ZBORNIK RADOVA Prirodno-matematičkog fakulteta Univerziteta u Novom Sadu Serija za matematiku, 14,2 (1984) REVIEW OF RESEARCH Faculty of Science University of Novi Sad Mathematics Series, 14, 2 (1984)

SOME GENERALIZATIONS OF BROWDER'S FIXED POINT THEOREM IN TOPOLOGICAL SPACE

Olga Hadžić

Prirodno-matematički fakultet. Institut za matematiku, 21000 Novi Sad, ul.dr Ilije Djuričića br.4, Jugoslavija

ABSTRACT

In this note, using the method from [4], we prove a generalization of the well known Browder fixed point theorem for multivalued mappings in topological spaces. Similar results in topological vector spaces are proved by Tarafdar in [6]. A generalization of a coincidence point theorem from [5] is obtained.

H. Komiya introduced, in [4], the notion of convexity in an arbitrary topological space and obtained a generalization of the well known Browder's fixed point theorem for multivalued mappings, proved in [1].

We shall give some definitions and results from $\{4\}$. Let X be a Hausdorff topological space, A(X) the family of all subsets of X and F(X) the family of all finite subsets of X.

DEFINITION 1 [4]. An H-operator on X is a mapping < >: A(X) + A(X) satisfying the following conditions:

AMS Mathematics Subject Classification (1980): 47H10. Key words and phrases: Browder's fixed point theorem, topological spaces.

- (a) $\langle \emptyset \rangle = \emptyset$.
- (b) $\langle \{x\} \rangle = \{x\}$, for every $x \in X$.
- (c) $\langle\langle A \rangle\rangle = \langle A \rangle$, for every $A \in A(X)$.
- (d) $\langle A \rangle = \bigcup \{\langle F \rangle | F \subseteq A, F \in F(X)\}.$

A set $A \in A(X)$ is convex if $\langle A \rangle = A$ and for $A \in A(X)$, the image $\langle A \rangle$ of A is said to be the convex hull of A.

In [4], the following proposition is proved.
PROPOSITION.

- (i) An H-operator is monotone $(A \subseteq B \Rightarrow \langle A \rangle \subseteq \langle B \rangle)$.
- (ii) The convex hull <A> of A € A(X) is the smallest convex set containing A.
- (iii) < X> = X.
- (iv) If $\langle C_i \rangle = C_i$ (i \in I) then $\langle \bigcap_{i \in I} C_i \rangle = \bigcap_{i \in I} C_i$.
- (v) If $\langle C_1 \rangle = \dot{C}_1$, $i \in I$ and for every $i_1, i_2 \in I$ there exists $i \in I$ with $c_1 \subseteq c_1 \cap c_1$ then $\langle \bigcup_{i \in I} c_i \rangle \subset c_1$.

Let R be the set of all functions $f: N \to \mathbb{R}$ (N is a countably infinite set) such that $\operatorname{card}\{x \mid x \in N, f(x) \neq 0\} < \infty$. This implies that $R = \sum_{i \in N} R_i$, where $R_i = \mathbb{R}$. The topology and the linear structure on R are the usual ones.

Suppose that an H-operator <> on a topological space X is given, and let $\#(X) = \{<F> | F \in F(X)\}$.

DEFINITION 2 [4]. For $H \in H(X)$, a mapping $\phi : H \to R$ is called a structure mapping on H, if it has the following properties:

- (a) The mapping ϕ is an into-homeomorphism.
- (b) If $A \subseteq H$ then $\phi(\langle A \rangle) = \langle \phi(A) \rangle$, where $\langle \phi(A) \rangle$ is the usual convex hull of $\phi(A)$ in R.

By S_H the set of all structures mappings on H is denoted. If $S_H \neq \emptyset$, for every H \in H(X) then $\Phi \in \Pi$ $S_H \in H(X)$ is said to be a structure on X with respect to the H-operator < >.

DEFINITION 3 [4]. A convex space $(X, <>, \phi)$ is a triple consisting of a topological space X, an H-operator <> on X and structure ϕ on X with respect to <>.

If $(X, < >, \phi)$ is a convex space, $Y \subseteq X$ and Y is convex then $(Y, < >_Y, \phi_Y)$ is a subspace of $(X, < >, \phi)$ where the topology of Y is the induced topology, for $A \in A(Y)$: $\langle A \rangle_Y = \langle A \rangle$ and $\phi_Y = \phi \mid H(Y)$.

