ZBORNIK RADOVA Prirodno-matematičkog fakulteta Univerziteta u Novom Sadu Serija za matematiku, 15,1 (1985)

REVIEW OF RESEARCH Faculty of Science University of Novi Sad Mathematics Series, 15,1 (1985)

SOME FIXED POINT THEOREMS IN PROBABILISTIC METRIC SPACES

Olga Hadžić

Prirodno-matematički fakultet, Institut za matematiku 21000 Novi Sad, dr Ilije Djuričića br. 4, Jugoslavija

ABSTRACT

In [7] a new class of contraction type mappings on probabilistic metric spaces is introduced and a fixed point theorem for such mappings is proved. V. Rady generalized in [14] the fixed point theorem from [7] to (S,F,t), which is a complete Menger space with T-norm t such that sup t(a,a) = 1. In this paper we shall generalize fixed point theorems from [7], [14] and [2].

1. INTRODUCTION

The notion of probabilistic metric space is introduced in [8] and some fixed point theorems in such spaces are proved in [2], [3], [5], [7], [10], [11], [12], [13], [14], [17], [18].

Let S be a nonempty set, Δ the family of distribution functions, $F: S \times S \rightarrow \Delta$ and t a T-norm [15].

AMS Mathematics Subject Classification (1980): 47H10.

Key words and phrases: Probabilistic metric spaces, fixed point theorem.

DEFINITION. The triplet (S,F,t) is a Menger space if and only if the following conditions are satisfied, where $F_{p,q} = F(p,q)$, for every $(p,q) \in S \times S$:

(i)
$$F_{p,q}(0) = 0$$
, for every $(p,q) \in S \times S$.

(ii)
$$F_{p,q}(x) = 1$$
, for all $x > 0$ if and only if $p = q$.

(iii)
$$F_{p,q} = F_{q,p}$$
, for every $(p,q) \in S \times S$.

(iv) For every $(p,q,r) \in S \times S \times S$ and $x,y \in R^+$:

$$F_{p,q}(x+y) \ge t(F_{p,r}(x), F_{r,q}(y)).$$

The (ε,λ) -topology is introduced by the family of neighbourhoods $V = \{V_{\mathbf{u}}(\varepsilon,\lambda) | (\mathbf{u},\varepsilon,\lambda) \in S \times \mathbb{R}^+ \times (0,1)\}$. This topology is metrizable if $\sup_{a<1} t(a,a) = 1$, which is proved in [16].

The notion of a probabilistic contraction type mapping is introduced by V. Sehgal in [17] and for such class of mappings in [18] a fixed point theorem is proved, where T-norm t is min. In [6] it is proved that this result holds if t has equicontinuous iterations at x = 1 (see also [11]).

T. Hicks introduced in [7] the following contraction condition, where $k \in (0,1)$:

(1) For every r > 0, $F_{p,q}(r) > 1$ -r implies $F_{fp,fq}(kr) > 1$ -kr where $f:S \to S$, $(p,q) \in S \times S$ and (S,F,t) is a Menger space (in [7] the case when $t = \min$ is investigated).

In [14] V. Radu proved the following result .

THEOREM A. Let (S, F,t) be a complete Menger space such that $\sup_{a<1} t(a,a) = 1.$ Then every mapping $f:S \to S$ which satisfies condition (1) has a unique fixed point $x \in S$ and $x = \lim_{n \to \infty} p_n$, where $p_0 \in S$ and $p_{n+1} = fp_n$, for every $n \in N$ U {0}.

In [14] it is proved that condition (1) implies that for every $(p,q) \in S \times S$:

$$d(f^{n}p, f^{n}q) \le 2k^{n}d(p,q)$$
, for every $n \in N$

if $t(a,b) \ge \max\{a+b-1,0\}$, $(a,b) \in [0,1] \times [0,1]$ and d is defined by:

(2)
$$d(p,q) = \inf_{t>0} \{t+1-F_{p,q}(t)\}, (p,q) \in S \times S.$$

The metric d, which is defined by (2),induces the (ϵ,λ) -uniformity [14].

In part 2. of this paper we shall prove a generalization of Theorem A. For Theorem 2 of this paper we shall need the following theorem of P.R. Meyers [9].

THEOREM B. Let (X,d) be a complete metric space, $f:X \rightarrow X$ a continuous mapping and the following conditions are satisfied:

- (a) f has a unique fixed point x*.
- (b) For each $x \in X$ the sequence $\{f^n x\}_{n \in N}$ converges to x^* .
- (c) There exists an open neighbourhood U of x* with the property that for any given open set V including x* there is an no \in N such that $n \ge no$ implies $f^n(U) \subseteq V$.

