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ABSTRACT

The main result of this paper is that for Peano
arithmetic (T A) holds that for each n there exists k > n such

fn f
that Tp, # T2 (3.3)..

INTRODUCTION. This paper is directly attached to [5] and [6].
The generalization of (most of) the results from [ 8] , as well

as of some of the results from [10] (§ 1), which is, by the way,
routine and easy job (like the one in [5]), is done here mainly
because of the possible use of the new versions of these results
in some coming papers. We are really interested in the relation
between a given theory and n-finite forcing companion correspon-
ding to it. This time we shall present some of the first obser-
vations on this subject (5§ 2,8 3). Numerous open questions impo-
se themselves, and we think there is no need to state them ex-
plicitly.

§0. We assume a familiarity with [ 5] and [6]. All the assump-
tions (and a main part of the notation) are as in [6],5 0. The

following theorem, which, together with some other results from
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§ 1, should have been given in [5], will be used in § 2.

THEOREM 0.1. (q) If a language L of a theory T is
countable and T = Tfn, then for each sentence ¢ of the langua-
ge L consistent with T there exists a model M of T U {4},
such that T U Dn(M) 18 a complete theory (we shall also say
that M n—completes T).

(b) Let T be a theory (defined in a language L of
arbitrary cardinality), such that for each sentence ¢ of the
language L consistent with T, there existe a model of TV {¢}
which n—complefea T. Then T = Tfn and, in general,T = Tfk for
each k 2 n.

§ 1. In this paragraph we follow [8Llmore or less consistently.
The point is in the "translation for n"” of the results of this
paper. The proofs are, because of the same reasons as in [5],
mainly omitted. We refer those interested in more details to
the original [8].

For a given set of formulas ¥ fv(¥) = {fv(y)|y e ¥}.
A complete m~type T is a maximal set of formulas comnsistent
with T such that ]fv(F)] = m. (We can really demand: fv(T) =
= {Vgsenes Vm-1})' An (n+l)-existential type is defined analo-
gously, but this time elements are Zn+1 formulas. We shall gen-
erally denote complete (m)-types by T(V) (or just T), (n+1)-
existential (m)-types by E(¥) (or just E), their elements by,
¢(¥) i.e. o(¥) (or just ¢, o), respectively, the set of all
the complete m-types by T and the set of (n+l)-existential
m-types by Em' Weushall consider Tm and Em topological spaces
with bases, elements of which are in a succession A$(V) =
= {r|¢(¥) e T} and Ac(¥) = {E|o(¥) e E}. For the space T it
holds obviously that A¢,(¥) = A¢»(¥) iff T F ¢,(¥) <> ¢,(¥);
AP, (V) g Apo(¥F) iff T + ¢,(v) » $o(v). Of course directions
(+) hold for Em’ as well.

In further considerations of this paragraph, the lan-
guage L is countable. We just note that this condition is
superfluous in many of the propositions.
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LEMMA 1.1, (a) A model M from u(T N nn+1) i8 n-ex-
tatentially complete (of T) if and only any m elements of M
realize an (n+1)—ezisténtial m-type.

(b) E is an (n+1)-existential m—type if and only if
it 28 realized by some m elements of some n—-existentially com-

plete model.

DEFINITION 1.2, A complete (m—) type i8 normal if it
i8 an extension of an (n+1)-existential (m-) type.

A complete (m=-) type i8 a complete (n+ll)-existential
m-type if it i8 the unique extension of an (n+l)-extstential
(m-) type.

LEMMA 1.3. (a) A model M € u(T ﬂn+1) i8 an n-exis -
tentiaqlly complete model of T if and only if for each Hn+1
formula 10o(V) €t omits a type (here, of course, the word ty-
re does not as8sume the maximality of the set of formulas)
{1009} U {10 |£v(a) g £fv(oy) and THo(TF) + Tgo(W)};

(b) A model M € u(T) n-completes T Zf and oniy if it
omite all typee of the form {$(¥)} U {10(F)|£fv(o)  £v(¢) and
THo (V) + ¢(¥)}.

THEOREM 1.4. The following are equivalent:
(a) If ¢(J) i8 consistent with T them T U {$} has a
model which <8 n-existentially complete;

(b) For each m € w the set of all normal m-types is
dense in Tm'

COROLLARY 1.5. A eomplete theory T has a model which
i8 n—existenttally complete if and only tf the set of normal

m-types 18 dense in Tm for each m e w.

