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ABSTRACT

Our main purpose here is to extend standard theorems
about the completeness of various spaces of bounded linear func-
tions to linear relations. fFor this, a straightforward generaii-

zation of topological vector spaces has to be considered.
INTRODUCTION

In this paper, generalized preseminormed spaces (see
Definitions 1.1, 2.1 and 2.5) are introduced and studied. The
main emphasis is put on bouhded linear functions from one gene-
ralized preseminormed space into another and on their generali-
zed preseminormed spaces.

The results obtained extend well-known standard results
of functional analysis and can be applied to linear relations
too. An interesting consequence of the main results can be. for-
mulated as follows:
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-~
Let B be the family of all closed-valued, lower semi-
continuous, linear relations from a normed space X into a Ba-
nach space Y. For S,T € B and a scalar A , define

(s * T)(x) = S(x) + T(x), (X8)(x) = S(Ax)
and

s = sup inf liyll.
IxlI<® yeS(x)

-~
Then B is a generalized Banach space.

The paper is almost selffcontained, its reading needs
only a minimum of algebra and topology, and a few things from
our former papers [6],[8] and [9].Its particular case, when on-
ly preseminormed spaces and their linear functions are involved,

can be taught at regular courses on functional analysis.
1. GENERALIZED VECTOR SPACES

DEFINITION 1.1. An ordered triple X(+,¢) = (X,+,°),
where X ie a nonvoid seét and + qnd ¢« are functions from X x X
and K x X Znto X, whose values at (x,y) and (A,;x) are denoted

by x + y and Ax, respectively, will be called a generalized vec-
|

tor space over K (= R or C) if

1. (x+y) + z = x + (y+2), 2. (au)x = alux),
3. Alx+y) = Ax + Ay, B,  (A+u)x = AX + px,

5. x+y =y + X, 6. 1 x = x

for all x,y,2 6 X and A,y e K.

REMARK 1.2. If X is a generalized vector space, then we
write - x = (-1)x for every x € X.
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REMARK 1.3. If X is a generalized vector space and
there exists an element 0 ¢ X (= ¢ X) such that x + 0 = x
(X + » = o) for all x € X, then we say that X has a zero (an
infinity), or that X is a generalized vector space with zero
(infinity).

Note that in this case ( (=) is unique and A0 = 0
(Ao = =) for all A e K, since we have 00 = 00 + 0 = 00 + 10 =
= (0 + 1)0 =10 = 0 (0w = (=1 + 1) = (<“1)w + 1o = = ® 4 ® = ©),

- REMARK 1.4. If X is a generalized vector space over K
without zero (infinity) and Xe¢ = X U {0} (X_ = X U {=}), where
0 # X (o ¢ X), then by defining x + 0 = 0 + x = x (x + @ =
@+ x = «) and A0 = 0 (Ao = «) for all x € X¢ (x € X, ) and
A e K, Xo (X_) becomes a generalized vector space over K with
zero (infinity).

Therefore it is not a severe restriction to. suppose
that a generalized vector space has a zero and an infinity. Note

that a nontrivial vector space cannot have an infinity.

THEOREM 1.5. Let X be a generalized vector 8pace over
K and © € X x X such that '

8(x) = {y e X: y + 0x = y)
for all x € X. Then © i8 a preordering on X such that
O(x) + B(y) = 6(x + y) and AB(x) < 6(ux)

for all x,y € X and A,u e K. Moreover, ©(x) i8 a generalized

vector space K with zero for every x € X.
PROOF. Simple computation.
REMARK 1.6. Note that the relation © ! has the same

properties except that the generalized vector space © !(x) need

not have a zero.
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THEOREM 1.7. -Let X be a generalized vector space over
Kand E = 0N 87!, Then E {8 an equivalence relation on X such
that

E(x) ; E(y)  E(x+y) and AE(x) < E(uxs
for all x;y €6 X and A,u e K, Moreofer,
E(x) = x + 8°¥(x) = {y e X: 0x = 0y},
and E(x) i8 a vector space over K for every x ¢ X.

PROOF. Left to the reader. (To check that the generali-
zed vector space E(x) is actually a vector space, note that 0x
is the zero element of E(x) and y - y = 0y = 0x for all yeE(x).)

REMARK 1.8. The relations © and E will be called the
canonical preordering and the canonical eqﬁivalence on X, respec-
tively.A )

The quotient set X/E, which can also be made into a gene-
ralized vector space in a natural way, will be called the canoni-
cal-decomposition of X. ' B

Note that by using the canonical decompdsition, each ge-
neralized vector space can be viewed as a union of disjoint vec-

tor spaces.

REMARK 1.9. It is worth mentioning that if X is a gene-
ralized vector space, then

(i) X has a zero if and only if e(x) = X for some

x 6 X, or equivalently n 07 '(x) ¥ ¢;
xeX

_ (ii) X is a vector space if and only if E(x) = X for
some x ¢ X, or equivalently E = X x X.

