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ABSTRACT

In this papaer, we obtain existence, uniqueness and
approximation results of global random solutions for random non-
iinear integral and differential equatlons. The method used }n
this paper differs from that used in [11, [2], [3], [4], [5], [6],

(721, 81, (91, [10].
1. INTRODUCTION

It is well-known that the theory of random integral
and differential equations has widespread applications to many
practical problems.For appiications in hereditary mechanics,
telephone traffic theory, turbulence theory, population dynamics,
stochastic control, biology, chemical kinetics, etec., the reader
may consult [1 - 3]. Recently, Engl [3,4}, Ding [5,6], Lee &
Padgett [7,8], Itoh [9], and De Blasi & Myjak [10] have given
some existence theorems of random solutions for random nonlinear
integral and differential equations.
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2. PRELIMINARIES

Let (X,l+ll) be a separable Banach space and (Q,A,u)
be a complete o-finite measure space. A mapping x:2 + X is said
to be weak measurable (resp. measurable), if for any open (resp.
closed) subset B of X, x"'(B) ={w:x(w) e B} eA . Obviously, in
our setting, the weak measurability is equivalent to the measu-
rability (cf., e.g., [11]).

Let I = [to,to+al be a nondegenerate interval of the
real line R. We say that u:Q x I » X is a Carathéodory function
if for each t e I, u(-,t) is measurable and, for each w e Q,
u(w,*) is continuous. Analogously, K:Q@ x I x I x X » X is a Ca-
rathéodory function, if for each (t,s,x) € I x I x X, K(e,t,s,x)
is measurable and, for each w e 2, K(w,*,+,*) is continuous.

Let C(I,X) = {x: I » X| x is continuous, ixily = maxiix (£l .
Then ( C(I,X), quI ) is a separable Banach space. tel
Let C(Q x I,X) denote the set of all Carathéodory functions
u:Q x I » X and €(Q x I x I x X,X) denote the set of all Cara-
théodory funetions K:Q2 x I x I x K + X. :

LEMMA 2.1. [9]. A4 funection u e C(Q x I,X) if and only
if the funetion w + ulw,t), as a function from R into C(I,X),
i8 measurable, i-e. ule,t) is a C(I,X)-valued measurable functi-

on-.

LEMMA 2.2, [ 1], Let T:Q x X + X be a Charathdodory
funetion and let x:Q + X be measurable. Then T(*,x( )):0 + X s

a X-valued measurable function.
As a special case of Lemma 4.3. of [5], we have

LEMMA 2.3. Let K e C(Q@ x I x I x X,X). Then for any
u € C(Q x I,X), the function

t
J K(*,t,s,u(* s))ds
to

i8 C(I,X)-valued measurable.
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LEMMA 2. 4. LILet xo € C(Q x I,X) and K e C(f1 x I x I x

x X,X). Phen the random nonlinear integral operator defined by
t

(2.1) T(w,x(w,t)) = xalw,t) + [ Klw,t,s,x(w,t)ds !
t, '

satisfies the following conditions:

(i) for each x € C(Q x I,X), T(e,x(+,t)) 28 a C(I,X)-
-valued measurable,

(ii) for each w & f, T(w,=): C(Q x I,X) + C(a x I,X) is
continuous under the norm H°HI, whenever for all (t,8,x) € I x
x I x X, IKCw,t,s,x)I € M(w) where M:Q + (0,») i8 a given funo-
tion.

PROOF. Since x € C(8 X I,X) and K € C(2 X T x I x X,X),
from Lemma 2.1 and 2.3 it follows that conclusion (i) holds. By
the definition of T, we obviously have T(w,+): C(Q x I,X) + C(Q x
X I,X). Now suppose that {xn}n>0 =C(Q x I,X) and for each w € Q,
{x (w, s)} converges to x*(w,s) under the norm ll+ll;. By the
contlnulty of K, we have K(w,t, s,xn(w,s)) + K(w,t,s,x*(m,s)) for
each w € Q. Since IK(w,t,s,xnlw,s)) < M(m) for each w & Q4 an
easy application of the bounded convergence theorem shows that
for each w ¢ Q, A

t t
| Klw,t,9,% (w,8))ds [ Kw,t,s,x*(w,s))ds
to to

under the norm H-HI. Hence conclusion (ii) of Lemma 2.4.holds.

Let (X,d) be a complete metric space and T: X + X. For
each x e X, OT(x,O,m) = {T°x: n » 0} denotes the orbit of T at
X and, for any Bec X, Dd(B) = gup{d(x,y): x,y € B} denotes the
diameter of B.

