ZBORNIK RADOVA Prirodno-matematičkog fakulteta Univerziteta u Novom Sadu Serija za matematiku, 14,2 (1984) REVIEW OF RESEARCH Faculty of Science University of Novi Sad Mathematics Series, 14, 2 (1984)

σ-INVERSE SEMIGROUPS

Stojan Bogdanović

Prirodno-matematički fakultet. Institut za matematiku, 21000 Novi Sad, ul.dr Ilije Djuričića br.4, Jugoslavija

ABSTRACT

In this short note we introduce the concept of a $\sigma\text{-inverse}$ semigroup which is a generalization of the concept of Cliffords's semigroup. A characterization of a $\sigma\text{-inverse}$ semigroup is given.

S is a Clifford semigroup if S is regular and the idempotents of S are central, [4]. By Z^+ we shall denote the set of all positive integers. A semigroup S is completely π -regular if for every a \in S there exist b \in S and n \in Z^+ such that $a^n = a^nba^n$ and $a^nb = ba^n$. By E(S) we denote the set of all idempotents of a semigroup S.

For undefined notions and notations refer to [4].

DEFINITION 1. An element b of a semigroup S is σ -inverse of a \in S if a = aba, b = bab. A semigroup S is σ -inverse if for every element a \in S there exists a unique σ -inverse element b \in S.

The semigroup S given by the Table

AMS Mathematics Subject Classification (1980): 20M10. Key words and phrases: Regular (inverse) semigroups.

	0	е	f	a	b
0	0 0 0 0 0	0 e	0	Ó	0
е	0	e	0	a	0
f	0	0 0	f	0	b
а	0	0	a	0	е
b	0	b	0	f	0

is a σ -inverse semigroup. But, ae \neq ea, and, so, S is not a Clifford semigroup.

LEMMA 1. A semigroup S is inverse if and only if S is regular and for every e,f \in E(S) there exists $m \in Z^+$ such that $(ef)^m = (fe)^m$.

PROOF: Let S be a regular semigroup in which for every e,f \in E(S) there exists m \in Z⁺ such that $(ef)^m = (fe)^m$, then by Theorem 3.1. [1] we have that a = axa = aya implies xax = yay. Thus S is an inverse semigroup.

The converse follows immediately.

By the following theorem a characterization of a σ -inverse semigroup will be given.

THEOREM 1. The following conditions are equivalent on a semigroup S:

- (i) S is inverse and completely π -regular;
- (11) S is regular and for every $a \in S$, $e \in E(S)$ there exists $m \in Z^+$ such that $(ae)^m = (ea)^m$;
- (iii) S is o-inverse.

PROOF: (i) => (ii). If S is inverse and completely π -regular, then by Theorem 1.7. [3] we have that for every $a \in S$, $e \in E(S)$ there exists $m \in Z^+$ such that $(ae)^m = (ea)^m$.

(ii) => (i). By the hypothesis we have that for every $e, f \in E(S)$ there is an $m \in Z^+$ such that $(ef)^m = (fe)^m$ and so by Lemma 1 we have that S is an inverse semigroup. S is completely π -regular by Theorem 1.7. [3].

(i) => (iii). Let S be an inverse completely π -regular semigroup and let $x \in S$ be an inverse element of a $\in S$. Then, by Theorem 1.7. [3], there exist r,s \in Z⁺ such that

$$(a \cdot ax)^r (axa)^r = a^r, (xa \cdot a)^s = (axa)^s = a^s.$$

Then

$$(a^2x)^{rs} = a^{rs} = (xa^2)^{rs}$$
.

Let us put t = rs. Then

$$(a^{2}x)^{t} = a(axa)^{t-1}x = a(axa)^{t-1}axax$$

= $a(axa)^{t}x = a(xa^{2})^{t}x = (axa)^{t}ax$
= $a^{t}ax = a^{t+1}x$

and

$$(xa^2)^t = xa^{t+1}.$$

Thus

$$a^{t+1}x = xa^{t+1}.$$

Therefore, S is a σ -inverse semigroup.

(iii) => (i). Follows immediately.

THEOREM 2. S is a simple σ -inverse semigroup if and only if S is a group.

PROOF: Follows by Theorem 1 [5] (see also Theorem 2 [2]).

REFERENCES

- [1] Bogdanović, S., Semigroups of Galbiati-Veronesi, Proc. Conf.

 "Algebra and Logic", Zagreb 1984, Univ. Novi Sad 1985, 9-20.
- [2] Bogdanović, S. and Milić, S., A nil-extension of a completely simple semigroup, Publ. Inst. Mat., (to appear).
- [3] Galbiati, J.L. e M.L. Veronesi, Sui semigruppi quasi completamente inversi, (to appear).

- [4] Howie, J.M., An introduction to semigroup theory, Acad. Press 1976, London.
- [5] Munn, W.D., Pseudoinverses in semigroup, Proc. Camb. Phif. Soc., 57 (1961), 247-250.

Received by the editors January 23, 1985.

REZIME

σ-.INVERZNE POLUGRUPE

U ovoj kratkoj noti je uveden pojam σ -inverzne polugrupe koja je generalizacija koncepta Cliffordove polugrupe . Data je jedna karakterizacija σ -inverzne polugrupe .