EXAMPLE 1.10. Let X be the family of all linear mani-
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folds in a vector space X over K. For x + M, vy + N € X and
A 6 K, define (x + M) + (y + N) = (x + y) + (M + N) and Alx + M)
= Ax + M. Then X is a generalized vector space over R with zero
and infinity such that
0(x + M) = {y + N & X: M e N},
for all x + M e X.
REMARK 1.11. Note that we have
E(x + M) = X/E
for any x + M 8 X, and X can be embedded into X such that
X = X/{0} = EC({o)).
EXAMPLE 1.12. Let L = L(X,Y) be the family of all line-
ar relations from one vector space X into another Y over K {6}.
For S,T ¢ . and A € K, define the relations S + T and AS from X
into Y by

(s +'T)(x) = S(x) + T(x) and (AS)(x) = S(Aix).

Then { is a generalized vector space over K with zero and infi-
nity such that

9(S) = {T ¢ L: S(0) = T(D))}
for all S e L.

EXAMPLE 1.13. Let L = L(X,X) be the family of all
functions f from one generalized vector space X into another Y
over K which are linear in the sense that

f(x + y) = £(x) + £(y) and £(ix) = Af(x)
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for all x,y € X and A e K. For f,g ¢ L and A ¢ K, define the
functions f + g and Af on X by

(f + g)(x) = £f(x) + g{x) and (Af)(x) = af(x).
Then L is a generalized vector space over K such that
(f) ={gel:gecl-f}

for any I e {e,E,e"} and f ¢ L.

REMARK 1.14. Note that if £ & L(X,Y) and I e {0,E,0 '}

then f« [ = . f.
’ Note also that if X is, in addition, a vector space,
then for any g e L(X,Y) we have.g =+ f if and only if g(0) e
F(£(0)).

The importance of Example 1.13 lies mainly in the fol-
lowing reduction principle.

THEOREM 1.15. PFor S e L(X,Y), define the function ¥y
on X by

¢S(x) S(x).
Then the mapping
S » Y

18 a linear injection from L(X,Y) onto L(X,Y).
PROOF. Straightforward computation.
2. GENERALIZED PRESEMINORMED SPACES

DEFINITION 2.1. A real-valued function p on a generali-
zed vector space X will be called a preseminorm on X if
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(i) lim p(Ax) = 0 for all x e X;

A+D
(ii) p(ax) < p(x) for all |A|< 1 and x € X;
(iii) p(x + y) < p(x) + p(y) for all x,y e X.

REMARK 2.2. A preseminorm p on X will be called a semi

norm if p(Ax) < [A|p(x) for all A € K and x e X.

THEOREM 2.3; Let p be a preseminorm on X and x,y e X.
Then

1. p(0x) = 0, 2. p(x) <p(iux) for all x| <|ul,

3. px) >0, 4. pCax) = p(x) for all |A] = 1,

5. p(nx) < np(x), and n 'p(x) < p(n~'x) for all inte-
ger n >0,

6. p(x - y) < plx - z) + p(z - y) for all z e e;‘(x)
U e (y).

PROOF. Repeat the argument given in the proof of [8,
Theorem 1.3], or use the canonical decomposition of X.

REMARK 2.%. Note that if p is a seminorm on X, then we

also have p(Ax) = |A|p(x) for all A e K and x € X.

DEFINITION 2.5. . An ardered pair X(P) = (X,P), where X

18 a generalized vector space over K and P i8 a nonvoid family

of preseminorms (seminorms) on X, will be called a generalized

preseminormed (seminormed) space over K.

If X(P) is a generalized preseminormed space and

re {6;E,0°'},
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then the weakest topology T; on X for which all the balls
Bp(x,r) = {y elN(x): p{x -~ y) < r},

where p 6 P, x 6 X and r > 0, are open will be called the
canonical - topology induced by P on X.

REMARK 2.6. If X(P) is a preseminormed space, then by
(ii) in Remark 1.9, the topology T; is identical to the topolo-
gy Tp given in [8, Definition 2.1].

THEOREM 2.7. Let X(P) be a generalized preseminormed
space and x € V © X. Then the following propertiee are equiva-
lent:

(i) V i8 a neighborhood of x in X(T;);

(ii) there exist {pk}ﬁﬂ1 < P and v>0 such that
N ,
r
n B. (x,r)c V.
Py
k=1 .
PROOF. Straightforward, but a lengthy computation- with
balls which needs (6) from Theorem 2.3 and the fact that I' is a
-preordering.

REMARK 2.8, Note that if P is directed in the sense
that for each p,,p; € P there exists p e P such that p, < p and
P2 < P, then (ii) can be simplified.

REMARK 2.9. By Definition 2.5 and Theorem 2.7, it is
clear that

-1
_ 6 0
Tp = sup{¥,.Tp. 1,

namely, we have
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E e o~
Bp(x,r) = Bp(x,r) fn Bp (x,r)

for any pe€ P , x e Xand r > 0.

THEOREM 2.10. Let X(P) be a generalized preseminormed
space, (xc)a net in X and x € X. Then the following properties
are equivalent:

(4)  x ¢ limx, in X(T3)5

a a

(££) x e lim F-l(xa) and lim p(x, - x) = 0 for all
p 6 P.

PROOF. This is again -an immediate consequence of Defi-
nition 2.5 and Theorem 2.7. (Recall that

Lim M i(x,) = U n P lx
o a f~u
THEQREM 2.11. Let X(P) be a generalized preseminormed
space over K, and consider X to be equipped with the topology
I;. Then
() the addition + €8 a continuous mapping of X x X

B).)

into X;
(it) the scalar multiplication - i8 a eontinuoue map-
ping of K x X into X.

