Z B O R N I K R A D O V A Prirodno-matematičkog fakulteta Univerziteta u Novom Sadu Serija za matematiku, 14,2 (1984) REVIEW OF RESEARCH Faculty of Science University of Novi Sad Mathematics Series, 14, 2 (1984)

RIGHT π-INVERSE SEMIGROUPS

Stojan Bogdanović
Prirodno-matematički fakultet. Institut za matematiku,
21000 Novi Sad, ul.dr Ilije Djuričića br.4, Jugoslavija

ABSTRACT

In this paper we introduce the concept of right (left) π -inverse semigroup. The main result is Theorem 1 which is a generalization of some results of Venkatesan [10].

A semigroup S is called a right inverse semigroup if every principal left ideal of S has a unique idempotent generator, [10]. Throught this paper, Z^+ will denote the set of all positive integers. A semigroup S is regular if for every $a \in S$ there exists $m \in Z^+$ such that $a^m \in a^m S a^m$. S is a GV-semigroup if S is π -regular and every regular element of S is completely regular, [4]. S is a π -inverse semigroup if S is π -regular and every regular element of S possesses a unique inverse, [3]. A semigroup S with zero 0 is a nil-semigroup if for every $a \in S$, there exists $n \in Z^+$ such that $a^n = 0$. By nil-extension we mean an extension by a nil-semigroup. Define an equivalence Z^+ on a π -regular semigroup S by: $aZ^+b \iff Sa^n = Sb^m$, where n and m are the smallest positive integers such that a^n and b^m are regular elements [4].

AMS Mathematics Subject Classification (1980): 20M10, 20M12. Key words and phrases: n-regular semigroups.

A semigroup S is a left (right) weakly commutative if for every a,b \in S there exists n \in Z⁺ such that (ab)ⁿ \in bS ((ab)ⁿ \in Sa), [8]. A semigroup S is weakly commutative if for every a,b \in S there exists n \in Z⁺ such that (ab)ⁿ \in bSa, [11].

LEMMA 1. The following conditions are equivalent for an element a of a semigroup S:

- (i) a is a π -regular;
- (ii) There exists $m \in Z^+$ such that $R(a^m)$ ($L(a^m)$)
 has an idempotent generator;
- (iii) There exists $m \in Z^+$ such that $R(a^m)$ ($L(a^m)$) has a left (right) identity.

PROOF: (i) => (ii). This is Proposition 3.1 [2].

(i) => (iii). Let $a^m = a^m x a^m$ for some $x \in S$ and $m \in Z^+$. Then for an arbitrary $b \in R(a^m)$ there exists $y \in S$ such that $b = a^m y$. So

$$a^{m}x \cdot b = a^{m}x \cdot a^{m}y = a^{m}y = b$$
.

Thus $a^{m}x$ is a left identity of $R(a^{m})$.

(iii) => (i). Let (iii) hold and let e be a left identity of $R(a^{m})$. Then e = $a^{m}x$ for some $x \in S^{1}$, so $ea^{m} = a^{m}xa^{m}$, i.e. $a^{m} = a^{m}xa^{m}$ (since e is a left identity of $R(a^{m})$). Thus a is π -regular.

COROLLARY 1. A semigroup S is π -regular if and only if for every $a \in S$ there exists $m \in Z^+$ such that $R(a^m)$ ($L(a^m)$) has a left (right) identity.

LEMMA 2. Let ρ be a congruence on a π -regular semigroup S and A,B \in S/ ρ such that A = ABA, B = BAB. Then there exist a,b \in S such that a \in A, b \in B and a = aba, b = bab.

PROOF: Let $x \in A$, $y \in B$ and let (xy)' be an inverse of $(xy)^{2m}$ for some $m \in z^+$. Assume that $a = xy(xy)' \cdot (xy)^{2m-1}x$ and $b = y(xy)'(xy)^{2m-1}$. Then a = aba, b = bab.

Since A = ABA, B = BAB we have that x p x y x and y p y x y, so

(1) $x y p (x y)^k$, $k \in z^+$.