Then for each $k \in (0,1)$ there exists a metric d^* , topologically equivalent to the metric d, so that:

$$d*(fp,fq) \le kd*(p,q), (p,q) \in S \times S.$$

2. FIXED POINT THEOREMS

The following theorem is a generalization of Theorem A.

THEOREM 1. Let (S,F,t) be a complete Menger space such that $\sup_{a<1} t(a,a) = 1$, $f:S \to S$ and for any $x \in S$ there exists $n(x) \in \mathbb{N}$ such that for any $v \in O_f(x;0,\infty) = \{f^n x, n \in \mathbb{N} \cup \{0\}\}$:

(3)
$$r > 0$$
, $F_{x,v}(r) > 1-r \Rightarrow F_{f^{n(x)}x,f^{n(x)}v}(g(r)) > 1-g(r)$

where g: $[0,\infty) \rightarrow [0,\infty)$ is such that $\lim_{n\to\infty} g^n(r) = O(r > 0)$ and g(u) < u, u > 0.

If f is continuous, then there exists $x^* \in S$ such that $fx^* = x^*$. If (3) holds for every $(x,v) \in S \times S$, then there exists one and only one fixed point $x^* \in S$ of f and $x^* = \lim_{n \to \infty} f^n x_n$, for arbitrary $x_n \in S$.

PROOF. Let $x_0 \in S$ and $x_n = f$ x_{n-1} , $n \in N$. We shall prove that the sequence $\{x_n\}_{n \in N}$ is a Cauchy sequence which means that for every r > 0 and $s \in (0,1)$ there exists $n(r,s) \in N$ so that:

$$F_{x_{m+p},x_m}(r) > 1-s$$
, for every $p \in N$

and every $m \ge n(r,s)$.

For every r > 0 we have:

$$f^{n(x_{m+p-1})} \dots f^{n(x_m)} x_0, x_0$$
 (1+r) > 1 - (1+r).

Since

$$v = f^{n(x_{m+p-1})} \dots f^{n(x_{m})} x_{o} \in O_{f}(x_{o}; 0, \infty)$$

from (3) we have that:

$$f_{f}^{r}$$
 f_{f}^{r} f_{g}^{r} f_{g

Similarly, for $x = x_1$ and v = f $n(x_m+p-1)$ $n(x_n)$ $\in O(x_1;0,\infty)$ we have:

$$f^{n(x_{m+p-1})}$$
 $n(x_m)$ $n(x_1)$ $n(x_1)$ $n(x_1)$ $(g^{2(1+r)})>1-g^{2(1+r)}$.

It is easy to see that for every p ∈ N and every m ∈ N

$$f^{n(x_{m+p-1})} \dots f^{n(x_m)} x_{m-1} x_{m-1}$$

Since $\lim_{n\to\infty} g^n(r) = 0$, for every r > 0 it follows that there exists $f_n(r,s) \in \mathbb{N}$ so that:

$$g^{n}(1+r) < min$$
, s}, for every $n \ge n_{o}(r,s)$.

Hence we have that for every $m > n_0(r,s)$ and $p \in N$:

$$f^{n(x_{m+p-1})}...f^{n(x_{m})}x_{m-1},x_{m-1}$$

$$\geq F_{n(x_{m+p-1})} \dots f^{n(x_{m})} x_{m-1} x_{m-1}$$

which means that $\{x_n\}_{n\in\mathbb{N}}$ is a Cauchy sequence. Since S is complete there exists x^* such that $\lim_{n\to\infty}x_n=x^*$.

Let us prove that $\lim_{n\to\infty} \hat{r}_n = x^*$. First, we shall prove that for every r > 0 and every $s \in (0,1)$ there exists $n_1(r,s) \in \mathbb{N}$ so that:

$$F_{fx_m,x_m}(r) > 1-s$$
, for every $m \ge n_1(r,s)$.

From $F_{fx_0,x_0}(1+r) > 1-(1+r)$ it follows that:

$$F_{fx_m,x_m}(g^m(1+r)) > 1-g^m(1+r)$$
, for every $m \in N$.

If $n_O(r,s) \in N$ is such that $g^m(1 + r) < min\{r,s\}$ for every $m \ge n_O(r,s)$ then:

(4)
$$F_{fx_m,x_m}(r) > 1-s$$
, for every $m \ge n_0(r,s)=n_1(r,s)$.

Since for every u > 0:

$$F_{fx^*,x^*}(u) \ge t(t(F_{fx^*,fx_m}(u/3),F_{fx_m,x_m}(u/3)),F_{x_m,x^*}(u/3))$$

and sup t(a,a) = 1, it follows from (4) and the continuity of f a<1 that $fx^* = x^*$.