PROOF. Repeat. the argument given in the proof of {8,
Theorem 2.6]), and use that ' is compatible with the above opera-
tions.

THEOREM -2.12. Let X(P) be a generalized preseminormed
space and p €eP - Then

(i) ‘P €8 upper semicontinuous for Tg; .
(i) p t8 lower semicontinuous for TP

(ii1) p e eontinuous for Tg.
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PROOF. If x & lim x, in X(Tg), then by Theorem 2.10
a

p(xa) < p(xu - x) + p(x),

for all sufficiently 1large a, and lim p(xa - x) = 0. Hence
a

lim p(xu) < p(x)
a
which is equivalent to (i).
Assertion (ii) can be proved quite similarly, and asser-
tion (iii) follows immediately from the former ones.

THEOREM 2.t3. Let X(P) be a gemnenmalized preseminormed
8pace. Then the topology induced by T; on E(x) 18 identical to
TPlE(x) for every x €& X.

PROOF. This can be' checked easily by using Theorem 2.7
or 2.10. (For Y = X, we define P|Y = {p|Y: p & P}.)

THEOREM 2.14. Let X(P) be a generalized preseminormed
space, and consider E(x) to be equipped with tﬁe tapology TPIE(x)
for every x ‘e X. Then Tﬁ is the strongest (weakest) topology on
X for which the identity mapping of E(x) into X te continuous
{open) for every x e X.

PROOF. This is again gquite obvious by Theorem 2.10.
(For some relevant facts, see [2, VI, 8] and [7].) -

COROLLARY 2.15. Let X(P) ba a goemeraliaed preseminormed
space, and consider X to be equipped with the topology TE. Then
a funetion f from X into a topological space Y 18 continuous
(open) if and only if its restrictiom to E(x) is continuous
{open) for every x e X.

DEFINITION 2.16. 4 family P of preseminorms on X will be
called separating tf for each x € X with x # 0x there exiats
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p € P such that p(x) #0.

In particular, a. preseminorm (seminorm). p will be called
a prenorm (norm) if the singleton {p} is separating.

THEOREM 2.17. Let X(P) be a generalized preseminormed
space. Then the topology TE 18 Hausdorff if and only if P is se-
parating. '

PROOF. This follows at once from Theorem 2.14% and [8,
Theorem 2.10].

EXAMPLE 2.18. Let X(P) be a preseminormed (seminormed)
space, and for each p € P , define the function p on X by

p(x + M) = inf p(x + m).
meM

Then i(é), where 5 = {p: p & P}, is a generalized preseminormed
(seminormed) space.

By Remark 1.11, only the subadditivity of p needs a
proof. If x'+ M, vy + N ¢ X, then we have

P((x + M) + (y + M)) <plx +y +m + n) <plx +m) +
+ p(y + n)
for all m ¢ M and n € N, whence it is clear that
5((x +M) + (y + N)) <plx + M) + ply + N).
REMARK 2.19. Note -that if

X +Me l:m (xa + Ma)
. -1
in X(T9) @18 )), and M"(M”) is a linear subspace of X such
P . a

that M, © M_ c M < M) for each a, then we also have
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x +Me6lim (x + M%) (x + M* ¢ lim(x + M ))
a a a . © a

. .- -1
in xcrg) (X(TS .

REMARK 2.20. It is also noteworthy that if P is direc-
ted, then we have

Xx +Melim (x + M)
a a a

in X(f%), if and only if, there exists a, such that

x + M ¢ 1im (xu + Ma)
. a0l o
in X/M, with respect to the usual quotient topology.
'~ "For a proof, see [9, Theorem 8.2 and Corollaries 3.5 and
8.6].

REMARK 2.21. It is well-~known that the quotient topology
on X/M is Hausdorff if and only if M i# a closed subspace of X.
Hence, by Theorem 2.17, it is clear that if P is directed, then
; is separating if and only if each linear subspace of X is clo-
sed. Since this can happen only in some very particular cases, we
shall also need the following modification of Example 2.18.

EXAMPLE 2.22. Let X(P) be a preseminormed (seminormed)

space,
X = {x +M ¢ X: X \' M e Tpl)s

and consider X to be endowed with the modified addition defined
by

(x + M) + (y + N) = (x+y) + M+ N

and the usual scalar multiplication given in Example 1.10. Then
X(P), where P = P[X, is a generalized preseminormed (seminormed)
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space with zerc and infinity such that

0(x + M) {y + NeX : M cN}

for any x + M € X. Moreover, P is separating if P is directed.
To check the first assertion, note that for any A,B,C <
c X

A+B+C=A+B+C=A+B+C

since TP is translation-invariant. Moreover, that for closed
linear subspaces M and N of X, M + N = N is equivalent to M <N.
The second assertion is immediate from Remark 2.21.

