ZBORNIK RADOVA Prirodno-matematičkog fakulteta Univerziteta u Novom Sadu Serija za matematiku, 14,2 (1984) REVIEW OF RESEARCH Faculty of Science University of Novi Sad Mathematics Series, 14, 2 (1984)

## ON A CLASS OF n-GROUPS

Zoran Stojaković and Djura Paunić
Prirodno-matematički fakultet, Institut za
matematiku, 21000 Novi Sad, dr Ilije Djuričića 4,
Jugoslavija

## **ABSTRACT**

In this paper n-groups satisfying the cyclic identity (C-n-groups) are considered. It is shown that every (i,j)-associative cyclic n-quasigroup, where j-i is relatively prime to n, is an n-group and then full description of C-n-groups is given.

First we give some basic definitions and notations. Other notions from the theory of n-quasigroups can be found in [1].

The sequence  $x_p, x_{p+1}, \dots, x_q$  we shall denote by  $x_p^q$ . If p > q, then  $x_p^q$  will be considered empty.

An n-groupoid (Q,A) is called an n-quasigroup iff the equation  $A(a_1^{i-1}, x, a_{i+1}^n) = b$  has an unique solution x for every  $a_1^n$ ,  $b \in Q$  and every  $i \in N_n = \{1, ..., n\}$ .

An n-quasigroup (Q,A) is called (i,j)-associative

AMS Mathematics Subject Classification (1980): 20N15. Key words and phrases: n-quasigroup, n-group.

iff the following identity holds

(1) 
$$A(x_1^{i-1}, A(x_i^{i+n-1}), x_{i+n}^{2n-1}) = A(x_1^{j-1}, A(x_j^{j+n-1}), x_{j+n}^{2n-1}).$$

An n-quasigroup which is (i,j)-associative for all  $i,j \in N_n$  is called an n-group.

An n-quasigroup (Q,A) is called m-associative iff for every i,j  $\in$  N<sub>n</sub> and every sequence  $x_1^{2n-1}$  of elements from Q which contains at most m different elements (1) holds.

In [5] cyclic n-quasigroups which represent a generalization of semi-symetric binary quasigroups were considered. A quasigroup is called semi-symmetric iff the identity (xy)x=y holds.

An n-quasigroup (Q,A) is called cyclic iff it satisfies the so-called cyclic identity

$$A(A(x_1^n), x_1^{n-1}) = x_n.$$

Another definition of a cyclic n-quasigroup, equivalent to the preceding one, is the following:

An n-quasigroup is cyclic iff for all  $x_1^n$  e Q

$$A(x_1^n) = x_{n+1} \iff A(x_{n+1}, x_1^{n-1}) = x_n.$$

An n-group satisfying the cyclic identity will be called a C-n-group.

THEOREM 1. Let (Q,A) be an (i,j)-associative cyclic n-quasigroup. Then A is (i+1,j+1)-associative n-quasigroup (where (i+1, j+1) is reduced modulo n).

PROOF. Since A is (i,j)-associative the following identity holds

$$A(x_1^{i-1},A(x_i^{i+n-1}),x_{i+n}^{2n-1}) = A(x_1^{j-1},A(x_j^{j+n-1}),x_{j+n}^{2n-1}).$$

1° i ≠ n, j ≠ n.

From the cyclicity of A it follows

$$A(x_1^{i-1}, A(x_1^{i+n-1}), x_{i+n}^{2n-1}) = x_{2n} \iff$$

$$< \Rightarrow A(x_{2n}, x_1^{i-1}, A(x_i^{i+n-1}), x_{i+n}^{2n-2}) = x_{2n-1}$$

and

$$A(x_1^{j-1}, A(x_j^{j+n-1}), x_{j+n}^{2n-1}) = x_{2n} < >$$
 $< > A(x_{2n}, x_1^{j-1}, A(x_1^{j+n-1}), x_{j+n}^{2n-2}) = x_{2n-1}$ 

hence

$$A(x_{2n}, x_1^{n-1}, A(x_i^{i+n-1}), x_{i+n}^{2n-2}) =$$

$$= A(x_{2n}, x_1^{j-1}, A(x_j^{j+n-1}), x_{j+n}^{2n-2}),$$

i.e. A is (i+1,j+1)-associative.

$$2^0$$
 i  $\neq$  n, j = n.