Suppose that (3) holds for every $(x,v) \in S \times S$. Let us prove that $f^{n(x^*)}x^* = x^*$. Let r > 0. Then from

$$F_{f^{n(x^*)}_{X_0,X_0}}(1+r) > 1-(1+r)$$

it follows that for every m & N we have that

$$f_{f^{n(x^*)}x_m,x_m}^{n(x^*)}$$
 (g^m(1+r)) > 1-g^m(1+r).

Let $s \in (0,1)$ and $n_0(r,s) \in N$ so that for every $n \ge n_0(r,s)$, $g^n(1+r) < min\{r,s\}$. Then for every $n \ge n_0(r,s)$

$$f^{n(x^*)}x_n, x_n$$

and so $\lim_{n\to\infty} x_n = x^*$ implies that $\lim_{n\to\infty} f^{n(x^*)}x_n = x^*$.

The topology of the space S is Hausdorff. Hence, in order to prove that $x^* = f^{n(x^*)}x^*$ we shall prove that $\lim_{n \to \infty} f^{n(x^*)}x_n = f^{n(x^*)}x^*$.

Let r > 0, $s \in (0,1)$ and suppose that $0 < u < \min\{r,s\}$. From g(u) < u it follows that $g(u) < \min\{r,s\}$. From $\lim_{n \to \infty} x_n = x^*$ we obtain that there exists $n(u) \in N$ so that $F_{x_n, x_n^*}(u) > 1$ -u, for every $n \ge n(u)$ and so from (3) we have:

$$f^{n(x^*)}x_n$$
, $f^{n(x^*)}x^*$ (g(u))>1-g(u), for every $n \ge n(u)$.

Hence:

$$F_{f^{n(x^{*})}x_{n}, f^{n(x^{*})}x^{*}}(r) \ge F_{f^{n(x^{*})}x_{n}, f^{n(x^{*})}x^{*}}(g(u)) >$$

> 1-g(u)>1-s, for every
$$n \ge n(u)$$

which means that $\lim_{n\to\infty} f^{n(x^*)}x_n = f^{n(x^*)}x^*$, and so $f^{n(x^*)}x^* = x^*$. Let us prove the uniqueness of the fixed point of the mapping $f^{n(x^*)}$. Suppose that $v \in S$ so that $f^{n(x^*)}v = v$. From $F_{x^*,v}(1+r) > 1-(1+r)$ for every r > 0 it follows that:

$$f_{f^{n(x^*)}x^*, f^{n(x^*)}v}^{(g(1+r))} > 1-g(1+r)$$

and so:

(5)
$$F_{x^n,v}(g^n(1+r)) > 1-g^n(1+r)$$
, for every $n \in N$.

From (5) and $\lim_{n\to\infty} g^n(1+r) = 0$ we obtain that $x^* = v$. Since $x^* = f^{n(x^*)}x^*$ we have that:

$$fx^* = ff^{n(x^*)}x^* = f^{n(x^*)}fx^*$$

and so $fx^* = x^*$. Let us prove that $x^* = \lim_{n \to \infty} f^n x_0$. For every r > 0 and $k \in \{0,1,\ldots,n(x^*)-1\}$:

$$f_{f^k x_0, x^*}^{k}$$
 (1+r) > 1-(1+r)

which implies that:

$$f_{f^{k+n(x^*)}x_0,f^{n(x^*)}x^*}(g(1+r)) > 1-g(1+r)$$

and so:

$$F_{f^{k+n(x^*)}x_0,x^*}(g(1+r)) > 1-g(1+r).$$

It is obvious that for every m € N:

$$F_{f^{mn}(x^*)+k_{X_0,x^*}}(g^m(1+r)) > 1-g^m(1+r)$$

and so for every $n \ge n(x^*)$:

(6)
$$F_{f^{n}x_{0},x^{*}}(g^{[n/n(x^{*})]}(1+r)) > 1-g^{[n/n(x^{*})]}(1+r).$$

Relation (6) implies that $\lim_{n\to\infty} f^n x_0 = x^*$.

REMARK. From the proof of Theorem 1 it is obvious that we can suppose that $\inf g(r) = 0$ instead of g(r) < r(r > 0). If n(x) = 1, for every $x \in S$ from Theorem 1 it follows Theorem A.