3. CONTINUITY AND BOUNDEDNESS

DEFINITION 3.1. A function f from one generalized pre-
seminormed space X(P) into another Y(Q) will be called MNeconti-
n?ous (at x) if £ i8 continuous (at x) for the topologies f; and
TQ'

THEOREM 3.2. Let f be a linear funetion from one gene-
ralized preseminormed space X(P) into anothar Y(Q) and [ = 0 or
E. Then the following properties are equivalent:

(t) f i8 M-continuous;

(i) f t8 M-continuous at Ox for every x € X;

(it1) qe<f i8 T-continuous at 0x for every x € X and

q € Q.

PROOF. The implication (i) => (ii) is trivial. Moreover,
by Theorems 2.12 and 2.3, it is clear that (ii) implies (iii).
To prove that (iii) also implies (i), suppose that (iii)
holds and x € lim x, in X(Th). Then, by Theorem 2.11,
o

lim q(f(x ) = £(x)) = lim(q-f){x, - x) = (q+f)(0x) = 0
o o
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for all q € Q. Hence, by Theorem 2.10 and Remark 1.1, it is
clear that f(x) € lim f(xu)'in X(T;). Consequently, (i) holds.
a
REMARK 3.3. Also by Theorem 2.10, it is clear that if
f is MN-continuous for ' = @ or e", then f is also E-continuous.

THEOREM 3.4. Let f be a linear function from one gene-
ralized preseminormed space X(P) with zero into another Y(Q).
Then the following properties are equivalent:

(<) f 78 ©-continuous at 0;
(i)  if lim p(x ) = 0 for all p € P, then lim (q-£)(x,)
= 0.for all q & Q; @ o

1

(iii) £ is F=continuous for any [ € {6,E,0 '}.
PROOF. Observe that o(0) = X, and use a similar argu-
ment as in the proof of Theorem 3.2.

REMARK 3.5. Note that impliecation (ii) => (iii) does
not requires X to have a zero.

THEOREM 3.6. Let f be a linear function from one gene—
ralized seminormed space X(P) with zero into another Y(Q). Then

the. following properties are equivalent:

(<) f 28 @-continuous;
(i) for each q € Q, there exist {Pk}zri <P and
M > 0 such that

qef < M max Py
1<k<h

PROOF. By Theorem 3.4, it is clear that (ii) implies
(i). Suppose now that (i) holds and q e Q. Then, by Theorem 3.2,
p = q+f. is @-continuous at 0. Thus, by Theorem 2.7, there exist

{pk}£=1 < P and r > 0 such that with the notation p = 12§§h Py
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Bg(o,r) e (1-1,10)

holds. Since 6(0) = X, this is equivalent to the statement that
p(x) < r implies p(x) < 1. Hence, using a standard argument on

seminorms, it is easy to infer that p < % P.

DEFINITION 3.7. Two nonvoid families P and Q of prese-
minorms on X will be called T—equivalent if T; =Tn.

If P and Q are M-equivalént for any [ & {6,E,07'}, then
we 8hall 8imply 8say that P and Q are equivalent.

REMARK 3.8. TUsing the particular case of the above re-
sults when X = Y and f is the identity function of X, one can
obtain several necessary or sufficient conditions for the [-eq-
uivalence of P and Q with various TI.

For instance, Theorem 3.4 together with Remark 3.5
shows that P and Q are equivalent if for any net (xa) in X,

1%m p(xa) = 0 for all p € P if and only if lgm q(xa) = 0 for all
q € Q. This simple fact can be used to prove the following impor-
tant

THEQREM 3.9. Let P be a nonvoid countable (finite) fa-
mitly of preaeminorms (semitnorms) on X, then there exists a prese-
minorm (seminorm) p on X such that P and {p} are equivalent.

PROOF. If P = {p } _,
w m

p= ] min {p, 2™"} (resp. p = | P -
n=1 : k=1

To check that p has the required property,break the proof into a

(resp. P = {pk}£=1), define

succession of steps according to [8, Theorem 3.6].

REMARK 3.10. Note that p is a prenorm (norm) if and
only if P is separating.

DEFINITION 3.11. 4 subset A of a generalized preseminor-
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med space X(P) will be called bounded if A = ¢ or

1lim sup p(Ax) = 0O
A0  xeA

for all p e P.

REMARK 3.12. Property (i) in Definition 2.1 implies
that each finite subset of a generalized preseminormed space
X(P) is bounded.

REMARK 3.13. If A is a bounded subset of a generalized
preseminormed'space_X(P), then by (5) in Theorem 2.3, it is cle-
ar that sup p(A) < +o for all p ¢ P . Note that if X(P) is a
seminormed space, then the converse is also true.

REMARK 3.14. It is also noteworthy that if A is a boun-
ded subset of a generalized preseminormed space X{P) such that
nA c A for all integers.n > 0 (or more specially A + A = A), then
pfx) = 0, for all x € A and p € P, and thus, in particular, x =
= 0x for all x ¢ A, if P is separating.

