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ABSTRACT

Thg paper deals with the reprgsentation of pn-sequen&
ces in various classes of algebras. A full description of re-
presentable sequences; in two-element groupoids, Is given.
For the sequence pn-Zn. the ”ﬁmél]est“ groupoid which re-
presents it s found. The notion of maximality is introduced

and some relations with k-valued logics are established.

1. PRELIMINARIES

The definitions of n-ary algebraic operation (or n-
-ary polynomial), pn-sequencekardhalhdesof essentially n-ary
polynomials), and some other notations from Gratzer [ 5], and
Marczewski [7] are adopted here.

The following notation is accepted:
Let A=<A,F> be an algebra. P(n)(A) is the set of all n-ary
polynomials over 4 ,P(n)(A) is the set of all different,ess~

entially n-ary polynomials, pn(A) denotes the cardinality of
P(n)(A). (Note: the polynomial p(x)=x, for all x€A, is in
‘P(l)(A).)
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Let <pn(A)> denote the sequence <p,(A), pl(A),...,pn(A) '

s-++>. The basic problem in this topic 1is to study and chara-
cterize représentable sequences.

Let V be a variety. By Fv(n) we shall denote a free algebra
over V, generated by n free generators, 1d(v) is the set of
all identities satisfied in all algebras from V.

Let T be a fixed type of algebras, T a set of identities in
a language of type 1 . By Mod (Z) we shall denote all the
algebras of type r in which all identities from X are sati-
sfied. H,S, and P are usual operators on classes of algebras.
The following lemma gives the connection between the number
of elements in the free algebra, Fv(n) and the polynomial se-
quences of algebras from V, for the minimal and locally fi-
nite varieties.

Here, the lattice of varieties V, of the type T , is the la-
ttice of all varieties of the type T .

LEMMA 1. Let V be a locally finite variety, which
i8 minimal in the lattice of varieties, then for all algebras,
A=<A,F>, from V with |A]>1, Po (A) =py . then

n-1
(1) 'pn(A)=Pn=|FV(n)l— kzo(ﬁ‘)pk, for all DN,

Proo f: Let T denote the trivial variety, and let A-and
B ke algebras from V, for which |A|>1 and ! B|>1, therefore,
HSP (A) #T and HSP(B)#T. Since HSP(A) €V and HSP(B)g V, and V 18
a minimal variety, we have that HSP(A)=HSP(B)=V. Using Bir-
khoff s theorem for equational classes we get: Mod 1d (A) =Mod I4(B),
which imply Id(A)=Id(B), and pn(A)=pn(B).
If Fv(n) is a finite free algebra in V, generated by n free

n
generators, we have:va(nX= Z.(g) pk(Fv(n)) [91.
- k=0

Since Fy(n) is finite (for n<w ) in locally finite varietles

taking B=Fv(n) we get (1), which completes the proof.
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DEFINITION 1. ([11) Algebra A=<A,*> of type <2> 78 an
implication algebra if the following identities are satisfied:

Al, (xy)x = x (econtraction)
A2, (xy)ly = (yx)x (quasi-commutative)
A3, x(yz) = y(xz) (exchange)

All the 2-element algebras'have been determined and
are explicitly listed by E.Post.J.Berman has redone that clas-
sification in [3], where the first few elements of the poly-
nomial sequences of the two-element algebras, are computed.
The following proposition gives the full description of the
polynomial sequences of the 2-element groupoids.

PROPOSITION 1. . Sequences: q, = (1,1,0,0,...), q, =

(0,1,0,0,...), q3= (0,2,0,0,...,), Q4= (0,1,1,1,...,), q5=

(1,1,1,1,...), qg=(2,2,10,a5,...,a ,.-.), g7 = (1,1,3,25,

b4""'bn"")' wvhere
5 (n-1)

on n=l n n
- (y)2 -

(") a,, and b_= (-1
izo i i n Zo

a =2 ) (i"l)
n

n-=1
- zo(k)bk,for n>1;

(1) are representable in the class of 2-element groupoids,

G2 H _
(i1) Zf a sequence i8 representable in G, then it <8 equal
to one qyr i=1,2,...,7

Proof. (1) Let G=1{0,1}. The binary operati-
ons, fi' 1=1,2;...,7 on G are defined in the following way:

£,05,¥) =0, £,05,y) =%, £500,y) =1x, £,(x,y) =xhy, £5(x,y) =
= xoy, fo(x,y) =1(xAy), £5(x,y) =x~+y, where 1,A,+, ~,

are usual operations of propositional calculus..
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Then algebras Ai=<{0,1}, £,>4=1,2,...,7, repre -

i
sent the given sequences, Q0 i=1,2,...,7, respectively.