THEOREM 2. Let (S,F,t) be a complete Menger space such that $\sup_{a<1} t(a,a) = 1$ and f:S + S a continuous mapping so that (3) is satisfied for every $(x,v) \in S \times S$. Then for each $k \in (0,1)$ there exists a metric d^* , topologically equivalent to a metric d which induces the (ε,λ) -uniformity, such that:

(7)
$$d^*(fp,fq) \le kd^*(p,q)$$
, for every $(p,q) \in S \times S$.

PROOF. (a) and (b) from Theorem B are satisfied and let us prove (c), where U = S and V = $V_{x^*}(r,s)$ (r > 0, $s \in (0,1)$). We shall prove that there exists $n(r,s) \in N$ so that for every $n \ge n(r,s)$, $f^n(U) \subset V$. Let $p \in U$ and $n(r,s) \in N$ so that $g^n(1+r) < \min\{r,s\}$, for every $n \ge n(r,s)$. For every $n \ge n(x^*)$ we have that:

$$f_{f^{n}p,x^{*}}^{(g^{[n/n(x^{*})]}(1+r))} > 1-g^{[n/n(x^{*})]}(1+r).$$

If $[n/n(x^*)] > n(r,s)$ then F (r) > 1—s and so $f^n p, x^*$ $f^n p \in V$, for every $n \in N$ such that $[n/n(x^*)] > n(r,s)$.

Let (S, F, min) be a Menger space and for every (x,y) $\in S \times S$:

$$d(x,y) = \begin{cases} \sup\{t \in (0,1), F_{x,y}(t) \le 1-t\} \\ 0, F_{x,y}(t) > 1-t \text{ for every } t \in (0,\infty). \end{cases}$$

In [7] ([2]) it is proved that d is a metric on S which is compatible with the (ε,λ) -topology. It is obvious that $d(x,y) \le t$ if and only if $F_{x,y}(t) > 1$ -t. Using the metric d Shihsen Chang proved in [2] some fixed point theorems in a Menger space (S,F,\min) . The following theorem is a generalization of Theorem 3.3 from [2].

THEOREM 3. Let (S,f,t) be a complete Menger space such that $\sup_{a<1} t(a,a) = 1$, $f:S \to S$ a continuous mapping and for any $x \in S$ there exists $p(x) \in N$ such that for any $u,v \in O_f(x;0,\infty)$ and any r > d(u,v):

$$_{f^{p(x)}u, f^{p(x)}v}^{F(g(r)) > 1-g(r)}$$

where $g: [0,\infty) \to [0,\infty)$ is nondecreasing right continuous and g(r) < r, for every r > 0. Then there exists a fixed point of f and for any $x_0 \in S$ the sequence $\{f^n x_0\}_{n \in N}$ converges to some fixed point of f.

PROOF. Let us prove that $\lim_{n\to\infty} g^n(r) = 0$, for r > 0. From g(r) < r it follows that $g^n(r) \le g^{n-1}(r) \le \dots < r$ and so there exists $r^* = \lim_{n\to\infty} g^n(r)$. Since g is right continuous it follows that $\lim_{n\to\infty} g^{n+1}(r) = g(\lim_{n\to\infty} g^n(r)) = g(r^*)$ and so $r^* = 0$. Let $\lim_{n\to\infty} f^n(r) = g(r^*)$ and so $r^* = 0$. Let $\lim_{n\to\infty} f^n(r) = g(r^*)$ and so $f^* = 0$. Let $\lim_{n\to\infty} f^n(r) = g(r^*)$ us prove that for every $f^n(r) = g(r^*)$ is convergent. Since for every $f^n(r) = g(r^*)$ is convergent. Since for every $f^n(r) = g(r^*)$ is convergent.

$$F_{f^{pn(x_0)}x_0,x_0}$$
 (1+r) > 1-(1+r),

for every $p \in N$ we obtain that for every $k \in N$:

$$F_{f^{(k+p)n(x_0)}_{x_0, f^{kn(x_0)}_{x_0}}(g^{k(1+r)}) > 1-g^{k(1+r)}.$$

Hence if $s \in (0,1)$ and $n(r,s) \in N$ is such that:

$$g^{k}(1+r) < \min\{r,s\}, \text{ for } k \ge n(r,s)$$

then:

$$f_{f^{(k+p)n(x_0)}x_0, f^{kn(x_0)}x_0}^{(r)} > 1-s, \text{ for every } k \ge n(r,s)$$

and so $\{f^{n(x_0)k}x_0\}_{k \in \mathbb{N}}$ is a Cauchy sequence. Let $x^* = \lim_{k \to \infty} f^{n(x_0)k}x_0$. Let $p \in \{1, 2, ..., n(x_0)-1\}$ and r > 0. Since $k \to \infty$

$$F_{f^{p}x_{0},x_{0}}$$
 (1+r) > 1-(1+r)

we obtain that for every $k \in N$

$$F_{f^{kn(x_0)+p_{x_0, f^{kn(x_0)}_{x_0}}}(g^k(1+r)) > 1-g^k(1+r)$$

and so we have $\lim_{k\to\infty} f^{kn(x_0)+p_{X_0}} = x^*$. This implies that $x^* = \lim_{k\to\infty} f^n x_0$ and $fx^* = x^*$.