THEOREM 3.15. Let X(P) be a generalized preseminormed
space over K with azero and Ac X, Then the following propertias
are equivalent:

(i) A ie a bounded subset of X(P),
(i) for each neighborhooa V of 0 in X(T ). there
exists an integer n > 0 such that A c nV;
(iid)  if (x ) 8 a net in A and (Aa) i8 a net in K such
that.limxcl = 0, then 0 e llm Aax in XTTP).
a a
PROOF. The implications' (i) => (ii) and (ii) => (iii)
are quite obvious by'Theorem 2.7 .and (2) in Theorem 2:.3.
To prove that (iii) also implies (i), suppose indirectly
that (iii) is true, but (i) is false. Then, there exists‘e>> 0
such that for each integer n > 0, -there exist lxh| < n~' and
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x, A such that p(A X, ) » ¢ . Hence, by Theorem 2.10, it is
clear that 0 ¢ iiﬂ Anx in X(Te) which contradicts (iii).

DEFINITION 3.16. A linear function f from one generali-
sed preseminormed space X(P) into another Y(Q) will be called
bounded if f£(A) i8 a bounded subset of Y(Q) for every bounded
subset A of X(P).

THEOREM 3.17. Let f be a ©-continuous linear function
from one generalized preseminormed space X(P) with zero into
another Y(Q). Then f is bounded.

PROOF. Apply (iii) in Theorem 3.15. (Note that only the
homogenity of f is essential.)

COROLLARY 3.18. If P and Q are 6-equivalent families of
preseminorms on a generalized vector space X with sero. Then
X(P) and X(Q) have the same bounded sets.

To establish a certain converse to Theorem 3.17, we need
the following

LEMMA 3.19. Let X(P) be a generalized preseminormed
epace and (xn) be a sequence in X. Then, for I = © or E, the fol-
lowing assertions hold:

(£)  If lim x # ¢ in X(TD), then {x )7, i& a bounded
subset of X(P). e

(i) If Ox e 11m X, in X(Tr) for some xeX and P is coun-
table, then there extata an unbounded nondecreasing aequence

(kn) of positive- tntegera such that 0x e lim knxn in X(T ).
n-+o

PROOF. Suppose that x 6 %Eﬂ X in X(T;), and let p e P
and €>0. Then, by Theorem 2.10, there exists n, such that
p(xn - x) < €37} for all n > ny. Moreover, by Remark 3.12, there
exists 0 < § <1 such that p(lxn - Ax) < €37! if n < ng¢, and
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p(Aix) < €3~! for all [A| < &§. Hence, we can infer that

sup p(Ax ) € sup p(Ax - AX) + sup p(x - x) + p(Ax) < ¢
n<nho n>ng

for all |A| < §. Thus lim sup p(Ax ) = 0.
A0 n r
Suppose now that 0x & lim X in X(Tp) and P is countab-

n-re
le. Then, by Theorem 3.9, we may suppose that P = {p}. Moreover,

by Theorem 2.10, lim p(xn)-- 0. Thus, there exists a subsequence
n-o

-2 _ _ .
(xnk) of (xn) such that p(xp ) < k™" if n > n . Put k =1 if
n € n;, and kn = k if n, < n< Mygt- Then, for n, <.n <,nk+1,

- -1
p(knxn) = p(kxn) < kp(xn) < k7,

and thus llm p(k X ) = 0. Hence, again by Theorem 2. 10, it is
clear that Ox € llm k n*n in X(TP)
n-+oo
THEOREM 3.20. Let f be a bounded linear funetion from
one generalized preseminormed space X(P) with zero into another
Y(Q), and suppose  that P is countable. Then f is T-continuous
for any ' & {0,E,07'},

PROOF. By Theorem 3.4, we need show only that f is
©-continuous at 0. Moreover, since X(Tg) satisfies now the first
axiom of .countability by Theorem 2.7, we may use sequences in-
stead of nets.

Suppose that (xn) is a sequence in X such that
06 11m x, in X(Te) Then, by (ii) in Lemma 3.19, there exists
a null sequence (A ) of positive numbers such that 0 e lim An X

n*®
in X(T ). Moreover, by (i) in Lemma 3.19 {An‘xn}n is a bounded
subset of X(P). Thus, by the assumption, {f(xn‘xn)}n= is a boun-
ded subset of Y(Q). Hence, using (iii) in Theorem 3.15, we can

infer that

. =1 Coa
£(0) & 1lim Anf(kn xn) = 1lim f(xn)

n-+o N-+oo

. %]
in Y(TP).
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EXAMPLE 3.21. Let X be a generalized vector space and
Y = Y(Q) be a generalized preseminormed (seminormed) space. Let
A be a nonvoid family of nonvoid subsets of X, and denote by
BA = BA(X,Y) the family of all functions f & L(X,Y) for which
f(A) is a bounded subset of Y(Q) for every A ¢ A . Consider BA
to be endowed with the operations given in Example 1.13, and
for each A e A and q e Q, define the function q, on BA by

qA(f) = sup q(f(x)).
i XeA
Then BA(QA)’ where

QA={qA3AGAsqu}s

is a generalized preseminormed (seminormed) space.
Note that this is an immediate consequence, and also the
main motivation, of Definition 3.11.

REMARK 3.22. If X = X(P) is also a géheralized presemi-
normed space and A is the family of all nonvoid bounded subsets
of X, then BA(X,Y) is just the family of all bounded linear
function from X into Y.

Thus, if in addition X has a zero and P is countable,
then by Theorems 3.18 and 3.20, BA(X,Y) is identical to the fa-

mily of all @-continuous linear functions from X into Y.