DEFINITION 4. Let X be a topological space, <> an H-operator on X, $K\subseteq X$ and $A\subseteq X$. We say that the set A is H-open on K if $<G>\bigcap A$ is open in <G> for every $G\in F(K)$.

In [4] the following theorem is proved.

THEOREM 1. Let $(X, < >, \Phi)$ be a compact convex space and T be a mapping from X into $A(X)\setminus \emptyset$, where < Tx> = Tx, for every $x \in X$. If, for every $y \in X$, $T^{-1}y = \{x \mid x \in X, y \in Tx\}$ is open in X, then there exists $x \in X$ such that $x \in Tx$.

LEMMA. Let $(X, < >, \Phi)$ be a convex space, K a nonempty convex subset of X and $F: K \to A(X)$ so that the following conditions are satisfied:

- (a) $x \in F(x)$, for every $x \in K$ and C(F(x)) (the complement of F(x) in K) is H-open on K, for every $x \in K$.
- (b) For some $x_0 \in K$, $F(x_0)$ is compact and $F(x) \cap F(x_0)$ is closed, for every $x \in K$.
 - (c) For every x € K the set:

$$A(x) = \{y | y \in K, x \notin F(y)\}$$

is convex.

If, for every $G \in F(K)$, $\langle G \rangle$ is compact then $\bigcap F(x) \neq \emptyset$.

PROOF: As in [6] we shall prove that $\bigcap_{i=1}^{n} F(x_i) \neq \emptyset$, for every finite subset $\{x_1, x_2, \dots, x_n\}$ of K. Let us show that $\bigcap_{i=1}^{n} F(x_i) = \emptyset$ leads to a contradiction. Let $S = \langle x_1, x_2, \dots, x_n \rangle$ in and for every $x \in S$:

(1)
$$B(x) = \{y | y \in S, x \notin F(y)\}.$$

Since $\bigcap_{i=1}^{n} F(x_i) = \emptyset$, it follows that for every $x \in S$ there exists $i_0 \in \{1,2,\ldots,n\}$ so that $x \notin F(x_i)$. From (1) it follows that $x_i \in B(x)$ and so $B(x) \neq \emptyset$, for every $x \in S$. Since $\langle A(x) \rangle = A(x)$ for every $x \in K$ and $B(x) = S \cap A(x)$, for every $x \in S$, using (iv) in the Proposition and (c) in Definition 1, we conclude that $\langle B(x) \rangle = B(x)$. Further let T: S + A(S) be defined in the following way: T(x) = B(x), $x \in S$. Then:

$$T^{-1}(x) = \{y | y \in S, x \in T(y)\} = \{y | y \in S, x \in B(y)\} =$$

$$= \{y | y \in S, y \notin F(x)\} = S \cap C(F(x))$$

and from (a) it follows that $T^{-1}(x)$ is open in S. Applying the Theorem we conclude that there exists $x_0 \in S$ so that $x_0 \in Tx_0$ and so $x_0 \notin F(x_0)$, which contradicts (a).

REMARK: The mapping F in the Lemma has the following property:

For every finite subset $\{x_1, x_2, \dots, x_n\}$ of K:

$$\langle \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \} \rangle \subseteq \bigcup_{i=1}^n \mathbf{F}(\mathbf{x}_i).$$

If, on the contrary, for some finite subset $\{x_1, x_2, \dots, x_n\} \subseteq K$

$$\langle \{x_1, x_2, \dots, x_n\} \rangle \not\subseteq \bigcup_{i=1}^n F(x_i)$$

there exists $x \in \{x_1, x_2, \dots, x_n\}$ such that $x \notin F(x_1)$, for every $i \in \{1, 2, \dots, n\}$, which implies that $x_1 \in A(x)$, for every $i \in \{1, 2, \dots, n\}$. Since $\langle A(x) \rangle = A(x)$, for every $x \in K$ and $x \in \{x_1, x_2, \dots, x_n\}$ it follows from $\langle \{x_1, x_2, \dots, x_n\} \rangle \subseteq A(x)$ ((i) in the Proposition) that $x \in A(x)$, which means that $x \notin F(x)$ and this contradicts (a) in the Lemma. Thus the mapping F from the Lemma is the so-called KKM mapping where co is replaced by $\langle \cdot \rangle$.