COROLLARY 1.6. If T {8 a complete theory such that
T=Tn ﬂn+2 then for each m e w the set of normal m—typee is
dense in Tm'

PROOF. By 2.5 and 1.5.
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THEOREM 1.7. (a) The class Ep (of all n-existential-
ly complete models) i8 axiomatizable by a single sentence of
the language Lwlm;

(b) The class F;} (of all n-finitely gemeric models) is
axiomatisable by a single sentence of the language Lw;w'

PROOF. (a) From 1.3.(a) it follows directly that
AMT ALY A Ay l¢ is a M 41
w¢ = 139(p(V) A A{10(F)|Tho +» ¢}) is the axiom fo§ Eg.

(b) Let us just recall that a model of TN is n-fini-
tely generic iff it n-completes Tfn. Hence (and by 1.3.(b))
atfn 4 Ay, |¢(¥) 1s a formula of L} where W¢ = 137 (F) A
A{1U(V)[ngkc + ¢}) is the axiom for F;.

formula of L} where

(REMARK. In case the language L of T is of cardinality
A, the axioms of the classes E? and F; are sentences of LA+m)'

THEOREM 1.8. The following are equivalent:

(a) T is n-model complete;

(db). {Ac(V)[[fv(o)| < m} g g base of Tn for eaeh ™ € W,
where, now, of course, Ac(V) = {T & Tmlo(ﬁ) e I}

(c) Every complete type i8 a complete (n+1)-existential
type. '

(d) Every complete type is normal.

THEOREM 1.9. The following are equivalent:

(a} T = rin

(b) For eaqech m € w and for each open set 0 in T, there
n+1) formula g (V) such that Ad(¥) < 0;

(e¢) For each m € w the aet of compilete (n+l)-existen-—

exists a (I
tial m-types ie dense in Tm‘

PROOF. Let us show, firstly, that (b) is equivalent
to (b7): T is an fn-complete theory (for each formula ¢ consis-
tent with T there exists a (Zn
fv(o) ¢ fv{¢) and Tro + ¢).

+1) formula o(V¥) such that
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(b) » (b”). Let ¢(V) be consistent with T. Then A$(V)

# @, thus for some Zo+1 formula o(V) Aoc(V¥) < A¢(¥), consequent-
ly also Tko(¥) + ¢(¥).

(b?) » (b). If 0 is an empty set then AQQv(v # v)) = O.
In case O is nonempty and 0 = U A¢i(5) then for some i & T
A¢i(V) # 0 and so for Zn+1 formula o(V) consistent with T and
such that Tho(¥) + ¢.(¥) Ac(¥) < A¢i(V) (< 0).

Since we have already been given (a) <=> (b”) (see [5]),
we shall prove only (a) + (c) and (c) + (b7).

(a) » (c). Let A¢(¥) be a nonempty set. By 0.1.(a)
there exists a model M of T U {3V¢(V)} such that T U Dn(M) is
a complete theory. If ME¢[dl, I' = {P(F)|MEY[&]l]} and E = {o()|
| MEo[ &] } then E is an (n+1)-existential type (1.1.(b)) and
because of the completeness of T U Dn(M) T is its unique ex-
tension, hence, a complete (n+l)-existential type and T e A¢(¥).
It follows that the set of éomplete (n+1)-existential types
has a nonempty intersection with any (nonempty) open set, in
other wérds, it is dense in Tm'

(c) » (b”). Let ¢(¥) be a formula consistent with T,
Ir(¥) a complete (n+l)-existential type from A¢(¥) and E(V) the
(n+l)-existential type contained in T. Then for some formula
o(¥) 6 E Tho + ¢(in the opposite T U E U {1$(¥)} would be
consistent and the type I would not be the unique extension of
E).

THEQREM 1.10. The following are equivalent:

(a) T hae n-model companion;

(b) For each m € w Bm i8 a compact (topological) space.

THEOREM 1.11. If T =Tn N ., and T = Tfn then the
following conditiona are equivalent:.

