2)))<Po¢ly(2)] .

Suppose that y(Z) > 0. Then o ¢[y(2)] < y(Z) and we obtain the
contradiction: y(2) <vy(Z). From y(Z) =0 we obtain that 2 is
compact and so Z 1s R-admissible. Since FlZ-Z+Z using Hahn's:
fixed point theorem, we conclude that there exists x€Z so
that x € Fx.

COROLLARY 1. Let G be a nonempty clogsed and convex

subset of Zima’s type of a topological vector space E and
¢ ¥ ,F and Y as in Theorem 7 . Then there exists X€G,s0
that =x€ Fx .

Proof. For every A G and every U€ U (the fun-
damental system of the neighbourhoods of zero in E ),we have
co(U N (A-A)) € (U n (G-G)) and seo A is of Zima’s type. Since
every closed and convex subset of Zima“s type is R-admissi-
ble, all the conditions of Theorem 1 are satisfied.

COROLLARY 2 . Let E be a complete paranormed space , G
a nonempty closed bounded and convex subset which has a 2i-
ma®s constant , y€ {a,B}, ¢:[0,®) + [0,2), F:G>R(G) an upper-

semicontinuous mapping which i8: (§,y) -densifying and:

¢"°’<c—(tﬁ , t>0 if y=8

or

¢(t)< ,t>0 .'fY=a
[cum2 *

Then there exists X€G go that X€F(x).
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THEOREM 2. Let E be a topological vector space, G
be a closed and convex subset of E such that every convex
and compact subset of G i8 R-admissible, ¢ and § nondecrea-
aing mappinge of [0,«) into [0, =), y:ZG-*[O,w) a Y-measure
of nonecompactness on G and F:G~+ R(G) an upper semicontinuous
($,v)-deneifying mapping. If for every sequence'{xn}nGIN

(X &G, n€ IN) such that X_=coX_, NE€W and limy(X_ ) =90, we
n n n nee D
have that Y= Q0 Xn i8 compact and nonempty and lim [y o ¢]n(t)=
neIN n-+o
=0, t>0, then there exists X€ G so that x€F(x).

Proo f. Let X; =G and X_ =c_oF(Xn)(n€]N). let

1

us prove that lim y(xn) =0, Since vy is a Y-measure of noncom-
n-+cw

+1

mactness on G, F is (¢,v)-densifying mapping and ¢ and ¢ are
nondecreasing, we have that:

(5) Y(X ) =v(coF (X)) <y(y(F(X)))) <

<Yy (X)) < [po¢l ™ Hy(x)), nem.

Suppose that y(Xl) =0, Then G is an R-admissible compact and

convex subset of E and F:G+ R(G) is a compact mapping, which
implies by Hahn“s theorem, the existence of an element x€G
so that xe€F(x). If y(xl) >0, then (5) implies that lim Y(Xn)= 0

n-+o

and so Y= N Xn is a nonempty, compact, convex and so R-ddmis-
neIN ’
sible subset of G. Since FIY:Y,-rY is a compact mapping, there
exists x€Y so that xe€F(x). V _ .
Using the method from [ 7] we shall prove the follo-
wing theorem.

THEOREM 3. Let E be a topological vector space, K
a nonempty closed and convex subset of E, O€K, UcK an
open neighbourhood of zero in E, N a family of nonempty com-

pact subsete of K, H:[0,1] xclK(U) +N an upper semicontinuous
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mapping, ¢ ,:[0,0)+ [ 0.0) nondecreasing mappings, y:2Xs [0,m)
a monotone Y-measure of noncompactness such that for every
2€G and ASG:Y(A U{z}) =Y (A), and the following conditions
are gatiefied : :

1. For t€ (0,11 and x€23,U: x€H(t,x)

2. For every XG c1KU:
yH([0,1] xX)] <¢[y(X)] .
3. For y>1 and xeaKU: px€H(1,x).
4. te lo,11, MeN =>tMeN.
Then there exigte an upper semicontinuous (Yo, y)-densifying
mapping g:K + N gueh that for all x€K:

X€g(x)<=>x€cl U and x€ H(0,x).