We have

$$\begin{array}{l} A(x_{1}^{i-1},\ A(x_{i}^{i+n-1}),\ x_{i+n}^{2n-1}) = x_{2n} & < > \\ \\ < > \ A(x_{2n},\ x_{1}^{i-1},\ A(x_{i}^{i+n-1}),\ x_{i+n}^{2n-2}) = x_{2n-1} \\ \\ A(x_{1}^{j-1},\ A(x_{j}^{2n-1})) = x_{2n} & < > A(x_{2n},\ x_{1}^{j-1}) = A(x_{j}^{2n-1}) & < > \\ \\ < > \ A(A(x_{2n},\ x_{1}^{j-1}),\ x_{j}^{2n-2}) = x_{2n-1}, \end{array}$$

hence

$$A(x_{2n}, x_1^{i-1}, A(x_1^{i+n-1}), x_{i+n}^{2n-2}) =$$

$$= A(A(x_{2n}, x_1^{j-1}), x_1^{2n-2}),$$

i.e. A is (i+1,1)-associative.

COROLLARY 1. If A is an (i,j)-associative cyclic n-quasigroup, then for every integer m A is (i+m, j+m)-associative n-quasigroup (where (i+m, j+m) is reduced modulo n).

THEOREM 2. Let (Q,A) be an (i,j)-associative cyclic n-quasigroup, where j-i is relatively prime to n. Then A is an n-group.

PROOF. In this proof all numbers are reduced modulo n. Let j-i = k. A is (i,i+k)-associative, so by the corollary of the preceding theorem A is (i+k, i+2k) associative. Repeating the process we get that A is (i+mk, i+(m+1)k)-associative for all integers m.

This means that A is (i, i+mk)-associative for all integers m. But, for every t,i+mk = t has a solution m. For, mk = t-i, and since k is relatively prime to n, k generates the group of integers modulo n.

THEOREM 3. Let (Q,A) be an n-group, where n=2k,  $k \in N$ . The n-group (Q,A) is a C-n-group iff there exists an abelian group (Q,+) such that x=-x for all  $x \in Q$  and

$$A(x_1^n) = \sum_{i=1}^{n} x_i + c$$

where c is a fixed element from Q.

PROOF. Let (Q,A) be a C-n-group. By the Hosszú-Gluskin theorem ([2],[3]), there exist a binary group (Q,•),

its automorphism  $\theta$  and an element c  $\epsilon$  Q, such that

$$A(x_1^n) = x_1^{\theta} x_2^{\theta^2} x_3 \dots \theta^{n-1} x_n^{\theta} c$$

where  $\theta c = c$ , and for every  $x \in Q$ ,  $\theta^{n-1}x = c \times c^{-1}$ . Then from the cyclicity of A if follows

(2) 
$$x_1 \theta x_2 \theta^2 x_3 \dots \theta^{n-1} x_n c \theta x_1 \theta^2 x_2 \dots \theta^{n-1} x_{n-1} c = x_n$$

From this equation putting  $x_i = e$ , i = 1,..., n, where e is the unit of the group  $(Q, \cdot)$ , we get  $c^2 = e$ . If we denote  $\theta x_1 \theta^2 x_2 \dots \theta^{n-1} x_{n-1} = y$ , from (2) we get

(3) 
$$\theta^{-1}y \theta^{n-1} x_n c y c = x_n$$
.

Putting in (3)  $x_n = c$  gives  $\theta^{-1}yyc = c$  and  $\theta y = y^{-1}$ . From the definition of y it follows that y can take any value from Q. Since n is even, from (3) we get

$$y^{-1} x_n^{-1} c y c = x_n,$$

where from for y = e we have  $x_n^{-1} = x_n$  for all  $x_n \in \mathbb{Q}$ . A group in which  $x^2 = e$  for all x must be necessarily abelian, therefore  $(\mathbb{Q}, \bullet)$  is an abelian group.