REMARK. If t = min from Theorem 3 it follows Theorem 3.3 from [2]. Similarly, the following theorem can be proved.

THEOREM 4. Let (S,F,t) be a complete Menger space such that $\sup_{a<1} t(a,a) = 1$ and $f:S \to S$ a continuous mapping so a 1 that the following condition is satisfied: There exists $p \in N$ so that for every $x \in S$ and every $k \in N$

REFERENCES

- [1] A.T. Bharucha-Reid, Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc. 82 (1976), 641 657.
- [2] Shih-sen Chang, The metrization of probabilistic metric spaces with applications, Univ. u Novom Sadu, Zb. rad. Prir.-mat. fak., ser. mat., 15, 1(1985), 107-117.
- [3] G.L. Cain, Jr. and R.H. Kasriel, Fixed and periodic points of local contractions on PM-spaces, Math. Systems Theory, Vol. 9, No. 4 (1975-76), 289 297.
- [4] Gh. Constantin, I. Istrațescu, Elemente de Analiza Probabilista si Aplicatii, Ed. Acad. R.S.R., 1981.
- [5] O. Hadžić, A generalization of the contraction principle in PM-spaces, Univ. u Novom Sadu, Zb. rad. Prir.-mat. fak., ser. mat., 10(1980), 13 - 21.
- [6] O. Hadžić, Fixed Point Theory in Topological Vector Spaces, Institute of Mathematics, Novi Sad, 1984.
- [7] T.L. Hicks, Fixed point theory in probabilistic metric spaces, Univ. u Novom Sadu, Zb. rad. Prir.-mat. fak., ser. mat., 13(1983), 63 72.
- [8] K. Menger, Statistical metric, Proc. Nat. Acad. USA, 28 (1942), 535 537.
- [9] P.R. Meyers, A converse to Banach's contraction theorems, J. Res. Nat. Bur. Standards. Sect. B71B (1967), 73 - 76.

- [10] V. Radu, A remark on contractions in Menger spaces, Seminarul de Teoria Probabilităților si Aplicații, Univ. Timișoara, No. 64, 1983.
- [11] V. Radu, On the t-norms of Hadžić-type and fixed points in PM-spaces, Univ. u Novom Sadu, Zb. rad. Prir.-mat. fak., ser. mat. 13(1983), 81 85.
- [12] V. Radu, On the contraction principle in Menger spaces, Seminarul de Teoria Probabilităților si Aplicații, Univ. Timisoara, No. 68, 1983.
- [13] V. Radu, On the t-norms with the fixed point property, Seminarul de Teoria Probabilităților si Aplicații, Univ. Timișoara, No. 72, 1984.
- [14] V. Radu, On some contraction-type mappings in Menger spaces, An. Univ. Timişoara, Ştiinţe Matematice, Vol. XXIII, Fasc. 1-2, 1985, 61 65.
- [15] B. Schweizer, A. Sklar, Probabilistic metric spaces, North-Holland Series in Probability and Applied Mathematics, 5, 1983.
- [16] B. Schweizer, A. Sklar, E. Thorp, The metrisation of SM-spaces, Pacific J. Math. 10(1960), 673 675.
- [17] V.M. Sehgal, Some fixed point theorems in functional analysis and probability, Ph. D. Diss., Wayne State Univ., 1966.
- [18] V.M. Sehgal, A.T. Bharucha Reid, Fixed points of contraction mappinigs on PM-spaces, Math. Systems Theory, 6(1972), 97 100.
- [19] H. Sherwood, Complete probabilistic metric spaces,2. Wahr. verw. Geb., 20(1971), 117 128.

Received by the editors December 10, 1985. REZIME

NEKE TEOREME O NEPOKRETNOJ TAČKI U VEROVATNOSNIM METRIČKIM PROSTORIMA

U radu [7] definisana je nova klasa kontraktivnih preslikavanja u verovatnostnim metričkim prostorima i dokazana je teorema o nepokretnoj tački za ova preslikavanja.

V. Radu je uopštio u radu [14] teoremu o nepokretnoj tački iz rada [7] na Mengerove prostore (S, F,t) gde je

U ovom radu uopšteni su rezultati iz [7], [14], i [2].