ZBORNIK RADOVA

Prirodno-matematičkog fakulteta Univerziteta u Novom Sadu Serija za matematiku, 15,1 (1985) REVIEW OF RESEARCH

Faculty of Science University of Novi Sad Mathematics Series, 15,1 (1985)

ON DEFINING THE DISTRIBUTION (x_r)_-s

Brian Fisher

Department of Mathematics, The University Leicester

LE1 7RH England

ABSTRACT

A definition is given for the distribution F(f(x)), where F(x) is a distribution and f(x) is a locally summable function. The particular case $F(x) = x_{+}^{-s}$ and $f(x) = x_{+}^{r}$ is then considered.

In the following we let N be the neutrix, see van der Corput [1], having domain N' = $\{1,2,\ldots,n,\ldots\}$ and range N' the real numbers, with negligible functions linear sums of the functions $n^{\lambda} \ln^{r-1} n$, $\ln^r n$ for $\lambda > 0$ and $r = 1,2,\ldots$, and all functions which converge to zero as n tends to infinity.

Thus if

$$f(n) = f_1(n) + f_2(n)$$

where f_1 is negligible and the limit as n tends to infinity of $f_2(n)$ exists, then the neutrix limit as n tends to infinity of

AMS Mathematics Subject Classification (1980):46F10
Key words and phrases: Dirac delta-function, distribution, test function, neutrix, neutrix limit.

f(n) exists and

N-lim
$$f(n) = \lim_{n \to \infty} f_2(n)$$
.

In particular if $f_1(n) = n^2 \ln n + n^3$ and $f_2(n) = n^{-1} + 2$, then

N-lim
$$f(n) = 2$$
.

Now let p be a fixed infinitely differentiable function having the properties

(i)
$$\rho(x) = 0$$
 for $|x| > 1$,
(ii) $\rho(x) > 0$,
(iii) $\rho(x) = \rho(-x)$,
1
(iv) $\int \rho(x) dx = 1$.

We define the function δ_n by $\delta_n(x) = n\rho(nx)$ for $n = 1, 2, \ldots$. It is obvious that $\{\delta_n\}$ is a regular sequence converging to the Dirac delta-function δ .

We now define the locally summable function x_{+}^{λ} for $\lambda > -1$ by

$$\mathbf{x}_{+}^{\lambda} = \left\{ \begin{array}{c} \mathbf{x}^{\lambda}, & \mathbf{x} > 0, \\ \\ 0, & \mathbf{x} < 0, \end{array} \right.$$

we define the locally summable function lnx, by

$$\ln x_{+} = \begin{cases} \ln x, & x > 0, \\ 0, & x < 0 \end{cases}$$

and we define the distribution x_{+}^{-1} by

$$x_{+}^{-1} = (\ln x_{+})^{-1}$$

The distribution x_{+}^{λ} for $\lambda < -1$ is now defined inductively by

$$x_{+}^{\lambda} = (\lambda + 1)^{-1} (x_{+}^{\lambda+1})^{-1}$$

and the distribution x_{λ} is defined by

$$x_{\lambda} = (-x)_{\lambda}^{\lambda}$$

for all λ .

The following definition was given in [3].

DEFINITION. Let F be a distribution and let f be a locally summable function. We say that the distribution F(f(x)) exists and is equal to h on the open interval (a,b) if

N-lim
$$\int_{n\to\infty}^{\infty} \int_{-\infty}^{\infty} (f(x))\phi(x)dx = (h,\phi)$$

for all test functions ϕ with compact support contained in (a,b), where

$$F_n(x) = F(x) * \delta_n(x)$$

for n = 1,2,....

This definition was considered in [2] for the case where F is a derivative of δ and in [4] for the case where f is an infinitely differentiable function.

The following theorem was proved in [3].

THEOREM 1. The distributions $(x_{\perp}^{\mu})_{\perp}^{\lambda}$ and $(x_{\perp}^{\mu})_{\perp}^{\lambda}$ exist and

$$(\mathbf{x}_{\perp}^{\mu})_{\perp}^{\lambda} = (\mathbf{x}_{\perp}^{\mu})_{\perp}^{\lambda} = 0$$

for $\mu > 0$ and λ , $\lambda \mu \neq -1$, -2, ...

$$(x_{\mu}^{\mu})_{\lambda}^{\lambda} = (-1)^{\lambda \mu} (x_{\mu}^{\mu})_{\lambda}^{\lambda} = \frac{\pi \csc(\pi \lambda)}{2\pi (-\lambda \mu - 1)!} \delta^{(-\lambda \mu - 1)}$$

for $\mu > 0$, $\lambda \neq -1$, -2, ... and $\lambda \mu = -1$, -2, ...

