Z B O R N I K R A D O V A Prirodno-matematičkog fakulteta Univerziteta u Novom Sadu Serija za matematiku, 14,2 (1984) REVIEW OF RESEARCH Faculty of Science University of Novi Sad Mathematics Series, 14, 2 (1984)

. A NOTE ON AN ITERATIVE PROCESS

Dragoslav Herceg*, Nenad Petrović**

*Prirodno-matematički fakultet. Institut za matematiku
21000 Novi Sad, ul.dr Ilije Djuričića br.4, Jugoslavija

**Viša tehnička škola, 21000 Novi Sad,
ul. Školska br.1, Jugoslavija

ABSTRACT

In this paper we consider the numerical solution of the equation f(x) = 0 on the interval $D = [a,b] \subset R$, for a real-valued function f, by the iterative process (1) from [1]. For this method we give some sufficient conditions for the convergence, and also prove the stopping inequality for n = 1,2,...

INTRODUCTION

We propose to consider the solution of f(x) = 0, $x \in D = [a,b] \subset R$, by the iteration

(1)
$$x_{n+1} = F(x_n, c), \quad n = 0, 1, \dots,$$

where

(2)
$$F(x,c) = x - \frac{f(x)}{2(f(x) - f(c))} \left(\frac{f(x) - 2f(c)}{f'(x)} + \frac{f(x)}{f'(c)} \right),$$

with a suitably chosen x_0 , $c \in D$. Method (1) is considered in

AMS Mathematic Subject Classification (1980): 65H05. Key words and phrases: Nonlinear equations, iterative method.

[1] with $x_0 = a$, c = b and $x_0 = b$, c = a, and some sufficient conditions for its converges are given there. We shall give some new sufficient conditions for the convergence of iteration (1) and for the stopping inequality

(3)
$$|\alpha - x_{n+1}| \le |x_{n+1} - x_n|, \quad n = 0, 1, \dots,$$

where $\alpha \in D$ is the solution of f(x) = 0.

We shall consider the iterative process (1) under the assumption that the equation x = F(x,c) has a root which coincides with those of f(x) = 0 in the interval D, and no others. First, we shall give some notations and assumptions.

Let the function f satisfy the following conditions:

(F)
$$f(a) < 0 < f(b)$$
, $f'(x) > 0$, $x \in D$.

These conditions imply that $f \in C(D)$ has one and only one root $\alpha \in (a,b)$. Let

$$D^{-} = [a, \alpha], D^{-}_{0} = [a, \alpha], D^{+} = (\alpha, b), D^{+}_{0} = [\alpha, b],$$

and let G(S,k), $k \ge 2$, be the class of functions

$$G(S,k) = \{f; f: S \subset R + R, f \text{ is } k \text{ times differentiable}$$

on $S, f^{(k)}(x) > 0, x \in S\}$.

For the iterative process $x_{n+1} = g(x_n)$, n = 0, 1, ..., the next theorem is well known. This theorem shall be used in the proof of the convergence of (1).

THEOREM 1. Let the equation x = g(x) have on D the unique solution α and let $g \in G(D_0^+,1)$. If $x_0 \in D^+$ satisfies $x_0 > g(x_0)$, then the sequence x_0, x_1, \ldots , generated by $x_{n+1} = g(x_n)$, $n = 0,1,\ldots$, converges to α and $\alpha \le x_{n+1} \le x_n$, $n = 0,1,\ldots$,

If we replace, in this theorem, D_0^+ by D_0^- , D^+ by D_0^- and $x_0 > g(x_0)$ by $x_0 < g(x_0)$, then the sequence x_0 , x_1, \ldots , generated by $x_{n+1} = g(x_n)$, converges to α and

1. ON THE ITERATIVE PROCESSES (1)

In this section we shall consider (1) under the assumption (F) and $-f \in G(D_0^+,3)$ or $-f \in G(D_0^-,3)$, and with a different choosing of x_0 and c.

From (2), a direct calculation reveals that

(4)
$$f'(x,c) = f(x) \frac{f(x) - 2f(c)}{2(f(x) - f(c))} (\frac{f''(x)}{f'(x))^2} - \frac{f''(y)}{f'(y)f'(c)}$$
,

where $y \in (\min(x,c), \max(x,c))$. Now, it easy to see that $F(\alpha,c) = \alpha$, $F'(\alpha,c) = 0$, and one can prove that $f''(x)/(f'(x))^2$ is a monotone decreasing function on D_0^+ . From (4) follows:

(5)
$$c \in (\alpha,b], f \in G((\alpha,c),2),$$

$$-f \in G([\alpha,c),3) \Rightarrow F \in G([\alpha,c),1),$$

(6)
$$c \in [a,\alpha), -f \in G((c,\alpha),2),$$

-f
$$\in G((c,\alpha],3) \Rightarrow F \in G((c,\alpha],1)$$
.

