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ABSTRACT

The purpose of this paper is to study a metrization of
a class of probabilistic metric spaces. As an application, we
consider the existence of fixed points for some kinds of mappings
in probabilistic metric spaces, and give some new fixed point

theorems which generalize some recent results of [1], {2}, {7],

[8), [111, [12].
1. INTRODUCTION

The metrization of a probabilistic metric space is of
the fundamental importance in the theory and applications of pro-
babilistic metric spaces and has been considered by Schweizer,Sklar
and Thorp [ 9], I"onnihan and Schweizer [5], Hicks [ 3], Hicks and
Sharma [ 4] and Radu [6].

In this paper we discuss the Hicks metric from [3] and

AMS Mathematics Subject Classification (1980): 47H10, 54H25.

Key words and phrases: Probabilietic metric spaces, firxed point
theorems.



108 Shih-sen Chang

as an application, in section 3. we consider the existence of
fixed points for some kinds of mappings in Menger space (S,F,min)
The obtained results are generalizations of fixed point theorems
from [11, (2], {71, [s81, [11], [12].

2. PRELIMINARIES

Throughout this paper, we denote R = (==, =), p the

set of left-continuous distribution functions and H the function
1, t >0
0, t s0.

DEFINITION 2.1, 4 funetion T:[0,1]1*>[0,1] 28 called
to be a t-norm i1f for any a,b,c,d € {0,1]:

T(a,1) = a, T(a,b)

T(b,a), T(a,b)2T(c,d)(azc,b2d)
and

T(a, T(b,c)) T(T(a,b),c).
The notion of-a probabilistic metric space is introduced

by K. Menger. A special probabilistic metric space is the Menger
space [101.

DEFINITION 2.2. 4 Menger space ts a triplet (E,F,T),
where E 78 a nonempty set, T 28 a t-norm and ¥ <8 a mapping of
E x E Znto Dfue shall denote the distribution functions F(x,y) by
Fx .y and Fo (t) will repregent the value of F X,V at t € R) sa-
ttsfytng the foZZowtng conditionsg:

(PM-1) F_ y(t) = H(t), for every t>0 <if and only ©f x=y.
b

(PM=2) Px y(0) = 0,for every (x,y) € E x E.
k]

(PM-3) F = sfor every (x,y) € E x E.

Xy y X
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(PM-4) r (tq + ta) 2 T(Fx

X,y L (t1), Fz,y(tz)), for every

3

X,v,%Z € E and every ti,ta € [0,=).

It is well-known [ 10] that if (E, ¥,T) is a Menger spa-

ce with t-norm T satisfying sup T(a,a) = 1 then (E,F,T) is a
’ a<i
Hausdorff space in the topology 1(the so called (e,\)-topology),

induced by the family of neighbourhoods {UP(E,A): peE, >0 e>0}
where U _(e,A) = {x e E: Fx,p(e) > 1-A}. It is obvious that the
families {Up(e,a): ) g E, € > O}and {Up(e,h): peE, e >0, >0}
are equivalent. With this topology the notions of the completeness
and the continuity are introduced in the usual way [ 10].

In this paper we shall suppose that (E,F,T) is a Menger
space such that T(a,a) 2 a, for every a € [0,1] , which implies
that T = min.

In [ 3] Hicks defined the function d: E x E + [0,1] in
the following way:

sup{t e (0,1): F y(t) < 1-t}
(2.1) d(x,y) =
0, F,

b

y(‘t) > 1-t, for every t €& (0,x).
Then we have the following result [3].
THEOREM 2.1.

(1) For any t e (0,»): d(x,y) < t Zf and only if

Fx,y(t) > 1-t.

(ii) Fx,y(d(x,y)) < 1-d(x,y), for every (x,y) ¢ E x E.

(iii) d Ze a metrie on E which is compatible with topo-
logy rt.

(iv) (E,¥,T) 8 t-complete 7f and only if E is d-com-
prlete.
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PROOF. We shall prove only (ii) (for (i), (iii) and
(iv) see Theorem 2.1 from [3]). If d{(x,y) = 0 then the inequality
in (ii) is satisfied. Suppose that d(x,y) > 0. Then for any sequ-
ence {t } ={t e (0,1): Fy y(t) < 1-t} which increasingly conver-
ges to d(x ,¥) we have that F Xs¥ (d(x,y)) = iiz Fx,y(tn)siif(l_tn)z
= 1-d(x,y).

In what follows we give an example to illustrate what
is the form of the metric d.