(a) Every model of T i8 an n—elementary submodel of
some n-finitely gemneric model;

(b) Every n—-existenttally complete model i8 n-finitely
generic;

(e) TV E(c°""’°m-1)’ where Cos---5C 4 are new
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constants, it8 a complete theory for each (n+l1)-existential

type E (of courae, we shall use E(&) instead of E(co,...,cm_f)-

PROOF. (a} <=> (b). Already known.
(b) + (c). Let E(V) be an (n+l)-existential

type and M an n-existentially complete model in which E(&)
is realized. Bv (b), T VU Dn(M) is Fomplete, hence also TUE(E&).
(For any sentence ¥(&) either T U Dn(H)Fw(E) or T U Dn(M)FTw(E),
let us say, T U Dn(H) F 9(&). Then for some sentence
o(&,d) € Dn(M) Tka(&,d) + P(&) whence TF3I¥a(&,¥) + (&) while
3Vo(&,V) e E(3)). ,

(¢) + (b). Let M be an n-existentially complete model,
P(&) a sentence of the language L(M) and E(¥) the (n+l)-exis-
tential type which is realized in M by (images of constants)
Coy--0sC 4. By (), T U E(&) is a complete theory, thus ei -
ther T U E(8)FP(&) or T U E(&)F1yY(&), let us suppose T U E(C)F
F$(&). But then also T U Dn(M)Fw(E) for if for 3%a(&,¥) e E(&)
TF3Vo(&,V) + y(c) the hypothesis of consistency of T U Dn(M) U
U{79(&)} would imply the consistency of T U {3vo(&,¥)} u {1¢(d)}.

. - ' fn . ofn .
LEMMA"1.12. If T =T gn_,, and T® = T0AN_ ., and
if every (n+1l)-existential type of T completes T (acondition
(e) from previous theorem) then every model of T can be n-ele-
mentary embedded in some n-finitely generic model.

PROOF. By the condition of the lemma T < Tfn, while

every n-existentially complete model is n-finitely generic too.

COROLLARY 1.13. If in - ¢fng N .o the following are
equivalent:

{(a) Every model of T ean be n-elementary embedded in
some n-finitely generic model;

(b) Every (n+l)-existential type completes rin,

PROOF. A direct consequence of Theorem 1.11 (T and
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7fn have the same (n+1)-existential types, Tfn'is n-forcing
complete and every model of Tfn is an n-elementary substructure
of some model of T).

THEOREM 1.14. et I (T) = {¢| ¢ <& N __, sentence
such that (T n ﬂn+1) U {¢)} and T have a common ﬂn+1 segment}
and let T be the theory generated by In(T). Then :

(a) (=)° Z8 an n-companion operator, and, that, the
amallest one (in the sense of inclusion);

k = T = Tk

(b) If T® = Tk N No4p and T N nn+1. T* AN, then
T* c T'. (In case n = 0 T® i8 the so-called inductive hull of
T).

THEOREM 1.15. I (T) = {¥3a(¥) |Ac(F) = E,m= 0,1,...1}.

THEOREM 1.16. If rfn - ¢fng N 4o then 7fn ;4 generated
by {y¥0(¥)|Ac(¥) = E,m-= 0,1,...}.

§ 2. The next three corollaries are the immediate consequences
of 0.1.

COROLLARY 2.1. For a complete theory T to be n-foreing
complete, the suffictent condition 18 that there extsts a model
M e u(T) whieh n-completea T. If the language L of T is counta-
ble this condition is necessary too.

COROLLARY 2.2. If the language L of T i8 countable
and for some n T = TN then gleo T = ik for each k > n.

COROLLARY 2.3. If T is n-model complete, then T = T'K
for each k # n.

One can also give the proof of 2.3 using the following
facts: T n ﬂn+2 < Tfn n ﬂn+2; an n-model complete theory is
equal to its ﬂn+2 segment and two n-model complete theories with

the common nn+1 segment coincide.
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LEMMA 2.4.(a) If T i8 complete and T = T 01 I
then T = Tk for each k # n;

{b) If for some n rfn - ofk for each k > n then
also T = TN,

n+2’

COROLLARY 2.5. If T i8-a complete theory of the count-
able language L and T = TN ﬂn+2, there exists a model
M & u(T) which n-completes T.

LEMMA 2.6. If for some n(> 0) Tfn i8 a eomplete theo-
ry then for each k < n Tfk 18 complete as well.

PROOF. Clearly, Tfn i8 a complete theory if and only
2f T has the n-joint embedding property.

LEMMA 2.7. PFor each theory T of a language L there
exiats an extenaion T:1 defined in a suitable expansion of L
such *hat T, = Tfn for each n 2 0.

PROOF. Let M be a model of T and rM its elementary
diagram (the set of all sentences of L(M) which hold in M). M,
clearly, completes (the complete)theory P", whence, according
ta 2.1., PM = Pﬁn for each n # 0 (compare this assertion with
3.8  from [B]).