We now prove the following theorem.

THEOREM 2. The distribution (x, r) -s exists and

(1)
$$(x_{+}^{r})_{-}^{-s} = \frac{(-1)^{rs+s} c(\rho)}{r(rs-1)!} \delta^{(rs-1)}$$

for r, s = 1,2,..., where

$$c(\rho) = \int_{0}^{1} \ln t \rho(t) dt.$$

PROOF. We put

$$(x_{-}^{-s})_n = x_{-}^{-s} * \delta_n(x) = -\frac{1}{(s-1)!} \ln x_{-} * \delta_n^{(s)}(x)$$

for $s = 1, 2, \ldots$ Then

$$s = 1,2,... \cdot \text{Then}$$

$$- (s-1)!(x_{-}^{-s})_{n} = \begin{cases} 1/n \\ \int \ln(t-x)\delta_{n}^{(s)}(t)dt, & x < -\frac{1}{n}, \\ -1/n \\ 1/n \\ \int \ln(t-x)\delta_{n}^{(s)}(t)dt, & |x| < \frac{1}{n}, \\ x \\ 0, & x > \frac{1}{n} \end{cases}$$

so that

$$-(s-1)!((x_{+}^{r})_{-}^{-s})_{n} = \begin{cases} 1/n & -\frac{1}{r}, \\ \int \ln(t-x^{r})\delta_{n}^{(s)}(t)dt, & 0 \leq x \leq n^{-\frac{1}{r}}, \\ x^{r} & 1/n & \int \ln t\delta_{n}^{(s)}(t)dt, & x < 0, \\ 0 & & -\frac{1}{r} & 0, & x > n^{-\frac{1}{r}} \end{cases}$$

for r, r = 1,2,.... It follows that $((x_{+}^{r})_{-}^{-s})_{n}$ has its support contained in the interval $(-\infty, n^{-1/r})$.

We have

$$n^{-1/r}$$
 $-(s-1)! \int ((x_{+}^{r})_{-}^{-s})_{n}x^{i}dx = 0$
 $n^{-1/r} = \int x^{i} \int \ln(t - x^{r})\delta_{n}^{(s)}(t)dtdx = 0$
 $1/n = \int \delta_{n}^{(s)}(t) \int \ln(t - x^{r})x^{i}dxdt = 0$

$$= \frac{n^{s-(i+1)/r}}{r} \int_{0}^{1} v^{(i+1)/r} \rho^{(s)}(v) \int_{0}^{1} [\ln(v-uv) - \ln u] u^{(i+1)/r-1} du dv,$$

where the substitutions x^{r} = tu and nt = v have been made. It follows that

$$n^{-1/r}$$

$$\int ((x_{+}^{r})_{-}^{-s})_{n} x^{i} dx$$

is negligible for i \neq rs-1. It also follows that when i = rs

$$\int_{0}^{n^{-1/r}} |((x_{+}^{r})_{-}^{-s})_{n} x^{rs}| dx = 0(n^{-1/r}).$$

When i = rs-1 we have

The part of the integral involving ln n is negligible and

$$\int_{0}^{1} v^{s} \rho^{(s)}(v) \int_{0}^{1} u^{s-1} \ln(v-uv) du dv =$$

$$= s^{-1} \int_{0}^{1} v^{S} \ln v d\rho^{(S-1)}(v) +$$

$$+ s^{-1} \int_{0}^{1} v^{S} \rho^{(S)}(v) dv \int_{0}^{1} \ln(1-u) d(u^{S}-1) =$$

$$= \frac{1}{2}(-1)^{S} s^{-1}(s-1)! - \int_{0}^{1} v^{S-1} \ln v d\rho^{(S-2)}(v) +$$

$$+ \frac{1}{2}(-1)^{S}(s-1)! \int_{0}^{1} \frac{u^{S}-1}{1-u} du = \frac{1}{2}(-1)^{S}(s-1)! \int_{0}^{1} j^{-1} +$$

$$+ (-1)^{S}(s-1)! c(\rho) - \frac{1}{2}(-1)^{S}(s-1)! \int_{0}^{1} j^{-1} = (-1)^{S}(s-1)! c(\rho).$$