EXAMPLE. let (E,p) be a complete metric space. We de-
fine the function r: E'x E + [0,1] as follows:

p(x,y), if P(x,y) < 1
(2.2) ' rlx,y) =
1, if p(x,y) =2 1.

It is obvious that r is a metric on E. Moreover, it
follows that p(xn,x) + 0 <=> r(xn,x) + 0 and so the metric r and
the metric p are equivalent to each other.

By virtue of the metric r we define a mapping F: ExE-p:
Fx’y(t)”= H(t-r(x,y)), x,y € E.

Taking t-norm T = min (i.e. T(a,b) = min{a,b}, Vv a,b e [0,1])

and noting Theorem 2 of [11) we know that (E,F,min) is a T-comple-
te Menger space, and the T -convergence coincides with the r-con-
vergence (therefore with the p-convergence too).

Now we define a metriec d according to (2.2) on (E,F,min)
as follows:

Xy
d(x,y)

{ sup{t e (0,1): F y(t) < '1-t},

0, Fx,y(t) >1-t, ¥ t ¢ (0,o),

{ sup{t € (0,1), H(t-r(x,y)) s 1-t},

0, H(t-r(x,y)) > 1-t, ¥ t e (0,=),.
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It is easy to check that d(x,y) = r(x,y).
The example stated above shows that the metric d defi-
ned by (2.1) is a generalization of the metric r defined by (2.2)

in probabilistic metric-space .,
3. APPLICATIONS TO FIXED POINT THEORY

In this section, we shall utilize the result obtained
above to study the fixed point theorems for mappings in probabi-
listic metric space.

Throughout this section we shall assume that (E,F,T):
is a T ~complete Menger space, where the t-norm T satisfies the

following condition: !
T(t,t) Zt, ¥t e [0,1].

Suppose that d is the metric defined by (2.1) and the function

¢ satisfies the following condition (¢):

(¢) &: [0,0) + [0,») is strictly increasing, right
continuous and ¢(t) < t, ¥ t > 0.

LEMMA 3.1. Let f,g be two self-mappings on (E,F,T),and
K a funetion from E x E into [0,»). Suppose that p and q are two
mappings from E x E into Z (the set of all positive integersa).
Then

1=
(3.1) Ffp(x’y)x’gq(x,y)yw(t)) > S(t), ¥t > K(x,y),
X,y e E,
if and only 1f
(3.2) a(ePHY) - a06GY)0y < 6 (Kix,y))

PROOF. Necessity . Suppose that
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FfP(X,Y)x, gq(x’y)y((b(t)) > 1-8(t), ¥t > K(x,y),

X,y € E.

Letting € = t-K(x,y) and noting the conclusion of Theorem 2.1 (i)

we have
a(eP oY) a0Y)oy ¢ gty = ae + K(x,y)).
letting € M 0 and using the right continuity of ¢ we have
a(ePOOYI o806 )y oo (k(x,y)).

Sufficiency. It follows from the strictly increasing

property of § and the inequality (3.2) that
aeP YDy - gaY oy o g (kix,y)) < 8(E), ¥ t > K(x,y).

In view of Theorem 2.1 (i) we know that (3.1) is true.
This completes the proof.

o0 .
1l =

1,2,...,

In the sequel, we denote Of(x;i,w) = {fx}

3

=3?
= 0,1,2,...3 Of(x,y;i,m) = Of(x;i,m) ] Of(y;i,w), i=0,

and §(A) = sup d(x,y), where A is a subset of E.
X,yeA

THEQOREM 3.2. Let f be a t-continuous self-mapping on
(E,F,T). Suppose that there exist positive integers p,q-such that
for all x,y € E and all t > 0, t > K(x,y), where
K(x,y) = G(Of(x,y;O,w)),

the following holds

F (o(t)) > 1-0(t).
fpx, fqy
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Then there exists a unique fixed point of f in E, and for any
Xo € E, the iterattve sequence {fnxo} t-convergea (hence d-eon-

verges) to this fized point.

PROOF. By the assumptions of this Theorem and Lemma 3.1

for any  X,y€ E we have
a(fPx, fy) < 2(8(0.(x,y30,2))).

By Theorem 1.8.6 of [ 1] we know that there exists a unique fixed
point of f and for any x, € E the iterative sequence {f"x,!
T —converges (hence d-converges) to this point.

This ends the proof.

REMARK 1. As Theorem 1.8.7 of [1] pointed out |,
when p = @ = 1 in Theorem 3.2 the continuity of f can be dropped.