From this it follows that

$$xy(xy)'\rho(xy)^{2m}(xy)', (xy)^{2m-1}x\rho(xy)^{2m}x$$

so

$$xy(xy)'(xy)^{2m-1}x\rho(xy)^{2m}(xy)'(xy)^{2m}x = (xy)^{2m}x$$
,

and, since $(xy)^{2m}x\rho x$, (by (1)) we have that apx, and similarly bpy, Thus a $\in A$, b $\in B$.

COROLLARY 2. Let ρ be a congruence on a π -regular semigroup S. Then every ρ -class which is an idempotent in S/ ρ contains an idempotent in S.

PROOF: Let E be an idempotent in S/ρ . Since E = EEE in S/ρ we have that there exist a,a' \in E such that a = aa's, a' = a'aa'. Then $aa' \in EE = E$ and aa' is an idempotent.

PROPOSITION 1. Let ρ be a congruence on a π -regular semigroup S and $n \in Z^+$. If $A,B_1,B_2,\ldots,B_n \in S/\rho$ and $A = AB_1A$, $B_1 = B_1AB_1$, $i = 1,2,\ldots,n$ then there exist $a,b_1,b_2,\ldots,b_n \in S$ such that $a \in A$, $b_i \in B_i$ and $a = ab_ia$, $b_i = b_iab_i$, $i = 1,2,\ldots,n$.

PROOF: (By induction). The statement is true for n = 1 by Lemma 2. Suppose that all assertion are true for some k < n. Then there exist $x,y_1,x_2,\ldots,y_k \in S$, such that $x \in A, y_1 \in B_1$ and $x = xy_1x$, $y_1 = y_1xy_1$, $i = 1,2,\ldots,k$. Assume $y_{k+1} \in B_{k+1}$. Since S is π -regular, we have that there exists $m \in Z^+$ such that $(xy_{k+1})^{2m}$ is a regular element. Let $(xy_{k+1})'$ be an inverse of $(xy_{k+1})^{2m}$.

Let us put

$$u = xy_{k+1}(xy_{k+1})'(xy_{k+1})^{2m-1}x$$

$$\begin{aligned} & v_{k+1} = y_{k+1}(xy_{k+1})'(xy_{k+1})^{2m-1} \\ & v_{i} = y_{i}xy_{k+1}(xy_{k+1})'(xy_{k+1})^{2m-1}xy_{i}, & i = 1,2,...,k. \end{aligned}$$

It is quite routine to show that $u \in A$, $v_i \in B_i$, and $u = uv_i u$, $v_i = v_i uv_i$ for i = 1, 2, ..., k+1.

REMARK. Proposition 1 is a generalization of one result of T.E. Hall, [7].

DEFINITION. A semigroup S is right (left) π -inverse if S is π -regular and for every a,x,y \in S, a = axa = aya implies xa = ya (ax = ay).

THEOREM 1. The following conditions are equivalent on a semigroup S:

- (i) S is right π -inverse;
- (ii) S is π -regular and for every e,f \in E(S) there exists $m \in Z^+$ such that $(ef)^m = (fef)^m$;
- (iii) For every $a \in S$ there exists $m \in Z^+$ such that $L(a^m)$ has a unique idempotent generator;
- (iv) For every $a \in S$ there exists $m \in Z^+$ such that $L(a^m)$ has a unique right identity;
- (v) S is π -regular and every L*-class contains exactly one idempotent;
- (vi) S is π -regular and for every e,f \in E(S) there exists $m \in Z^+$ such that $(ef)^m R(fe)^m$.

PROOF: (i) => (ii). Let e,f \in E(S) and let a be an inverse of (ef)^m for some m \in Z⁺. Then from

$$(ef)^{m} = (ef)^{m}a(ef)^{m} = (ef)^{m}fa(ef)^{m}$$

and by hypothesis, we have

$$a(ef)^m = fa(ef)^m$$
, i.e. $a(ef)^m a = fa(ef)^m a$, so

$$a = fa.$$

Now

(3)
$$a = a(ef)^{m} a = a(efe)^{m-1} fa = a(efe)^{m-1} a$$
.