It is obvious that for Al if p(xl,...,xn) GP(n) (Al),
then p=0 or P=Xx for some 1i=1,...,n, i.e. the only nulla-
ry polynomial is p(x) =0. pl(Al) =1, and the only unary po-
lynomial is p(x) = x. pi(Al) =0 for 1>1, i.e. q1=<pn(A1)>.

If p(xl,...,xn) =p€P(n) (Az) then p =x, for some
i=1,...,n, so q2=<pn(A2)>.

(n

If p(Xy,...,% ) =pe€P )(A3) then p=1x, or p=1 X
i=1,...,n, which can be proved by induction on the number of
operational sywbols, so, q3 = <pn(A3)' > .

For f4 the following identities are obvious: f4(x,x) =X,
£,0x,y) = £, (y,x), f4(x,f4 (y,z)) =f,(f,(x,y),2), L.e. A, is a
semllattice, so q4=<pn(A4)>. |

If pep(l) (As) then p(x) =1, or p{x) =x, so po(A5)=1
and pl(As) = 1l. The commutative and associative law is satis~
fied, and f5(x,1) =f5(1,x) =x. If p(xl,...,xn) =§eP(n) (A5),
then, (£.(x,,fg (X5,fg(X3...)...) =P 80 P, (Ag) < 1.

The polynomial p € P,y (Ag) ,since 1if % =1 for all k,
then p=1. If % =0, and x_=1 for all k#1, then p=0, i.e.

p depends in x,, i=1,...,n, so, p,=1. £, is a Sheffer-ope-

1!
ration in propositional calculus, so AG is polynomially equ-
ivalent with the 2-element Boolean algebra. Using lemma 1,

for the variety of Boolean algebras,'we get that q¢ = <pn(A6)>.

A7 1is an implication algebra, and the variety of the
implication algebras is minimal and locally finite [l]. Using
lemma 1 and the cardinality of the free implication algebra
[3] we get that <pn(A7)> = dq.
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(11) 1s obvious, for all groupoids from G, are poly-

) 2
nomially equivalent with one of the groupoids Ai, i=1,...,7.

3. For the vector space over GF(3),V, the polyncmi-
al sequence is <pn(V) > = 2n, neN, and the cyclic group of or-
der 3 is polynomially equivalent with it.

The next proposition gives the example of the smal-
lest groupoid which is not a group, but its polynomial se-
quence is <pn>=2n, n»1 and P, = 0.

3
PROPOSITION 2. The sequemce a=<0,2Y,2%,2°,...,2%, .. .>
i8 representable in the class of the 3-element groupoids, but

not in the class of the 2~element groupoids.

r oo £, Let g= (G,+) be a groupoid given in ta-

P
i ble 1. ¢ is commutative, associative, and
0 in it holds that 3x=x, (2n) x=2x,
2 (2n+l)x=x, n€N,
1 If peP(l) (g), then p=x or p=2x,s80
Table 1. Polg) =0,
n
If p=p(xX;,-. .,xn) GP(n) (g), then p= .Zoaixi,
l=
a; € {1,2}, so pn(g) < 2®, It is obvious that p depends on
all the variables XSy i=1,...,n.
Let us prove that all polJ_.‘ynomials of that form are
different. Let g(xl,...,xn) = I bixi' and al#bl. Without lo-

i=1

osing the generality we can assume that a, =1, b1=2, so 1=

1
= p(1,2,...,2) #q(1,2,...,2) =2, so the polynomials p and g
are different.

Note that according to Proposition 1 this is the smal-
lest groupoid which represents the given sequence.

Some similar sequences, P, = 2".1 and P, = P were

considered by PZonka and Gritzer [5], [8].
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4. PROPOSITION 3. Let the sequence <P, be represen-
table in the claee of groupoids, and let p2=0. Then pk=0
for all k» 2. _

Proof£. Let A= (A,.) be a groupoid which repre-
sents the given sequence. Since pz(A)' =0 it follows that po-

lynomial x -y does not depend on one variable at least, say
Y. '
Let p(x;,... ,xn) € P(n) (A), and n> 2, We shall prove
that pep(n) (A) using the induction on |p|, where |p| deno-

tes the lenght of p, i.e. the number of all occurences of
all variables in p. If |p| <n, then p does not contain some

of the variables x i=1,...,n, and does not depend on them

i’
If [pl =n then p(x;,..c.,X ) =q(x;,cco,X ) *x(X;,.00,X ). A8

|[q] <n, q does not depend on one variable at least. Let it

be x,, but then p(xl,...,xn) does not depend on Xy either.

ll
If this were not so, then there would exist such ai,a'l',az,
-..,an €A and q(ai,az, eee ,an) . r(ai,az,...,an)_ #q(a"l,az,...
...,an) . r(a;,az,...,an) .
This is in contradiction with the assumption that

x+y does not depend on y. Assume that for |p| <N, pGP(n) (A) .