Thus

$$N-\lim_{n\to\infty} \int_{0}^{\pi^{-1/r}} ((x_{+}^{r})_{-}^{-r})_{n} x^{rs-1} dx = -(-1)^{s} r^{-1} c(\rho).$$

Now let ϕ be an arbitrary test function with compact support contained in the interval (a,b), where we may suppose that a < 0 and b > 1. Then by Taylor's theorem

$$\phi(x) = \sum_{i=0}^{rs-1} \frac{x^{i}}{i!} \phi^{(i)}(0) + \frac{x^{rs}}{(rs)!} \phi^{(rs)}(\xi x)$$

where $0 \le \xi \le 1$.

It follows from what we have just proved that

$$\left| \int_{0}^{b} ((x_{+}^{r})_{-}^{-s})_{n} x^{rs} \phi^{(rs)}(\xi x) dx \right| \leq$$

$$\leq \sup_{x} \{ |\phi^{(k)}(x)| \} \cdot \int_{0}^{n^{-1/r}} |((x_{+}^{r})_{-}^{-s})_{n} x^{rs} | dx \rightarrow 0$$

as n tends to infinity and so

$$N-\lim_{n\to\infty} \int_{0}^{b} ((x_{+}^{r})_{-}^{-s})_{n} \phi(x) dx =$$

$$= N-\lim_{n\to\infty} \sum_{i=0}^{b} \int_{0}^{(i)} (0)^{n^{-1/r}} \int_{0}^{-s} ((x_{+}^{r})_{-}^{-s})_{n} x^{i} dx +$$

$$+ \lim_{n \to \infty} \frac{1}{(rs)!} \int_{0}^{b} ((x_{+}^{r})_{-}^{-s})_{n} x^{rs} \phi^{(rs)}(\xi x) dx =$$

$$= -\frac{(-1)^{s} c(\rho) \phi^{(rs-1)}(0)}{r(rs-1)!}.$$

Further

$$\int_{0}^{0} ((x_{+}^{r})_{-}^{-s})_{n} \phi(x) dx = \int_{0}^{1/n} \ln t \delta_{n}^{(s)}(t) dt \int_{0}^{0} \phi(x) dx$$

$$= \int_{0}^{1} \ln(v/n) \rho^{(s)}(v) dv \int_{0}^{0} \phi(x) dx$$

$$= \int_{0}^{1} \ln(v/n) \rho^{(s)}(v) dv \int_{0}^{1} \phi(x) dx$$

and so

$$N-\lim_{n\to\infty}\int_{a}^{b}((x_{+}^{r})_{-}^{-s})_{n}\phi(x)dx = 0.$$

Thus

$$N-\lim_{n\to\infty} (((x_{+}^{r})_{-}^{-s})_{n}, \phi) = N-\lim_{n\to\infty} \int_{a}^{b} ((x_{+}^{r})_{-}^{-s})_{n} \phi(x) dx$$

$$= -\frac{(-1)^{s} c(\rho) \phi^{(rs-1)}(0)}{r(rs-1)!} = \frac{(-1)^{rs+s} c(\rho)}{r(rs-1)!} (\delta^{(rs-1)}, \phi)$$

and equation (1) follows. This completes the proof of the theorem.

COROLLARY 1. The distribution
$$(x_1^r)^{-s}$$
 exists and
$$(x_1^r)^{-s} = \frac{(-1)^{s-1}c(\rho)}{r(rs-1)!}\delta^{(rs-1)}$$

for r, s = 1, 2,

PROOF. The result follows on replacing x by -x in equation (1).

COROLLARY 2. The distributions $(-x_+^r)_+^{-s}$ and $(-x_-^r)_+^{-s}$ exist and

$$(-x_{+}^{r})_{+}^{-s} = (-1)^{rs-1}(-x_{-}^{r})_{+}^{-s} = \frac{(-1)^{rs+s}c(\rho)}{r(rs-1)!} \delta^{(rs-1)}$$

for r, s = 1, 2, ...