The following theorem is a generalizations of Tarafdar's result from [6].

THEOREM 2. Let $(X, < >, \Phi)$ be a convex space, K be a nonempty convex subset of X, $T: K \to A(K) \setminus \emptyset$ such that the following conditions are satisfied:

- (i) For each $x \in K$: $\langle T(x) \rangle = T(x)$.
- (ii) For some $x \in K$, $C(T^{-1}(x_0))$ is compact (the complement in K) and for each $x \in K$ the set $C(T^{-1}(X)) \cap C(T^{-1}(x_0))$ is closed.
- (iii) For every x ∈ K the set T⁻¹(x) is H-open on K.

If, for every $G \in F(K)$, $\langle G \rangle$ is compact, then there exists $x \in K$ such that $x \in T(x_0)$.

PROOF: As in [6], let us define the mapping $F : K \rightarrow A(X)$ in the following way:

$$F(x) = C(T^{-1}(x)) = K \setminus T^{-1}(x)$$
, for every $x \in K$.

If $x \not\in T(x)$, for every $x \in K$ then $x \not\in T^{-1}(x)$ and so $x \in F(x)$ for every $x \in K$. The mapping F satisfies all the conditions of the Lemma, which can be easily verified as in [6], and so there exists $u \in \bigcap F(x)$. Then we have that $u \notin T^{-1}(x)$, $x \in K$ for every $x \in K$, which contradicts $K = \bigcup T^{-1}(x)$. From this $x \in K$ we conclude that there exists $x \in K$ such that $x \in T(x)$.

Similarly as in [6], we can prove the following theorem using the Lemma.

THEOREM 3. Let $(X, < >, \phi)$ be a convex space, K be a nonempty convex subset of X and T: K + A(K)\Ø so that the following conditions are satisfied:

- (1) For some $x_0 \in K$, $C(T(x_0))$ is compact in K and for every $x \in K$ the set $C(T(x)) \cap C(T(x_0))$ is closed.
- (ii) For every $x \in K$, $\langle T^{-1}(x) \rangle = T^{-1}(x)$.
- (iii) For every $x \in K$, T(x) is H-open on X and K = T(K).

If for every $G \in F(K)$, $\langle G \rangle$ is compact then there exists $x \in K$ such that $x \in T(x_O)$.

The following theorem is a generalization of the Theorem from [5].

THEOREM 4. Let $(X, < >, \Phi)$ be a convex space, K a non-empty convex subset of X, F a topological space and T, S: K + A(F) so that the following conditions are satisfied:

- 1. T is lower semicontinuous and $\overline{T(K)}$ is a compact subset of F.
- 2. Sx is open, for each $x \in K$, $S^{-1}y \neq \emptyset$, for every $y \in \overline{T(K)}$ and $(S^{-1}Tx) = S^{-1}Tx$, for each $x \in K$.

Then $T(u) \cap S(u) \neq \emptyset$, for some $u \in K$.

PROOF: The method of the proof is similar to that in [4]. Since $S^{-1}y \neq \emptyset$, for every $y \in \overline{T(K)}$, it follows that $\overline{T(K)} \subseteq \bigcup_{x \in K} \{Sx\}$ and since $\overline{T(K)}$ is compact and Sx is open, $x \in K$ for every $x \in K$ it follows that:

$$\overline{T(K)} \subseteq \bigcup_{x \in F} Sx$$
, for some $F \in F(K)$

and so:

$$\begin{split} \mathbf{K} &\subseteq \bigcup_{i=1}^n \mathbf{T}^{-1}(\mathbf{S}\mathbf{x}_i) \text{, for some subset} \quad \{\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n\} \subseteq \mathbf{K}. \\ \text{Let } \mathbf{H} &= \{\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n\} \quad \text{and} \quad \mathbf{A}_i = \mathbf{H} \cap \mathbf{T}^{-1}(\mathbf{S}\mathbf{x}_i) \text{, } i \in \{1,2,\ldots,n\}. \\ \text{Then } \quad \{\mathbf{A}_i\}_{i=1}^n \quad \text{is an open cover of } \mathbf{H}. \text{ Let } \widetilde{\mathbf{H}} &= \phi(\mathbf{H}) = \\ &= \langle \phi(\{\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n\}) \rangle, \text{ where } \quad \phi = \phi(\mathbf{H}) \quad \text{is the structure mapping} \\ \text{on } \mathbf{H}. \text{ If } \widetilde{\mathbf{A}}_i &= \phi(\mathbf{A}_i) \text{ (i } \in \{1,2,\ldots,n\}) \text{ then } \{\widetilde{\mathbf{A}}_i\}_{i=1}^n \text{ is an} \end{split}$$