REMARK 3.23. Note that if Q is directed, then QA is
also directed.
Note also-that if Q is separating and UA = X, then QA

is also separating.

REMARK 3.24. 1In connection with Example 3.21, it is
also useful to note that if B = A such that for each A ¢ A ,
there exist {Bk}£=1 < B and a family {Ak}£=1 of bounded subset

of K such that n

A =] A B
k=1

k’
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then Q4 and Qg = {qB : Be B, q e Q} are equivalent.
Thus, in particular, if X = X(P) is-a generalized semi-
normed space with zero such that P = {p}, A is the family of all

nonvoid bounded subsets of X and

B=1{xs6X:plx) <1},

then Q4 and Qp = {qB : q e Q} are equivalent.
To check the above assertions use Remark 3.8 and Theo-
rems 2.3 and 3.15.

4, COMPLETENESS

DEFINITION 4.1. A4 net-(xa) in a generalized preseminor-—
med space X(P) will be called a F-Caushy net if

(£)  Llim MTHx ) # ¢;
3 .

(i) 1lim plx_ - x

e a B) = 0 for all p e P.
a,B

REMARK 4.2.- Note that if X has a zero (infinity) and
r = o(o-1), or X is a vector space, then condition (i) is auto-
matically satisfied.

THEOREM 4.3. Let (xa) be a net in a generalized prese-
minormed 8pace X(P) and T = © or E. Then the following proper-

ties are equivalent:

(i) (xa) 128 a -Cauchy net in X(P);

(46)  0x & lim(x, - x,) in X(Tp) for some x & X.
{a,B)

"PROOF. This is quite obvious by Theorem 2.10. (Note
that the implication (i)=> (ii) is also true for I' = o ')
COROLLARY 4.4, Let f be a Mcontinuous linear function

from one generalized preseminormed space X(P) into another
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Y(Q) and (xa) be a T=Cauchy net in X(P) with [ = © or E. Then
(f(xa)) i8 a MT=Cauchy net in Y(Q).

PROOF. By Theorem 4.3, Ox € lim (x_ - xB) in X(T;)
(a,B) a
for some x & X, Hence, since f is -continuous, it follows that

0f(x) = f(0x) e lim f(xa - xB) = lim (f(xa) - f(xs))
(a,B8) (a,B)

in Y(Tg). Thus, again by Theorem 3.4, (f(x)) is a -Cauchy net
in Y(Q).

COROLLARY 4.5. Let P and Q be Mequivalent families of
preseminorma on X with [ = © or E. Then X(P) and X(Q) have the

saame T-Cauchy nets.

COROLLARY 4.6. Let (x ) be a net in a generaltzed pre-
saeminormed space X(P) 8uch that lém X # ¢ i x(T ), where
F = © or E. Then (xa) i8 a [—Cauchy net in X(P).

PROOF. If x e 1lim X, in X(T;), then we also have
5 :

x € 1im x_and x e 1lim x,, and hence by Theorem 2.11 0x = x - x
(G,B) @ (a’B B
6 lim (x - x_,) in X(TP). Thus, by Theorem 4.3, (x ) is a [-Ca-
(a,B) a B . a
uchy net in X(P).

THEOREM 4.7. Let (x ) be a I'- Cauchy net tn a generali-
zed preseminormed 8pace X(P) and x € lim ~ (x ) such that x
i8 a cluster point of (x ) in X(Tg") %nen X e 11m x, in X(T ).

PROOF. A standard argument and again Theorem 2.10 can
be applied.

DEFINITION 4.8. A4 subset A of a generalized preseminorm—

med space X(P) will be called T-complete if le x, NA Z ¢ for
any net (xa) in A which is a —Cauchy net in x(P)
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In particular, the generalized preseminormed space
X(P) will be called I-complete if X is a M-complete subset of
X(P).

THEOREM 4.9. Let X(P) be a generalized preseminormed
space. Then the following assertions hold:

(i) If A is a closed subset of X(Th) and X(P) is
F-complete, then A is a [—complete subset of X(P).

(1) If A 28 a T-complete subset of X(P) with ' = ©
or E, and Tg 18 Hausdorff, then A i8 a closed subset of X(Tg)J

PROOF. Left to the reader.

THEOREM 4.10. Let X(P) and Y(Q) be generalized pre-
geminormed spaces and I = O or E. Suppose that there exists a
linear injection £ from X onto Y such that both f and £f~}! are
[-continuoue. Then X(P) i8 l-complete if and only <if Y(Q) s
F-eomplete.

PROOF. This is quite obvious by Corollary 4.4.

COROLLARY 4.11. Let P and Q be M-equivalent families
of preseminorms on X with I = O or E. Then X(P) i8 -complete
if and only tf X(Q) is I-complete.

THEOREM 4.12. Let X(P) be a a generalized preseminormed
space with infinity. Then X{P) is 0 '-complete.

PROOF. For any net (x ) in X, we have x_ € 0 ' (=) and

, p(xa - ) = p(e) = p(Dw) = 0

for g}l a and p ¢ P, whence by Theorem 2.10, » ¢ lim X, in
X(Tp ). a
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COROLLARY 4.13. Let X(P) be a preseminormeg 8pace.
Then the generalized preseminormed spaces X(P) and X(P) are

07!~ complete.