From (3) it follows that

$$a(efe)^{m-1} = a(efe)^{m-1}a(efe)^{m-1}a(efe)^{m-1}$$

= $a(efe)^{m-1}efa(efe)^{m-1}a(efe)^{m-1}$ (by (2))

so by hypothesis we have

$$a(efe)^{m-1}a(efe)^{m-1} = efa(efe)^{m-1}a(efe)^{m-1}$$

i.e.

$$a(efe)^{m-1} = efa(efe)^{m-1}$$
.

From this and (3), it follows that a = efa, so by(2), we obtain

$$a = ea.$$

Using (2) and (4) we have

From this it follows that

$$(ef)^{m} = (ef)^{m} ef(ef)^{m} = (ef)^{m} f(ef)^{m}$$

so

$$ef(ef)^{m} = f(ef)^{m}$$
.

Thus

$$(ef)^{m} = (fef)^{m}$$
.

- (ii) => (i). Let a = axa = aya. Then $(xa \cdot ya)^m = (ya \cdot xa \cdot ya)^m$ for some $m \in Z^+$, so xa = ya.
- (i) => (iii). Let $a^m = a^m x a^m$ for some $x \in S$ and $m \in Z^+$. Then by Lemma 1 $L(a^m)$ has an idempotent generator e. Assume $f \in E(S)$ such that $L(a^m) = Sf$. Then Se = Sf, so e = yf, f = xe for some $x,y \in S$. Now ef = (yf)f = yf = e, fe = f, so e = efe, i.e.

$$e = efe = e(efe)e$$
.

From this and hypothesis we have fe = efee = efe. Thus f = fe = efe = e.

- (iii) => (iv). Let $L(a^m)$ has the unique idempotent generator e. Then by Lemma 1, $L(a^m)$ has the unique right identity e.
- (iv) => (i). Let $L(a^m)$ have the unique right identity. Then a is π -regular (Lemma 1). Assume that a = axa = aya, then by the uniqueness of right identity, we have that xa = ya.
- (ii) => (v). Let e,f \in E(S) and el*f. Then Se = Sf, so e = xf, f = ye. Thus ef = e, fe = f and by the hypothesis e = (ef)^m = (fef)^m = f. Therefore, every l*-class contains exactly one idempotent.
- $(v) \Rightarrow (i)$. Let S be π -regular. Then by Proposition [4] every L^* -class contains an idempotent (see also Proposition 3.1 [2]). Assume that a = axa = aya. Then Sxa = Sa = Sya, i.a. xaL^*ya and since every L^* -class contains exactly one idempotent, we have that xa = ya.
- (ii) => (vi). For any e,f \in E(S) there exists m,n \in Z⁺ such that

$$(efe)^m = (fe)^m, (fef)^n = (ef)^n$$

so

$$(ef)^{mn}e = (fe)^{mn}$$
, $(fe)^{mn}f = (ef)^{mn}$.

Thus

where k = mn.

(vi) => (ii). Let e,f \in E(S) and $(ef)^{m}R(fe)^{m}$ for some $m \in \mathbb{Z}^{+}$. Then $(ef)^{m}n = (fe)^{m}$ for some $n \in S$, so

$$e(fe)^{m} = e(ef)^{m}n = (ef)^{m}n = (fe)^{m}$$

whence (efe)^m = (fe)^m.

LEMMA 3. A homomorphic image of a right π -inverse semigroup is also a right π -inverse semigroup.

PROOF: Let ϕ be a homomorphism of a right π -inverse semigroup S onto T. Than for any $t \in T$, there exists $a \in S$ such that $t = \phi(a)$, $a^m = a^m x a^m$ for some $m \in Z^+$ and $x \in S$. Now, $t^m = (\phi(a))^m = \phi(a^m) = \phi(a^m x a^m) = t^m \phi(x) t^m$. Assume e', $f' \in E(t)$, then by Corollary 2 there exist e, $f \in E(S)$ such that $\phi(e) = e'$, $\phi(f) = f'$ whence by Theorem 1 we obtain

$$(e'f')^n = (\phi(e)\phi(f))^n = (\phi(ef))^n = \phi(ef)^n) = \phi((fef)^n)$$

= $\phi(fef)^n = (\phi(f)\phi(e)\phi(f))^n = (f'e'f')$

for some $n \in Z^+$. So T is a right ϕ -inverse semigroup (Theorem 1 (ii)).