open cover of \tilde{H} and let $\{g_1, g_2, \dots, g_n\}$ be a partition of the unity subordinated to $\{\tilde{A}_i\}_{i=1}^n$. Further, let:

$$f(\tilde{\mathbf{x}}) = \sum_{i=1}^{n} g_{i}(\tilde{\mathbf{x}}) \tilde{\mathbf{x}}_{i}, \ \tilde{\mathbf{x}}_{i} = \phi(\mathbf{x}_{i}) \ (i \in \{1, 2, \dots, n\})$$

for every x̃ € H̃.

From the Brower fixed point theorem, it follows that there exists $\tilde{u} \in \tilde{H}$ such that $\tilde{u} = f(\tilde{u})$. Let us suppose that:

$$g_i(\tilde{u}) \neq 0$$
. for every $i \in \{i_1, i_2, \dots, i_s\}$.

Then $\tilde{u} \in \tilde{A}_{\underline{i}}$, for every $k \in \{1,2,\ldots,s\}$ and if $u = \phi^{-1}(\tilde{u})$ we have that $\tilde{u} \in \tilde{A}_{\underline{i}_k}$, for every $k \in \{1,2,\ldots,s\}$.

Since $A_i \subseteq T^{-1}(Sx_i)$ for every $i \in \{1,2,...,n\}$ we obtain that $u \in T^{-1}Sx_i$, $k \in \{1,2,...,s\}$ which implies that $x_i \in S^{-1}Tu$, $i \in \{i_1,i_2,...,i_s\}$. From the relation $\langle S^{-1}Tu \rangle = S^{-1}Tu$, for every $u \in K$, we have that:

$$\langle x_{i_1}, x_{i_2}, \dots, x_{i_s} \rangle \subseteq s^{-1} Tu.$$

Then:

$$u = \phi^{-1}(\tilde{u}) = \phi^{-1}(\sum_{k=1}^{s} g_{i_{k}}(\tilde{u})\tilde{x}_{i_{1}}) \in \phi^{-1}(\langle \tilde{x}_{i_{1}}, \tilde{x}_{i_{2}}, \dots, \tilde{x}_{i_{s}} \rangle)$$

$$= \langle x_{i_{1}}, x_{i_{2}}, \dots, x_{i_{s}} \rangle \subseteq s^{-1}Tu$$

which means that Su \cap Tu $\neq \emptyset$.

RE FE RENCES

- [1] F.E. Browder, Fixed point theory for multivalued mappings in topological vector spaces, Math. Ann., 177 (1968), 283-301.
- [2] J. Dugundji, A. Granas, Fixed Point Theory, Volume 1, PWN, Warszawa, 1982.
- [3] 0. Hadžić, Fixed Point Theory in Topological Vector Spaces, Institute of Mathematics, University of Novi Sad, 1984, 327 pp.

- [4] H. Komiya, Convexity on a topological space, Fund. Math., CXI (1981), 107-113.
- [5] V.M. Sehgal, S.P. Singh and B. Watson, A coincidence theorem for topological vector spaces, Indian J. Pures Appl. Math., 14(5) (1983), 565-566.
- [6] E. Tarafdar, On minimax principles and sets with convex sections, Publ. Math., Debrecen, 29,3-4 (1982), 219-226.

Received by the editors September 18,1984.

NEKA UOPŠTENJA BRAUDEROVIH TEOREMA O NEPOKRETNOJ TAČKI U TOPOLOŠKIM PROSTORIMA

Korišćenjem metode, koju je u radu [4] dao H. Komiya, u ovom radu su uopšteni neki rezultati E. Tarafdara iz rada [6] kao i teorema iz rada [5].