COROLLARY b4.1b4. Let X be a generaliazed vector 8pace,
Y = Y(Q) a generalized preseminormed space with infinity and
A a nonvoid family of nonvoid subsets of X. Then the generali-
zed preseminormed 8pace BA(X’Y)(QA) i8 e_l-complete.

PROOF. Note that the function taking the value = at
every x € X belongs to BA(X,Y).

COROLLARY 4.15. Let X be a generalized vector space,
Y = Y(Q) a preseminormed space, and A a nonvoid family of non-
void qubsets of x.-Thin fke generaglized preseminormed spaces
B, (X,¥7(Q,) and B,(X,¥)(Q;) are 06~'-complete.

THEOREM 4.16. Let X(P) be a generalized preseminormed
gpace:. Then X(P) is8 E-complete if and only if the preseminormed
space E(x)(P|E(x)) i8 complete for every x & X.

PROOF. This is immediate consequence of Definitions
4.1 and 4.8 and Theorem 2.10.

COROLLARY 4.17. Let X(P) be a complete preseminormed
8pace, 8uch that P i8 countable and directed. Then the generali-
zed preseminormed spaces X(P) and X(P).are E-complete.

PROOF. 1In this case, all the quotient spaces of X are
complete [ 3, Lemma 11.3], and thus Theorem 4.16 can be applied.
(Recall that E{x + M) = X/M for any x + M € X or X.)

REMARK 4.18. In a continuation of [9], we shall prove
that if X(P) is as in Corollary 4.17 and f is a linear function
from X onto Y, then
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Y(Q) = 1lim projf_,X(P)

is also complete. This preseminormed analogue of {3, Lemma
1.13] can be used to derive Corollary 4.17 more directly.

THEOREM 4.19. Let X be a vector aspace, ¥ = Y(Q)arl -
~complete generalised preseminormed space with [=E or 9-1, and
A a family of nonvoid subasets of X such that X = U A. Then the
generalized preseminormed space BA(X,Y)(QA) 18 atso Meomplete.

PROOF. Let (fa) be a M=Cauchy net in BA(QA), where
BA = BA(X,Y). Then, since A covers X, (fa(X)) is a M-Cauchy net
in Y(Q) for each x & X. Thus, since Y(Q) is -complete, we may
define a relation F from X into ‘Y such that

F(x) = lim £ (x)
a a

in Y(TE) for all x e X. Using Theorem 2.11, it is easy to see
that F is linear in the sense that

F(x) + F(y) = F(x+y) and AF(x) = F(ax)

for all x,y 6 X and X e K. Moreover, repeating the argument
used in the proof of [ 6, Theorem 4.1l , we can state that F has
a linear selection f.

In the sequel, we shall show that f e lim £_in B,(Tp ).
For this, suppose that ¢ 6 Q, A ¢ A and ¢ > 0. Since f(0) ¢
6 l%m fu(O) in Y(Tg), there exists a4 such that fu(O) e M(£(0))
for all q » oay. Hence, by Remark 1.14, it follows that

fa(x) e MN£(x)

for all a»ue and x e X. Moreover, since (fa) is a r-Cauchy net
in BA(QA)’ there exists a; »a, such that,q(fa(x) - fB(x)) < 371¢
for all a,B8 2 a; and x e A. Hence, using Theorem 2.12, we can
infer that
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Q£ (x) - £xN <K Lim qUf (x) - £,(x)) <37 "¢
B
for all a # a; and x € A. On the other hand, since fal(A) is a

bounded subset of Y(Q), there exists 0 < § < 1 such that

B

: =1
q(Afal(x)) < 2 %

for all |A]< & and x e A. Thus, we have

q(Af(x) < q(fd1<X) - f(x)) + q(Afal(x)) < €

for all |A|< & and x € A. Hence, it is clear that f e B,. More-
over, from the above results by Theorem 2.10, it follows, at
_ . . r
once, that we also have f e 1&m fa in BA(TQA)'
REMARK 4.20. The same assertion can be proved if X is
a generalized vector space, but Tg is Hausdorff.

COROLLARY 4.21. Let X be a vector spacé, Y = Y(Q) a
complete preseminormed space Buch that Q i8 countable and direc-
ted, and A a family of nonvoid subsets of X suc@_t@at X =UA
Then the generaliszed preseminormed spaces BA(X,Y)(Q ) and
BA(X,?)(aA) are E-complete.

PROOF. In this case, by Corollary 4.17, Y(Q) and ¥(Q)
are E-complete, and thus Theorem 4.19 can be applied.

5. APPLICATIONS TO LINEAR RELATIONS

THEOREM 5.1. Let S be a linear relation from one pre-
seminormed space X(P) into another Y(Q) with Q directed. Then
the following properties are equivalent:

(<) S i8 lower semicontinuous [ 5];
(it) . 18 O-continuous as a function of X(P) into
Y(Q)
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PROOF. This follows immediately from {9, Theorem 2.1]
and Theorem 3.2, since we have

*'_'.o
q*8=q-vg

for any q & Q.

REMARK 5.2. Note that implication (i) => (ii) dees. not
require Q to be directed..

Note also that if (ii) holds, then by Theorem 3.4, Ys
is M-continuous for any I" e {6,E,87'}.