By Lemma 3, we have that every condition (i) - (vi) of Theorem 1 is equivalent with the following condition:

(vii) I and S/I are right π-inverse semigroup for every ideal I of S.■

COROLLARY 3. The following conditions are equivalent on a semigroup S:

- (i) S is a semilattice of nil-extensions of right groups;
- (ii) S is π-regular and left weakly commutative;

- (iii) S is a GV-semigroup and for every $e, f \in E(S)$ there exists $n \in Z^+$ such that $(ef)^n = (fef)^n$;
- (iv) S is a GV-semigroup and every L*-class contains exactly one idempotent;
- (v) S is a GV-semigroup and for every e,f \in E(S) there exist n \in Z⁺ such that $(ef)^n R(fe)^n$.

PROOF: By Theorem 2.2 [1] and Theorem 1.

COROLLARY 4. The following conditions are equivalent on a semigroup S:

- (i) S is π-inverse;
- (ii) S is π-regular and for every e,f ∈ E(S) there exists n ∈ Z⁺ such that (ef)ⁿ = (fe)ⁿ;
- (iii) S is π -regular and a = axa = aya implies xax = xax;
- (iv) For every $a \in S$ there exist $n \in Z^+$ such that $R(a^n)$ and $L(a^n)$ contain a unique idempotent generator;
- (v) S is both right and left π -inverse;
- (vi) S is π -regular and weakly commutative.

PROOF: By Theorem 2.3 [1], Theorem 4.6 [3], Theorem 1 and Corollary 3 \blacksquare

By Theorem 1 and Corollaries 3 and 4 that right π -inverse semigroups are natural generalization of π -inverse semigroups and also right inverse semigroups.

REFERENCES

- [1] Bogdanović, S., Semigroups of Galbiati-Veronesi, Proc. Conf.

 "Algebra and Logic", Zagreb 1984, Univ. Novi Sad. 1985, 9-20.
- [2] Bogdanović, S., Power regular semigroups, Zbornik radova PMF Novi Sad, 12 (1982), 418-428.

- [3] Galbiati, J.L. e M.L. Veronesi, Sui semigruppi che sono un band di t-semigruppi, Istituto Lombardo (Rend.Sc.), 114 (1980), 217-234.
- [4] Galbiati, J.L. e M.L. Veronesi, Sui semigruppi quasi regulari, Istituto Lombardo (Rend.Sc), 116 (1982), (to appear).
- [5] Galbiati, J.L. e M.L. Veronesi, Sui semigruppi quasi complemente inversi, (private communication).
- [6] Galbiati, J.L. e M.L. Veronesi, On quasi completely regular semigroups, Semigroup Forum (to appear).
- [7] Hall, T.E., Congruences and Green's relations on regular semigroups, Glasgow Math. J., 13(1972), 167-175.
- [8] Sedlock, J.T., Green's relations on a periodic semigroup, Czech.Math.J., 19(94) (1969), 318-323.
- [9] Verones I, M.L., Sui semigruppi quasi fortemente regolari, Rivisita di Matematica dell'Universita di Parma, (to appear).
- [10] Venkatasan, P.S., Right (left) inverse semigroups, J. of Algebra, 31 (1974), 209-217.
- [11] Petrich, M., Introduction to semigroups, Merrill Publ.
 Comp., Ohio 1983.

Received by the editors January 23,1985.

REZIME

DESNO π-INVERZNE POLUGRUPF

U ovom radu uveden je pojam desno (levo) π -inverzne polugrupe. Glavni rezultat je Teorema l koja je generalizacija nekih rezultata Venkatesana [10].