If f''(x) has only one zero $\beta \in D$ (from $-f \in G(D,3)$ it follows that f'' has at most one root in D), then

(7)
$$c \in (\alpha,b]$$
, $\beta \leq \alpha$, $-f \in G([\alpha,c),3) \Rightarrow F \in G([\alpha,c),1)$,

(8)
$$\alpha < \beta$$
, $c \in (\alpha,\beta)$, $-f \in G([\alpha,c),3) \Rightarrow F \in G([\alpha,c),1)$.

The choosing of the constant c in (5), (6), (7) is simple, i.e. c = b or c = a.

Applying Theorem 1, we have the next theorems.

THEOREM 2. Let f satisfy (F) and let $f \in G(D_0^+, 2)$, $-f \in G(D_0^+, 3)$, $c \in (\alpha, b]$ and $x_0 \in (\alpha, c)$. Then the iterative

process (1) converges to the unique solution α of f(x) = 0, it is of second order, $\alpha \le x_{n+1} \le x_n$, n = 0,1,....

PROOF: The second order of convergence of the iteration (1) follows from $F(\alpha,c)=\alpha$, $F'(\alpha,c)=0$. From (5) we have $F\in G([\alpha,c),1)$ and from (2) for $x\in (\alpha,c)$ follows F(x,c) < x, since

$$f(x)-f(c)<0$$
, $\frac{f(x)-2f(c)}{f'(x)}+\frac{f(x)}{f'(c)}<\frac{f(x)-2f(c)+f(x)}{f'(x)}<0$.

One can now apply Theorem 1.

THEOREM 3. Let f satisfy (F) and let $-f \in G(\overline{D_0}, 2)$, $-f \in G(\overline{D_0}, 3)$, $c \in [a, \alpha)$ and $x_0 \in (c, \alpha)$. Then the iterative process (1) converges to the unique solution α of f(x) = 0, it is of second order , and $x_n < x_{n+1} < \alpha$, $n = 0, 1, \ldots$.

PROOF: We need prove only that F(x,c) > x, for $x \in (c,\alpha)$. From (2) and (F) follows

$$f(x) - f(c) > 0$$
, $\frac{f(x) - 2f(c)}{f'(x)} + \frac{f(x)}{f'(c)} > \frac{f(x) - 2f(c) + f(x)}{f'(c)} > 0$,

such that F(x,c) > x.

THEOREM 4. Let f satisfy (F) and let $-f \in G(D_Q^+,3)$. If f has only one zero $\beta \in D$ and if

$$c \in \begin{cases} (\alpha,b] & \text{if } \beta < \alpha, \\ (\alpha,\beta) & \text{if } \alpha < \beta, \end{cases} \quad x_{o} \in (\alpha,c),$$

then iteration (1) converges to the unique solution α of f(x) = 0, it is of second order and $\alpha \le x_{n+1} \le x_n$, n = 0,1,...

PROOF: Using (7), (8), we see that under our assumption $F \in G([\alpha,c),1)$ and $x_1 < x_0$. Now we can apply Theorem 1.

The iterative method (1) was studied in [1] only under the next assumption on f: f satisfies (F), $-f \in G(D,2)$, $h'''(y) \le 0$, $y \in [f(a),f(b)]$, where h is the inverse of f.

Using the result from [2], we have

THEOREM 5. Let f satisfy (F), f \in G(D,2), -f \in G(D,3). Let c \in (a,b], \times e (a,c) and let f'(b) < 2f'(a). Then the stopping inequality (3) is valid for all n = 0,1,..., where \times y, \times is generated by (1).

PROOF: From (2) we have

$$F(x,c) = x - \frac{f(x)}{f'(x)} g(x) ,$$

where

$$g(x) = 1 - \frac{f(x)}{2(f(x) - f(c))} (1 - \frac{f'(x)}{f'(c)}).$$

Since f'(c) > f'(x), f(c) > f(x) for $x \in (\alpha, c) \subset D_0^+$, we have g(x) > 1, $x \in (\alpha, c)$. From (5) we have F'(x, c) > 0, $x \in (\alpha, c)$. Now we can apply Theorem 2 from [2], with $C_0^+ = [\alpha, c)$, $C_0^+ = (\alpha, c)$.

RE FERENCES

- [1] Coman, Ch., Some practial approximation methods for nonlinear equations, Anal. Numér. Théor. Approx. T. 11, No. 1-2 (1982), 41-48.
- [2] Herceg, D., Exit criteria for some iterative methods,
 Univ. u Novom Sadu, Zb. rad. Prir. -mat. Fak.
 Ser. mat., 12 (1982), 139-149.
- [3] Traub, J.F., Iterative methods for the solution of equations, Englewood Cliffs, N.J.: Prentice Hall, 1974.

Received by the editors December 10,1984.

REZIME

BELEŠKA O JEDNOM ITERATIVNOM PROCESU

U radu se posmatra rešavanje jednačine f(x) = 0 u intervalu $D = \{a,b\}$, pri čemu je f realna funkcija realne promenljive, iterativnim postupkom (1) sa funkcijom koraka (2). Pri tom se posmatraju razni izbori konstante c i početne iteracije x_0 . Dati su neki dovoljni uslovi za konvergenciju postupka (1), koji su različiti od uslova datih u [1]. Takodje je dokazana nejednačina zaustavljanja (3) za taj postupak.