Let |p| =N. Since p(xl,...,xn) =q(x1,,,,,xn) . r(xl,
...,xn), [a|] <N, g does not depend on, say X;. Then p does
not depend on X, either.

Note that the generalization of this proposition does
not hold, i.e. a sequence (ao,al,...,an_z,O,an,...) and ak#o

for some k > n-1 may be representable in the class of n-groupo-
ids, i.e. Bet with an n-ary operation.

It is enough to consider A= (A,f), where (A,+) is an
Abelian group of exponent 2, and f(a,b,c,d) =a+b+c. Then
Pd(A) =0, but ps(A) =1,
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5. Let K denote the class of all algebras A= (A,F)

with |A| =a. The next proposition gives the upper bound for
the numbers pn(A) in the case for finite algebras A.

PROPOSITION k. Let 5 =a and for k>0

_ ak k=l
(2) P =a" -iZ (i)Pi
(i) Sequence p= (f;o,pl,...,pk,...) defined by (2) is
representable.
(¢4} For all algebras B from X, , and all k>0
pk(B )<pk

Proof. (1) Let A=<{0,1,...,a-1},F>, where

F= UF
neN
ons of A" into A. The number of all different essentially n-
ary functions of A" into A is determined by (2). Indeed, for
k=1, the number of all unary functions on A is aa, but they
"are not all essentially unary. There are ]-’o constant functi-

n’ and Fn is the set of all essentially n-ary functi-

ons, so §1=aa-a'=aa- (3)50.
n
Let (2) be satisfied for all k<n. Then there are aa

n-ary functions, but they are not all essentially n-ary. Sin-
ce there are Es essentially s-ary functions p(X;,...,x),

for all s <n, then f(xl,...,xn) =p(xil,...,xis), 1j#i£,

{im,...,is}s{l,...,n} is essentially s-ary. For all such sub-
sets of the set {1,...,nl} there are f)s essentially s-ary fun-
ctions, according to the induction hypothesis.

So,among aa” n-ary functions there are (:) 'és es-

sentially s-ary functions. Therefore, A has f) essentially
n-ary different fundamentall operations, so p (A) >p for
all n> 0. However, any polynomial p(X;,...,X; ) EP(n) (A) induces
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some function from A" into A. Since set A has exactly §n dif-

ferent essentially n-ary functions,we have pn(A) <§n. Thid
completes the proof.

(1i) follows from the construction of algebra A, and
the fact that every polynomial of -Bl is a function from A"
into A for some n.

DEFINITION 2. The sequence q=<q,> has the mazxima-
lity property over the class of algebras, K, if
(1) g %8s representable in K,
(11} for each algebra, A, from K, pn(A) <q,, for all ne€N.

Let ¢ denote the class of all n -groupoids.

PROPOSITION 5.  Sequence p,, given in Proposition 4,

has maximality property in the claes
(1) K, N G2, for all a;
(i1) KznGn' for n=2,3,...

(111) Ky nG,, for n=2,3, ...

Proof. (i) The operation fk(x,y) =max{x,y) &1,

(@ is addition modulo k), is a Sheffer operation in k-valued
logic, and algebra A=<{0,1,... ,a—1>,fa} represents the gi-

ven seguence,

(i1) ,(11i) Por the two valued logic and three valued
logic there are n=- valued Sheffer operations for all n > 2,

Notes. For representability of sequence Ek in clas-
ses K, nG for a>2 and n>2 see I.Rosenberg 9] .

The notion of maximality of sequences is in close
connection with the notion of the primal algebra ([4], §27.),
namely sequence Ek has maximality property in a class of_ al-
gebras with carriers of cardinality a, iff that class has a
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primal algebra. However, the notion of maximality for sequ-
ences is more general than the notion of the primal algebra,
or, what is equivalent, with the notion of functional comp~
letness of the set of fundamental operations, F, for an al-
gebra A =<A,F>,
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REZ | HE

NEKE PRIMEDBE 0 pn-NIZOVIMA ALGEBRI

U radu su razmatrani problemi reprezentabilnosti |

nizova u raznim klasama algebri. Data je karakterizacija ni-
zova reprezentabilnih u dvoelementnim grupoidima. Za niz
pn==2n je data najmanja algebra koja ga reprezentuje. Uveden
je pojam maksimalnosti niza i uspostavljena je veza ovog poj-
ma sa k-valentnim logikama. ‘