§ 3. The set'{Tfn]n e w} is not linearly ordered. In truth,
this holds for the set of the sets of conditions (Cm [ Cn for
m < n) but from pl- (p e C_) it does not necessarily follow

m
that pl- whence rfn € T'm does not have to hold.
n

THEQREM 3.1. JILet TDLOM be the theory of dense linear
order with maxzimal and minimal element defined in the language
- f £ .
L = {R}. Then Tpqy = Toiom for k =1 (TpLom ©8 the theory of
dense linear order without endpointal,
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PROOF. TDLOM
models completes it (moreover, none of its models is existen-
t%ally complete). (By 2.1 and 2.5 TDLOM £ TDLOMn N, and
T ¥ TDLOM)' Clearly, TDLOM ='TDLOM N Ny and so T
for each k 1 (2.4.(a)).

The proof can also be based on the fact that T

is a complete theory and none of its

LOM DLOM ~

TpEom .
pLoM 1%
1-model complete. For, let M be its countable model,

M<, NETp gy @nd K a countable elementary submodel of N such
that M € K. Of course, M<, K, so also M < K (using Cantor”’s
argument, one can easily show that if a1,...,3 are (arbitrar-
ily chosen) elements of M and b any element of K, then there
exists an isomorphic mapping from K onto K, which element b
maps onto some element from M while it leaves a seesdn fixed

- for the proof of 1-model completeness, it is sufficient to

consider just countable models). Hence M < N.

REMARK. If we defined the theory TDLOM in a language
which, besides a binary relation symbol, also contains two con-
stants (the notions for the minimal and maximal element), we
would obtain a complete theory which coincides with its N, seg-
ment and therefore. coincides with n-finite forcing for each
n 6 w (such a theory would be model complete too, and this case
is (in some way) analogous to the example of the theory of
dense order without endpoints).

THEOREM 3.2. Let TN be the complete arithmetic (of
the first order) (the set of all sentences of the language
L = {+,x, = ,0,1,} which hold in the model N = <N,+,x, = 0,1>,
where N is the set of natural numbers). Then TN = Tik for each
k » 0. ( N is the only generic model).

PROOF. Since all elements of N are definable, we can
consider TN to be the elementary diagram of N. N, clearly, com-
pletes T (at the same time it is the only model which comple-
tes T,) and so T, = TLK for each k > 0.



220 Milan Grulovié

THEOREM 3.3. Let TPA be Peano arithmetic (defined in
the language L =1{ +,x, = ,0,1}). Then the following hold:

(a) For each n there exists8 k > n such that ng £ Tgk;

(b) None of the theories Tgk, k 2 0 28 complete;

(ec) N Zs not finitely generic model;

(d) DHNone of the theories Tgk, k # 0 28 model comple-
te; in particular, TgA 18 not a model companion of TPA'

PROOF. (a) Let us suppose that for some n Tgx S Tﬁk

. - fn_ n -

for each k > n. Then, by 2.4.(b) Tpp = Tpa = T (FTPA). There
fore there exists a nonstandard model of the Peano arithmetic
which n~-completes it. But this is in contradiction with theo-
rem 5 from [3].

(b) Tpa
(one can construct two existential sentences, both consistent
w;th TPA o
TPA’ and hence, of course, no theory TPA’ k > 0, is complete.

(c) s a direct consequence of G3del”s result that for

does not have the joint embedding property

but whose conjuction is not consistent with'TPA). Thus

each sﬁbtheory T of Ty with an effectively given recursively
enumerable set of axioms, there exists a universal sentence ¢
such that Nk ¢ (i.e. ¢ € T“) but ¢ € T.

And (d) follows from the result from [%}: no theory T
of the language L) such that TPAn M, € T is model complete.
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REZ IME

0 n-KONACNIM FORSING PRIDRUZENJIMA

Ovaj rad se neposredno nadovezuje na (8] i [6}. Gene-
ralizacija(veéine) rezultata iz [8] i nekih iz [10] (s§1), uz-
gred rutinski i lak posao (kakav je veé obavljen u [5] sa rezul-
tatima iz [1]) ovde je data viZe zbog eventualne primene u nekim
buduéim radovima. Zapravo, vi3e nas interesuje odnos date teori-
je i njoj korespodentnog n-konaénog forsing pridruZenja (n € w).
Ovom prilikom iznosimo neka od prvih zapaZanja na tu temu (62,
§3). Medju njima izdvajamo 3.1: za teoriju gustog linearnog ure-

. s o e .. .
djenja bez krajnjih tadaka (TDLOM) vaZi: TDLOM = TDDOM za svako
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k #1; i 3.3 - za Peanovu aritmetiku TPA vazi: za svako'n

.. fn fi
postoji k > n takvo da TPA # Tpi-