LEMMA 2.5, Let T be a continuous self-mapping. Suppose
that for each x € X, Dd(OT(x,O,m)) < @, If there exist positive
tntegers p,q and a real number B € (0,1) such that for all
X,y € X
(2.2) d(TPx,Tly) < BD (0,(x,0,%) U Oply,0,e)).
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Then for each x e X, {Tnx}n>I0 converges to a unique fixed
point x* of T. '

PROOF. Letting &(t) = Bt, B & (0,1) in Corollary 6 of
[12] , we obtain, immediately, the conclusion of Lemma 2.5.

3. EXISTENCE UNIQUENESS CRITERIA OF GLOBAL RANDOM SOLUTIONS

In this section, we shall give the existence uniqueness
and approximation theorems of global random solutions for ran-
dom nonlinear Volterra integral equations and the Cauchy problem
of random nonlinear differential equations. -

The random nonlinear Volterra integral equation under
consideration has the form '

t
(3.1) x(wyt) = xolw,t) + [ Klw,t,s,x(w,s))ds

. o
where xo € C(R x I,X) and K € C(R x I x I x X,X).

A function x: 2 x I + X is said to be a global random
solution of the random equation (3.1), if x(w,t) satisfies the
random equation (3.1) and x e C(Q x I, X).

THEOREM 3.1. Let xo € C(Q2 x I,X) and K e C(Q x I x I x
x X,X), and suppoee the following conditione are satiasfied:

(A1) for each w € 2 and for all (t,s,x) e I x I x X,
IK(w,t,s,x)l < H(w}, where M:0Q + (0,») Za a given funotion.

(Az) thef% exist positive integers p,q and a funetion
L:Q » (0,») such that for each w € Q and for all (t,s) e I x I
and x(w,8), y(w,s) e C(Q x I,X), the following inequality holds:

NKCwst58, TP L (0w, x(w,8))) = Klwsts8:TF Xuw,y(w,s) NI <
(3.2)
< L) D“_"(OT(XKQ,S),O,w) v OT(y(w,s),U,m)),

t
whera Tn(w,x(w,t)) = xo(W,t) + f K(w,t,s,Tn-l(w,x(w,s))ds,
to
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n=1,2,..., and T (w,x(w,t)) = x(w,t).

Then the random equation (3.1} has a untque global random solu-
tion x* e C(Q x I,X) and for each x ¢ C(Q x I,X), the sequence

{Tn(m,x(m,t))}n>0 converges to x*(w,t) under the norm |+l for

each w ¢ Q.

PROOF. Clearly, for each fix w e @, (C(Q x I,X),H-HI)
is also a separable Banach space. For fixed w € Q, we shall
introduce a new norm on C(Ql x I,X) by

IxCo,t)l, = max e T(OT fxcu, ).
tel

Then we have -
e MW oty ()l < HxCa, )y < lixCw,

and hence [+l and fl«ll; are an equivalent norm. Now we shall
discuss the random equation (3.1). By (A,) and Lemma 2.4, the
random nonlinear integral operator T(w,+): (C(Q x I,X),H-HI) -+
+ (C(g x 1,X), I+ll;) is continuous and, so, T(w,+)

(C(a x I,X),llllg) » (C(Q x I,X),ll<ll4) is also continuous. From
assumption (A;), it follows that for each w eQ

NTP CwoxCwrt)) = T w,yCw,t DI, =

t
= max e-L(“)tH / K(wstss,TP Hwyx(w,s))) -
tel t,

- Kw,tsssT3 (w,y(w,8)))dsll <
t
<max [ e

tel t,

Llw)(s=t) o~Llw)s yyecy +.o, P Ly, x(w,8))) -

- KCuytys, T8 L(w,y(w,s)))lds <
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t
< L(w) max [ -eL(m)(S't)ds-D (OT(x(m,s),O,m) u
tel e,
0
-L(w)a