DEFINITION5.3. A4 Ilinear relation S from one pregemi-—
normed space X(P) into another Y(Q) will be ecalled bounded if

lim sup(q*S)(Ax) = 0
A+0 xeA

for every nonvoid bounded subset A of X(P) and q e Q.

REMARK 5.4, Note that if a linear relation from one
preseminormed space into another maps bounded sets into bounded
sets, then it is necessarily a function.

This fact and the forthcoming assertions explain the
above definition.

THEOREM 5.5. Let S be a linear relation from one pre-
seminormed epace X(P) into another Y(Q). Then the following pro-
perties are equivalent:

(i) S i8 bounded; ..
(1<) 0, i8 bounded as a funetion of X(P) into Y(Q).

PROOF. This is an immediate consequence of the corres-
ponding definitions.

THEOREM 5.6. Let S be a linear relation from one pre-
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seminormed space X(P) into another Y(Q). Then the following as-

sartions hold:

(1) If S i8 lower semicontinuous, then S 18 bounded.
(iz) If S i8 bounded, P ia countable and Q 78 direc-

ted, then S i8 lower semicontinuous.

PROOF. This can be derived at once from Theorems 3.17
and 3.20 by using Theorems 5.1 and 5.5 and also Remark 5.2.

THEOREM 5.7. Let X be a vector space and Y = Y{(Q) be
a pregeminormed (seminormed) 8pace. Let A be a nonvotid family of
nonvoid subsets of X, and denote BA = BA(X,Y) the family of all
relations S € L(X,Y) for which

1im sup(q*S){(ix) = 0
A0 xeA

for every A € A gnd q € Q. Coneider BA to be endowed with the
operationa given in Example 1.12, and for each A e A and q & Q,

define
qA(S) = sup (q * S)(x).
xX6A

Tﬁen BA(QA)’ where

Q4 = {qA : A e A,q e Q)

18 a generalized preseminormed (seminormed) space.

PROOF. Note that S € BA if and only if ¢g © BA(X,Y),
and moreover

qA(S) = qA(ws)
for any A 6 A, g € Q and S & BA'

REMARK 5.8. Note that if X = X(P) is also a preseminor-
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med spacé and A is the family of all nonvoid bounded subsets of
X, then BA(X,Y) is just the family of all bounded linear relati-
ons from X into Y.

Thus, if in addition P is countable and Q is directed,
‘then by Theorem 5.6, BA(X,Y) is identical to the family of all

lower semicontinuous linear relations from X into Y.

THEOREM 5.9. Let X bé a vector epace and Y = Y(Q) be a
preseminormed (seminormed) space. Let A be a nonvoid family of
nonvoid subsets of X, and denote by BA = aA(X,Y) the family of
all relations S € BA(X,Y) which are closed-valued ig the sense
that S(x) i8 closed in Y for every x € X. Consider B, to be
endowed with the modified addition defined by

(5 + Tx) = 50 ¥ T(%)

andﬁthe usual scalar multiplication given in Example 1.12;Thgn
~ A ~

BA(QA)’ where Q4 = QA |'BA, 18 a generalized pvreseminormed (se-
minormed) space with zero and infinity such that

0(S) = (T e-EA . SC0) =T(0)}

~

for every S e BA' Moreover, QA i8 separating i1f Q €8 directed
and UA = X. :

PROOF. Note that: the mapping

S moeg (s e BA)

-~
is a linear injection of B, onto BA(X’Y) which also preserves

the corresponding preseminorms.

THEOREM 5.10. Let X be a veetor 8space, Y = Y(Q) a pre-
seminormed space, and A a nonvotd family of nonvoid subsets of
E. Then Ehe generalized preseminormed spaces BA(X,Y)(QA) and
B, (X,Y)(Q4) are 0~ -complete.
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FPROOF. This is an immediate consequence of Corollary
4.15. )

THEOREM 5.11, Let X be a vector 8space Y = Y(Q) a com-
plete preseminormed space such that Q i8 countable and directed,
and A a family of nonvoid subsets of X such that X = UA. Then
the generalized preseminormed 8paces BA(X,Y)(QA)-and gA(X,Y)(aA)
are E-complete.

PROOF. This follows immediately from Corollary 4.21.
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REZ IME

UOPSTENI PRESEMINORMIRANI PROSTORI LINEARNIH
MNOGOSTRUKOSTI | OGRANITENE LINEARNE RELACIJE

. U radu se uvodi uopiteni véktorski prostor sa familijom
specijalnih funkcionela - preseminormi. Uvedeno uop3tenje omogu-
éava da se prenesu standardne teoreme o0 kompletnosti raznih pro-
stora linearnih funkcija na prostore linearnih relacija. Tako se
dokazuje i sledefe tvrdjenje:

Ako je B familija svih linearnih relacija od dole polu-
neprekidnih i zatvorenih vrednosti iz normiranog prostora X u
Banachov prostor Y, tada ie i B8 Banachov prostor, gde su opera-

cije definisane sa S,T € B
(5 + TIGO: = E?;;f:_;?;;,
(AS)(x): = S(Ax)
i normom

sl : = sup inf #yl.
IxlI<1 yeS(x)