PROOF. The results follow on noting that

$$(-x)_{+}^{-s} = x_{-}^{-s}$$

and so

$$(-x_{+}^{r})_{+}^{-s} = (x_{+}^{r})_{-}^{-s}, (-x_{-}^{r})_{+}^{-s} = (x_{-}^{r})_{-}^{-s}.$$

THEOREM 3. The distribution $(|x|^r)^{-s}$ exists and

(2)
$$(|\mathbf{x}|^{\mathbf{r}})_{-s} = \frac{2(-1)^{rs+s}c(\rho)}{r(rs-1)!} \delta^{(rs-1)}$$

for r, s = 1,3,5,...

PROOF. We have

$$(3) -(s-1)!((|x|^{r})_{-}^{-s})_{n} = \begin{cases} \int \ln(t-|x|^{r})\delta_{n}^{(s)}(t)dt, \\ |x|^{r} & 0 \leq |x|^{r} \leq 1/n, \\ 0, & |x|^{r} > 1/n \end{cases}$$

for r, s = 1,3,5,.... The function $((|x|^r)_-^{-s}$ is even and has its support contained in the interval $(-n^{-1/r}, n^{-1/r})$. It follows that

for odd i. For even i

(5)
$$\int_{-n^{-1/r}}^{n^{-1/r}} ((|x|^r)_{-s})_{n} x^{i} dx = 2 \int_{0}^{n^{-1/r}} ((|x|^r)_{-s})_{n} x^{i} dx$$

and so is negligible except when i = rs-1. Thus if ϕ is an arbitrary test function with compact support

$$N-\lim_{n\to\infty} ((|x|^r)_{-s})_n, \phi) = 2N-\lim_{n\to\infty} ((x_+^r)_{-s})_n, \phi)$$

and equation (2) follows. This completes the proof of the theorem.

COROLLARY. The distribution $(-|x|^r)_+^{-s}$ exists and

$$(-|x|^r)_+^{-s} = \frac{2(-1)^{rs+s}c(\rho)}{r(rs-1)!}\delta^{(rs-1)}$$

for r, s = 1,3,5,...

THEOREM 4. The distribution $(|x|^r)^{-s}$ exists and

(6)
$$(|x|^r)^{-s} = 0$$

for r, s = 1,2,... and rs $\neq 1,3,5,...$.

PROOF. Equations (3), (4) and (5) of course hold for r, s = 1,2,... and i = 0,1,2,... However, the critical case i = rs-1 is odd and so

$$\int_{-n^{-1/r}}^{n^{-1/r}} ((|x|^r)_{-s}^{-s})_n x^{i} dx$$

is either zero or negligible for i = 0,1,2,... and rs $\neq 1,3,5,...$. It follows that

$$N-\lim_{n\to\infty}((|x|^r)_{-s}^{-s})_n,\phi) = 0 = (0,\phi)$$

for arbitrary test function ϕ and rs \neq 1.3,5,... Equation (6)

follows. This completes the proof of the theorem.

COROLLARY 1. The distribution $(-|x|^r)_+^{-s}$ exists and

$$(-|x|^r)_+^{-s} = 0$$

for r, s = 1,2,... and rs $\neq 1,3,5,...$.

COROLLARY 2. The distribution (x^{2r})_-s exists and

$$(x^{2r})_{-s} = 0$$

for r, s = 1, 2, ...

The result of corollary 2 was given in [5].

REFERENCES

- [1] J.G. van der Corput, Introduction to the neutrix calcutus, J. Analyse Math., 7 (1959), 291 398.
- [2] B. Fisher, On defining the distribution $\delta^{(r)}(f(x))$ for summable f, Publ. Math. (Debrecen), to appear.
- [3] B. Fisher, On defining the change of variable in distributions, submitted.
- [4] B. Fisher and Y. Kuribayachi, Changing the variable in distributions, Dem. Math., 17 (1984), 499 514.
- [5] B. Fisher and Y. Kuribayashi, On defining the distribution $(x^r)_{-}^{-8}$, J. Fac. Educ. Tottori Univ., Nat. Sci., to appear.

Received by the editors August 5, 1985.

REZIME

O DEFINICIJI DISTRIBUCIJE (x_r)_-s

Data je definicija distribucije F(f(x)), gde je F(x) distribucija i f(x) lokalno sumabilna funkcija. Ispitan je specijalan slučaj $F(x) = x_{-}^{-s}$ i $f(x) = x_{+}^{r}$.