Hence

$$A(x_1^n) = x_1 x_2^{-1} x_3 \dots x_n^{-1} c.$$

The converse part of the theorem follows by a straightforward computation, which completes the proof of the theorem.

Since every finite group  $(Q, \cdot)$  such that  $x^2 = e$  for all  $x \in Q$ , is of order  $2^t$ ,  $t \in N$ , and for every  $t \in N$  there exists such group, (it is  $C_2x \dots xC_2$  (t - times)), we have the following corollary:

COROLLARY 2. There exists a nontrivial\* finite C-n-group (Q,A) of order q, where n is even, iff  $q=2^{t}$ , t & N. Then the binary group from Theorem 3 is isomorphic to the direct product of t cyclic groups of order 2.

THEOREM 4. Let (Q,A) be an n-group, where n=2k+1 k  $\in$  N . The group (Q,A) is a C-n-group iff there exists an abelian group (Q,+) such that

$$A(x_1^n) = x_1 - x_2 + x_3 - \dots + x_n + c$$

where c = -c is an element from Q.

PROOF. If (Q,A) is a C-n-group, then, by a similar procedure as it done in the preceding theorem, we obtain that there exist a binary group  $(Q, \cdot)$  and element  $c \in Q$ ,  $c = c^{-1}$ , such that

(4) 
$$A(x_1^n) = x_1 x_2^{-1} x_3 \dots x_{n-1}^{-1} x_n c$$

In this case the equation (3) gives

$$y^{-1} x_n c y c = x_n$$

that is

$$y^{-1} x_n c y = x_n c,$$

hence

$$zy = yz,$$

where  $x_n$  c = z. So, (Q, •) is an abelian group. The converse part of the theorem follows directly

<sup>\*</sup> An n-quasigroup (Q,A) is called trivial iff |Q| = 1.

from the definition of A.

Since in every group there exists at least one element which is equal to its inverse, we have:

COROLLARY 3. A nontrivial finite C-n-group of order q, where n=2k+1,  $k\in N$ , exists for every  $q\in N$ , and every such n-group is represented by (4).

REMARK 1. When n = 2k,  $k \in \mathbb{N}$ , an n-group described in Theorem 3 is an n-group with unity. A unit of that n-group is the element  $c \in \mathbb{Q}$ , and there are no other units.

When n = 2k+1,  $k \in N$ , then an n-group described in Theorem 4 in the case c = 0 is an n-group with unity and every element of that n-group is a unity, and in the case  $c \neq 0$  it is an n-group without unity.

REMARK 2. In [4] it is proved that the Hosszú-Gluskin theorem is valid for m-associative n-quasigroups, where m > n+2, which means that every such n-quasigroup is necessarly an n-group. Hence, the theorems analogous to Theorems 3 and 4 of the present paper can be proved for cyclic m-associative n-quasigroups, m > n+2.

## REFERENCES

- [1] Белоусов, В.Д., л-арные квазигруппы, Кишинев, 1972.
- [2] Глускин, Л.М., Позиционные оперативы, Мат. сб., 68 (110), 3, 1965, 444 472.
- [3] Hosszú, M., On the explicit form of n-group operations, Publ. Math. Debrecen, 10, 1 4, 1963, 88 92.
- [4] Соколов, Е.И., О твореме Глускина-Хоссу для л-групп Дёрнте, Мат. исследования, 39, Сети и квазигруппы, 1976. 187 - 189.
- [5] Stojaković, Z., Cyclic n-quasigroups, Univ. u Novom Sadu, Zb. rad. Prir.-mat. fak., ser. mat., 12(1982), 399 405.

Received by the editors March 5,1984.

REZIME

## O JEDNOJ KLASI n-GRUPA

U ovom radu razmatrane su n-grupe koje zadovoljavaju identitet cikličnosti (C-n-grupe). Pokazano je da je svaka (i,j)-asocijativna ciklična n-kvazigrupa, gde je j-i relativno prosto sa n, n-grupa, a zatim je dat potpun opis C-n-grupa.