U Oply(w,s),0,=)) < (1-e Dy, (Op(x(w,8),0,%) u

] OT(y(w,s),O,w)) = B(w)D"."*(OT(x(m,s),O,m) U

y OT(y(w,s),O,M)),
where g(w) = (1 - e-L(w)a) < 1 for each w € 2. Since for each

w e Q and for all (t,s,x) e I x I x X, NK(w,t,8,x) < M(w), it
is easy to show that for each w e Q and for each x € C(q x I,X),
D".“*(OT(x(Q,s),O,ml < o. Thus from Lemma 2.5 it follows that
there exists a unique function x*: Q@ x I » X such that for each
fix w e R, x*(w,t) satisfies equation (3.1) and for each

x 6 C(R x I,X) thefsequence'{Tn(w,x(w,t))}n>0 converges to
x*(w,t) under the norm [l i, and so"{Tn(m,x(w,t))}n>l0 converges
to x*(w,t) under the norm H-HI. On the other hand, from Lemma
2.4 it follows that {.'I‘n(m,x(m,t)')}n},0 is a C(I,X)-valued measu-
rable function sequence. Aé the 1limit of C(I,X)-valued measurab-
le function sequence, x®*(w,t) is C(I,X)=-valued measurable. By
Lemma 2.1 we have x* e C(p x I,X). Thus x*(w,t) is a unique
global random solution of the random nonlinear Volterra integral
equation (3.1).

COROLLARY 3.2. et Xo © C(Q x I ,X) and K € C(Q x T x I x
x X,X), and suppose the following oonditions are satiefied:

(t) condition (A1) of Theorem 3.1 holds,

(i)  there exiats a funotion L:iQ + (0,®) such that for
each w € Q and for all (t,s) e I x I and x,y e C(Q x I,X), the
following inequality holds:

(3.3) IKCwstsssxCwss)) = Kluwstss,y(w,s)) <

< Llw)ellx(w,s) - y(w,sil.
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Then for each x(w,t) e C(q x I,X), the sequence {Tn(w,x(w,t)}h>l0
converges to a unique global random egolution x*(w,t) of the
random equation (3.1) under the norm H-HI.

PROOF. Clearly, corollary 3.2 is a special case of
Theorem 3.1 with p = q = 1.
Now we shall consider the Cauchy problem of a random

nonlinear differential equation:

dx(w,t)

—_— = f(w,t,x(w,t))
dt

(3.4)

x(w,0) = xolw)

where xo:2 + X is measurable and f:Q x I x X + X is a Carathéo-
dory function.

THEOREM 3.3. ILet x¢:0 + X be measurable and £:0 x I x
x X + X be a Carathéodory function. Suppose the following condi-
tions are satisfied:

(A7) there exiats a function M:Q -+ (0,») sueh that for
each w ¢ Q and for all (t,x) e I x X, [£f(w,t,x) < M(w),

(A7)  there exiet poditive integers p,q and a function
L:Q & (0,») such that for each w € Q and for all t e I and X,y e
e C(Q x I,X) the following inequality holds:

NECw,8 TP 1w, x(w,8))) = £Cuw,8,T9 1w,y (w,8) NI

< L(w) D“."(QT(x(m,SQ,O,m) U OT(y(w,s),O,w)),

where t
T wsxCwst)) = xw) + [ £(w,8,T" 1(w,x(w,8))ds,

T
n=1,2,..., and T%(w,x(w,t)) = x(w,t).

Then for each X e c(q x I,X), the sequence {T™(w,x(w,t))} >0
converges to a unique global random solution x*(w,t) of the ran-

dom Cauchy problem (3.4) under the norm |t-|l.
v

L
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PROOF. The problem of solving the random Cauchy prob-

lem (3.4) is known to be equivalent to that of solving the fol-
lowing random nonllnear Volterra integral equation:

t
(3.5) x(w,t) = xow) + [ £lw,s,x(w,s))ds .

te
From an application of Theorem 3.1 with xs(w,t) = xe(w) and
K(w,t,s,x) = f(w,8,x) for all t € I, it follows that there
exists a unique global random solution x*(w,t) of the random
nonlinear Volterra integral equation (3.5). Since the random
Volterra equation (3.5) is equivalent to the random Cauchy pro-
blem (3.4), therefore x*(w,t) is also a unique global random
solution of the random Cauchy problem (3.#).
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REZ IME

0 GLOBALNOM SLUTAJNOM RESENJU ZA SLUCAJNE INTEGRALNE
| DIFERENCIJALNE JEDNATINE

Dobijeni su rezultati o egzistenciji, jednozna&nosti i

aproksimaciji globalnog sluZajnog re3enja za slu&ajne nelinear-
ne integralne i diferencijalne jednadine, metodom razliditom od
onih u [1],[72] [ 3] ,[ 4] ,{ 5] 5[ 61 51 71,1 8] ,{ 91 ,[10] .