REMARK 2. Taking p

1]
fal
"
[
o
”~~
+
~
L1}

at, o € (0,1) and

K(x,y) d(x,y),

or
K(x,y) = max{d(x,y), d(x,fx), d(y,fy), dal{x,fy), dly,fx)}

in Theorem 3.2 we know that Theorem 3.2 is a generalization of
Banach fixed point theorem or €irié fixed point theorem (see [2])

in probabilistic metric spaces.

THEOREM 3.3. Let f be a t-continuous self-mapping on
(E,F,T). Suppose that for any x € E there exists positive integer
P(x) such that for any u,v € Of(x;O,w) and any t > d(u,v) the fol-
lowtng holds

Ffp(x)u fp(x)v(‘b(‘c)) > 1- 4(t).

Then there exists a fired point of £, and for any xo € E the itera-
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tive saequence {f"xo} ,T-converges to some fized point of f in E.

PRQQF. Taking K(u,v) = d(u,v), u,v € Of(x;O;b) it
follows from the assumptions and Lemma 3.1 that for any u,v €
e 0.(x;0,) '

d(fp(X)u, fP(X)V) < d(d{u,v)).
Therefore we have

sup d(fp(X)u, fp(X)v) =
u,veof(x;o,m)

= sup d(u,v) < sup ¢ (d(u,v)) <
u,veOf(x;p(x),m) u,veOf(x;O,w)

< &( sup d(u,v))
u,veOf(x;O,m)

By Theorem 1.8.2 of [ 1] we know that the conclusion of Theorem 3.3
is true.

This completes the proof.

THEOREM 3.4, Let f be a t-continuous self-mapping on
(E,F,T). Suppose that there exists positive integer P such that
one of the following conditions is eatisfied.

(Z) for any x € E and any u,v € Of(x;O,m) the fol-

lowing holds:

F (6(t)) > 1-d(t), ¥ t > dlu,v);
fpu, £Py

(i1) for any xeE and any nonnegative integer K the
following holds

k
Ffpx, fp+kx(<b(t)) > 1-6(t), ¥ t > d(x,f x).

Then the conclusion of Theorem 3.3 remains true.
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PROOF. If condition (i) is satisfied, then the con-
clusion of theorem follows from Theorem 3.3 immediately. If con-
dition (ii) is satisfied letting y = ka, and K(x,y) = d(x,ka)
it follows from Lemma 3.1 that for any x ¢ E and any nonnegative
integer k

aC Px, P,y ) < ecalx, %,
Hence for any nonnegative integers r,s, r < s we have
a(fP Py, £P*Sx) = a(fPfPx, fPYSTETy)

< $(d(fFx, £577%x))

< 0(d(fFx, £5x))

A

@(G(Of(x;o,m))).
This shows {hat for any x € E we have

§(0.(x;3p,%)) = sup aceP Ty, fP¥S,y < (80, (x30,2))).
r,S2t

By Theorem 1.8.5 of [1] the conclusion of Theorem 3.4 is true.

THEOREM 3.5. Let f be a self-mapping on (E,F,T). Sup-
pose that for each x € E there exists a positive integer n(x) suck
that for all y e E and all t > 0, t > K(x,y), where

K(x,y) = max{d(x,y), d(x, fn(X)x), d(x, fn(x)y)}’

the following holds:F {(At) >1-at
fn(X)x,fn(X)y
where A€(0,1) Then f has a unique fired point iﬁ E ,and
for any x € E  the iterative sequence {fnxo}

T-converges
to this fized point.

Proof:Since we have that for every x€E there exists n(x)€EN so that

A, Py max{ale,y),dtx, 2%y acx, 7 X)) ger
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the conclusion of Theorem 3.5 follows from Theorem 1.5.3 of

L1,

REMARK 3. Theorem 3.5 is a generalization of the re-
sults of Rhoades [8] and Singh [12] in probabilistic metric spa-
ces ,

REMARK L, By virtue of Lemma 3.1 we can obtain some
other fixed point theorems in probabilistic metric spaces. For

simplicity we omit the statement here.
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REZIME

METRIZACIJA VEROVATNOSNOG METRITKOG PROSTORA
SA PRIMENOM

Cilj ovog rada je ispitivanje metrizacije jedne klase
verovatnosnih metriékih prostora. Kao primena dato je nekoliko
teorema O nepokretnoj talki koje uopitavaju nedavne rezultate
(a1, f21, [71, [8l, (1211, [12].