K

Proof. Let R={x|xec1KU, x€H(t,x) for some
te [0,1]} U{xleclKU, x € tH(1,x) for some te€ [0,1]}. Then
[ 7 IR is a nonempty, compact set such that R0 aKU=¢. Let
A:K~+ [0,1] be such that A(R)S {0} and )‘(aKU)E{l}. Since K

is a completely rAegular topological space such a mapping
exists. As in [7], let g:K+N be defined in the following
way:

CH(2)0(x),X) ,A(x)<3 and x€clU

g(x) =
2(1-2 (x) ) H(1,x), A (x) > % and x€cl,U

{0} xgcl U

The mapping g is upper semicontinuous, and let us prove that

for every XS K:

Y(g(X)) <yo(y (X)) .
From the definition of mapping g, it follows that g(x) €
co ({0} UH([0,1] x (c1,UNX))). If cl,UNX=g then:

y(@(X))<y({0}) = 0<yo(y(X)).
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Let us suppose that clKUﬂ X#d. Then:

vy(g(X)) <y(co({o} yH([0,1] x (c1KUﬂ X)))<

<Y (Y (H([0,1] x (c1 U AiX)))) <oy (clBNX)) <yd(y(X)).

As 1n [ 71 , it follows that x€g(X) if and only if x€clU
and x€H(0,x).

Using Theorem 1 and Theorem 3 we obtain the following
result. By chwe shall denote the family of all nonempty, co-

mpact and convex subsets of K,

PROPOSITION 3. Let E be a topolbgical vector spa-
ce, K a closed and convex subset of E,0€K , UG K be an open
neighbourhood of zero in. EN= Zléc. H,¢,¥ and y as in Theorem 3
and.\p2¢(t)<t, for every t>0. If every compact and convex
subset of K 78 R-admissible, then there exists chlKU such

that x €H(0,x).

Proof. Since K is convex and O0€K, it follows
that MeN implies tMEN for every te€ [0,1] . Hence, all the
conditions of Theorem 3 are satisfied and there exists an:
upper semicontinuous (y¢,y)-densifying mapping g:K +N such
that for all x€K: '

(6) Xx€9(x) <> x€cl U and xE€H(O,x).
Further, from Theorem 1, since wzcb(t) <t, t>0, it follows.

that there exists xoeK such that xoeg(xo) . From (6), it

follows that x € cl, U and X €H (0 ,xo) .

COROLLARY 3, ‘Let E be a complete paranormed space

K a eloged and convex subset of E which has Zima’s constant
C(K) >0, O€K, U pe agn open neighbourhood of zero in E
~=2Iéc , B and ¢ as in Theorem 3 and Y=qa. If [C(K)]2¢(t)

<t, t>0 then there existe xchle such that xoe}](o,xo),
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2t} -

measure of noncompactness such that aa, uizh)y=a(), for

Proo f. Measure a is a monotone { C(K)

every AGK and every z € K. Further, every subset of K is of
Zima“s type since K has a Zima”s constant C(K), which implies
that every convex and closed subset of K is R-admissible.
Hence, all the conditions of Proposition 3 are satisfied,

and so there exists xOGclKU such that x € H(O,xo) .
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REZIME

TEOREME O NEPOKRETNOJ TAZK| ZA VISEZNAENA PRESLIKAVANJA
U NEOBAVEZNO LOKALNC KONVEKSNIM VEKTORSKO TOPOLO3ZKIM
' PROSTOR | MA

U ovom radu su uvedenil pojmovi y-mere nekompaktnosti
i (¢,vy) -kondenzujudeg operatora . Kori¥céenjem ovih pojmova
dokazane su teoreme o nepokretnoj tad&kili za viSezna¥na presli-
kavanja u neobavezno lokalno konveksnim vektorsko topolo¥kim

prostorima.



